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Abstract. In this paper, the single-machine scheduling problem with convex multi-
resource dependent processing times, subject to meeting job deadlines, is considered. The
objective is to minimize the total cost, including the resource allocation costs and the �xed
costs. We assume that the actual processing time of each job (task) is a function of the
amount of resources allocated. Therefore, the decision variables of the model are: (1)
resources allocated to the jobs; (2) total consumed resources; (3) processing times of the
jobs; (4) start/completion times of the jobs. We reformulate and solve the problem using a
posynomial geometric programming model. In the proposed exact solution method based
on the geometric programming, the original problem of any size is reduced to a two-variable
unconstrainted optimization problem, which can be easily solved by a simple grid search.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

In many real scheduling problems, some parameters
of the problem, such as the duration of tasks or
their release times, can be controlled or improved
by allocating more resources to them. Therefore, in
these problems, two sub-problems should be solved se-
quentially or simultaneously: scheduling and resource
allocation. In the resource allocation sub-problem, the
actual processing time of tasks (jobs) is a function of
the amount of resource allocated. This function usually
has two forms: convex function and linear function (for
other forms of the function see [1,2]). The linear form of
the function for the single-machine scheduling problem
has been studied by many papers in the literature [3-
11]. However, the linear function does not obey the law
of diminishing marginal product, in which productivity
increases to the amount of resource at a decreasing
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rate [12]. Therefore, in this paper, the convex func-
tion is applied for the problem. This problem, i.e.
the single-machine scheduling problem with convex
resource dependent processing times, has been widely
studied in the literature [13-21] due to the wide applica-
bility of the convex resource consumption function and
its �tness for many real problems [22]. However, almost
all the existing studies on the problem consider only
one resource allocation, and there are very few studies
on multiple resources. Daniels [23] studied single-
machine scheduling problem with multiple resources
available for processing times control. He considered
a linear function for the resource dependent processing
times and multi-objective function of minimizing the
total amount of allocated resources and maximum job
tardiness. Shabtay [24] studied the problem with a
convex function and two resources available to control
the processing times. The considered objective was the
maximal lateness. Shabtay and Steiner [25] presented
a survey of scheduling problems with controllable
processing times.
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In this paper, we consider the single-machine
scheduling problem with convex multi-resource depen-
dent processing times, subject to meeting job deadlines.
The objective is to minimize the total cost, including
the resource allocation costs and the �xed costs. The
remainder of this paper is organized as follows. A
mathematical programming model is presented for the
problem in Section 2. This mathematical model is then
converted into a posynomial Geometric Programming
(GP) model [26-28] in Section 3. An exact solution
method is presented for the problem and the per-
formance of the proposed method is evaluated by a
numerical example in this section. Concluding remarks
are given in the last section.

The notations used throughout the paper are as
follows:

Parameters and indices
n Number of jobs,
m Number of resources,
j Index of jobs; j = 1; � � � ; n,
r Index of resources; r = 1; � � � ;m,
pnj Original (normal) processing time of

job j,
dj Deadline of job j,
fc Overall system �xed (overhead) cost

per time unit,
crr Unit cost of resource r consumption,
tarr Total available resource r,
Rnrj Normal (standard) consumption of

resource r for job j,
wrj A constant positive parameter.
Variables
Cj Completion time of job j,
P aj Actual processing time of job j,

TCRr Total amount of consumed resource r,
Rrj The amount of actual consumption of

resource r for job j.

The assumptions considered in this paper are as fol-
lows:

1. Jobs are independent of each other;
2. Setup and transportation times are negligible and

job preemption is not allowed;
3. The machine (processor) is continuously available

and can process at most one job at a time;
4. All the jobs have equal priorities;
5. All the jobs and the machine are available at time

zero;
6. The processing time of job j(P aj ) is a function of

resources, Rrj , r = 1; 2; � � � ;m, allocated to it. This
function is as follows:

P aj = pnj :
mY
r=1

��Rnrj
Rrj

�wrj�
j = 1; 2; � � � ; n: (1)

2. Mathematical model

The outputs or decision variables of the proposed
mathematical model are:

1. Resources allocated to the jobs (tasks);
2. Total consumed resources;
3. Processing times of the jobs;
4. Start/completion times of the jobs.

Obviously, in order to meet the job deadlines, the
sequence of the jobs should be based on EDD (Earliest
Due Date) dispatching rule, in which the jobs are se-
quenced in non-decreasing order of their due dates [29];
and in scheduling sub-problem, only the start times of
the jobs are determined. Therefore, we number the jobs
in EDD order. The presented mathematical model for
the problem is as follows:

Minimize fc:Cn +
mX
r=1

(crr:TCRr);

Xn

j=1
Rrj = TCRr r = 1; 2; � � � ;m;

TCRr � tarr r = 1; 2; � � � ;m;
C1 � P a1 ;
Cj � P aj + Cj�1 j = 2; 3; � � � ; n;
Cj � dj j = 1; 2; � � � ; n;
Cj ; P aj ; Rrj ;TCRr � 0 8j; r: (2)

The objective function is to minimize the total cost,
including the resource allocation costs and the �xed
costs. The �rst constraint set determines the total
consumed resources. The second constraint set ensures
that, for each resource, the total required resource does
not exceed the total available resource. The third
constraint guarantees that the start time of the �rst
job is not less than zero. The fourth constraint set
ensures that an operation does not overlap with both
its predecessor and its successor operations. The �fth
constraint set is used for meeting the deadlines. The
last constraint set is for non-negativity limitations.

3. Posynomial GP model

We �rst rewrite P aj in Eq. (1) as follows:
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P aj = pnj :
mY
r=1

��
Rnrj
�wrj � mY

r=1

�
R�wrjrj

�
= 
j :

mY
r=1

�
R�wrjrj

�
j = 1; 2; � � � ; n; (3)

such that:


j = pnj :
mY
r=1

��
Rnrj
�wrj � ; j = 1; 2; � � � ; n: (4)

Model (2) is now reformulated as a posynomial GP
model for the problem as follows:

Minimize fc:Cn +
mX
r=1

(crr:TCRr);

nX
j=1

(Rrj :TCR�1
r ) � 1 r = 1; 2; � � � ;m;

1
tarr

:TCRr � 1 r = 1; 2; � � � ;m;


1:C�1
1 :

mY
r=1

(R�wr1r1 ) � 1;

Cj�1:C�1
j + 
j :C�1

j :
mY
r=1

(R�wrjrj ) � 1

j = 2; 3; � � � ; n;
1
dj
:Cj � 1 j = 1; 2; � � � ; n;

Cj ; Rrj ;TCRr > 0 8j; r: (5)

The degree of di�culty of a posynomial GP model
is calculated as [(number of terms) � (number of
variables)� 1]. The degree of di�culty of model (5) is
equal to (m+2n�1) [26-28], i.e. the problem is a very
di�cult problem. This means that the number of jobs
(n) has more e�ect on di�culty of the problem than
the number of resources (m). It should be noted that
we applied variables TCRr, 8r, in order to decrease
the degree of di�culty of the model. The degree of
di�culty of model (5) without variables TCRr, 8r,
is equal to (mn + 2n � 1). Similarly, given that in
the third and fourth constraints of model (2) the (�)
can be replaced with (=), the variables Cj can be
eliminated from models (2) and (5). However, the
degree of di�culty of this converted form of model (5)
will increase to 2m+ n(n+1)

2 � 1.
The dual formulation of model (5) is given be-

low [26-28]:

Maximize
�
fc
�1

��1

:
mY
r=1

�
crr
�2r

��2r
:
mY
r=1

nY
j=1

�
�3r
�3rj

��3rj

:
mY
r=1

�
1

tarr

��4r
:
nY
j=2

�
�5j
�51j

��51j

nY
j=1

�

j :�5j
�52j

��52j
:
nY
j=1

�
1
dj

��6j
; (6)

subject to:

�3rj � wrj :�52j = 0

j = 1; 2; � � � ; ; ; r = 1; 2; � � � ;m; (7)

��521 + �512 + �61 = 0; (8)

��51j � �52j + �51(j+1) + �6j = 0

j = 2; � � � ; (n� 1); (9)

�1� �51n � �52n + �6n = 0; (10)

�2r �
nX
j=1

(�3rj) + �4r = 0 r = 1; 2; � � � ;m; (11)

�1 +
mX
r=1

(�2r) = 1; (12)

nX
j=1

(�3rj) = �3r r = 1; 2; � � � ;m; (13)

�51j + �52j = �5j j = 2; 3; � � � ; n; (14)

�521 = �51; (15)

�1; �2r; �3rj ; �4r; �51j ; �52j ; �6j ; �3r; �5j > 0:

In the above model, all the constraints are linear. The
dual variables �1, �2r, �3rj , �4r, �51j , �52j , and �6j
correspond to the terms of the primal problem (model
(5)), respectively. Variables �3r, �5j for j = 1; �5j for
j > 1 also correspond to the �rst, third, and fourth
constraints of the primal problem, respectively.

Eqs. (7)-(9) yield the following equations, respec-
tively:

�3rj = wrj :�52j 8j; r; (16)

�521 = �512 + �61; (17)

�52j = ��51j + �51(j+1) + �6j ;

j = 2; 3; � � � ; (n� 1): (18)
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�2r can be computed from the following equation by
using Eqs. (11) and (16)-(18):

�2r =

(
wr1:(�512 + �61) + wrn:�52n

+
n�1X
j=2

�
wrj :(��51j+�51(j+1)+�6j)

�)��4r

r = 1; 2; � � � ;m: (19)

Similarly, we have the following equation by using
Eqs. (12) and (17)-(19):

�1 =1�
mX
r=1

24 nX
j=1

(wrj :�52j)� �4r

35
=1�

mX
r=1

n
wr1:(�512 + �61) + wrn:�52n

+
n�1X
j=2

�
wrj :(��51j + �51(j+1) + �6j)

�o
+

mX
r=1

(�4r): (20)

The following equation is also obtained using Eqs. (13)
and (16)-(18):

�3r =
n
wr1:(�512 + �61) + wrn:�52n

+
n�1X
j=2

�
wrj :(��51j + �51(j+1) + �6j)

�o
r = 1; 2; � � � ;m: (21)

Eqs. (14) and (15) yield:

�5j =

(
�51(j+1) + �6j j = 2; 3; � � � ; (n� 1)
�51j + �52j j = n

(22)

and using Eqs. (10) and (20), we derive:

1�
mX
r=1

(
wr1:(�512 + �61) + wrn:�52n

+
n�1X
j=2

�
wrj :(��51j + �51(j+1) + �6j)

�)
+

mX
r=1

(�4r)� �51n � �52n + �6n = 0: (23)

The following single-constraint optimization problem
now can be obtained by using the above equations:

Maximize f(�4r;8 r;�51j ; j = 2; 3; � � � ; n;

�52n;�6j ; 8 j);
subject to:

(23) : 1�
mX
r=1

n
wr1:(�512 + �61) + wrn:�52n

+
n�1X
j=2

�
wrj :(��51j + �51(j+1) + �6j)

�o
+

mX
r=1

(�4r)� �51n � �52n + �6n = 0:
(24)

Problem (24) has (2n + m) variables, which are: �4r,8r; �51j , j = 2; 3; � � � ; n; �52n; �6j , 8j. The
detailed objective function of this problem is given
in Appendix 1. For simplicity, we now consider the
following assumption:

wrj = wr 8 r; j: (25)

Theorem 1. In the optimal solution of problem (24),
the following equation holds, assuming that �511 = 0
(note that �511 does not exist in the dual formulation
of model (5)):

mX
r=1

�
wr: log

�
�52j

�52(j�1)

��
+ log

�
�52j
�51j

�
+log

�
�51(j�1)+�52(j�1)

�52(j�1)

�
+log

�

(j�1)


j

�
=0

j = 2; 3; � � � ; n: (26)

Proof. According to the Karush-Kuhn-Tucker (KKT)
conditions, Eq. (26) is true. �

From Relation (26), the following equation can be
easily obtained:�

�52j
�52(j�1)

�1+
mP
r=1

(wr)

:
�51(j�1)+�52(j�1)

�51j
=


j

(j�1)

j = 2; 3; � � � ; n: (27)

Theorem 2. In the optimal solution of problem (24),
the following equation holds; cons is a constant:

1
�2r

=
fc

econs:crr:tarr
+

mP
r=1

(crr:tarr)

crr:tarr
8r: (28)
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�2r is calculated by the following equation as men-
tioned earlier:

�2r =
nX
j=1

(wr:�52j)� �4r 8r: (29)

Proof. The Karush-Kuhn-Tucker conditions yield:

log
�

fc
crr:tarr

�

+log

2664
nP
j=1

(wr:�52j)� �4r

1� mP
r=1

nP
j=1

(wr:�52j) +
mP
r=1

(�4r)

3775= cons

8r: (30)

Using Eqs. (29) and (30) yields:

log

0BB@ �2r:fc�
1� mP

r=1
(�2r)

�
:crr:tarr

1CCA = cons 8r (31)

By summing Eq. (31) over r and calculating the value
of
Pm
r=1(fr), the value of fr can be easily computed

and Eq. (28) will be obtained. �

Theorem 3. In the optimal solution of problem (24),
the following equation holds, assuming that �511 = 0:

�
�
� log(fc)+log

�
1�

mX
r=1

nX
j=1

(wr:�52j)+
mX
r=1

(�4r)
�

+ log
�Pn

j=1 �52j
�52j

��
+

(
log
�

j
dj

�
+ log

�
�51j + �52j

�52j

�
+

mX
r=1

[wr log(crr)]

�
mX
r=1

�
wr log

� nX
j=1

(wr:�52j)� �4r
��)

:

0BB@ �1�
mP
r=1

wr
�
1CCA = cons

j = 1; 2; � � � ; (n� 1): (32)

Proof. According to the Karush-Kuhn-Tucker (KKT)
conditions, Eq. (32) is true. �

From Relation (32), the following equation can be
easily obtained:

�
1� mP

r=1
(�2r)

� mP
r=1

wr

mQ
r=1

(�2wrr )
:

 
nP
j=1

�52j

! mP
r=1

wr

�52

�
1+

mP
r=1

wr
�

j

:(�51j + �52j) =
dj


j :
mQ
r=1

(crwrr )
:
�

fc
econs

� mP
r=1

wr

j = 1; 2; � � � ; (n� 1): (33)

Theorem 4. In the optimal solution of problem (24),
the following equation holds:

�
(
�log(fc)+log

�
1�

mX
r=1

nX
j=1

(wr:�52j)+
mX
r=1

(�4r)
�

+ log
�Pn

j=1 �52j
�52n

�)
+

(
log(
n)

+ log
�
�51n + �52n

�52n

�
+

mX
r=1

[wr log(crr)]

�
mX
r=1

�
wr log

� nX
j=1

(wr:�52j)� �4r
��)

:

0BB@ �1�
mP
r=1

wr
�
1CCA = cons:

0BB@1 +
mP
r=1

wr
mP
r=1

wr

1CCA : (34)

Proof. According to the Karush-Kuhn-Tucker (KKT)
conditions, Eq. (34) is true. �

From Relation (34), the following equation can be
easily obtained.

�
1� mP

r=1
(�2r)

� mP
r=1

wr

mQ
r=1

(�2wrr )
:

 
nP
j=1

�52j

! mP
r=1

wr

�52

�
1+

mP
r=1

wr
�

n

:(�51n+�52n)=
(fc)

mP
r=1

wr


n:
�
mQ
r=1

(crwrr )
�
: (econs)

1+
mP
r=1

wr
:

(35)

3.1. Some useful relations
i. Using Eqs. (28) and (33), we have the following

relation between �51j and �52j(2 � j � (n� 1)),
assuming that �511 = 0 (Note that �511 does not
exist in the dual formulation of Model (5).):
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�51j =
dj

j
:
mY
r=1

(tarwrr ):
�52

�
1+

mP
r=1

wr
�

j 
nP
j=1

�52j

! mP
r=1

wr
��52j

j = 1; 2; � � � ; (n� 1): (36)

ii. Using Relations (27) and (36), the following equa-
tion is obtained for �52j , j = 2; 3; � � � ; (n� 1).

�52j
nP
j=1

�52j
=

2664 
j�
dj�d(j�1)

�
:
mQ
r=1

(tarwrr )

3775
1

mP
r=1

wr

j = 2; 3; � � � ; (n� 1): (37)

iii. Using Relations (36) and (37), we have the fol-
lowing relation between �51j and �52j (2 � j �
(n� 1)):

�51j=�52j :
d(j�1)

(dj�d(j�1))
j=2; 3; :::; (n�1):

(38)

iv. Using Eqs. (27) and (38), we have the following
relation between �52j and �52(j�1) (2 � j � (n�
1)), assuming that d0 = 0:

�52j
�52(j�1)

=
�


j

(j�1)

:
d(j�1) � d(j�2)

dj � d(j�1)

� 1
mP
r=1

(wr)

j = 2; 3; � � � ; (n� 1): (39)

v. Using Relations (28) and (35), we have the follow-
ing relation between �51n and �52n:

�51n =
1

econs:
n
:
mY
r=1

(tarwrr )

:
�52

�
1+

mP
r=1

wr
�

n 
nP
j=1

�52j

! mP
r=1

wr
� �52n: (40)

vi. Using Relations (36) and (37), the following equa-
tion is obtained for �52n:

�52n=

0@ nX
j=1

�52j

1A"1�
0@ mY

r=1

(tarwrr )

! �1
mP
r=1

wr

1A
:

 �
d1


1

� �1
mP
r=1

wr

+
n�1X
j=2

��

j

dj � dj�1

� 1
mP
r=1

wr
�!#

: (41)

vii. Using Eqs. (8)-(10), �1 can be obtained from the
following equation.

�1 =

24 nX
j=1

(�52j)

35� 24 nX
j=1

(�6j)

35 : (42)

3.2. Solution method
Using Eqs. (28) and (29), �4r, 8r, can be written as a
function of

Pn
j=1(�52j) and cons, as follows:

�4r =

24 nX
j=1

(�52j)

35 :wr
� 1

fc
econs:crr:tarr +

mP
r=1

(crr:tarr)

crr:tarr

8 r: (43)

Also, �51j , j = 2; 3; � � � ; (n � 1), can be written as a
function of

Pn
j=1(�52j) using Eqs. (37) and (38):

�51j =
nX
j=1

(�52j):

2664 
j

(dj�d(j�1)):
mQ
r=1

(tarwrr )

3775
1

mP
r=1

wr

:
d(j�1)

(dj � d(j�1))
j = 2; 3; � � � ; (n� 1): (44)

Using Eqs. (9), (37), and (38), �6j , j = 1; 2; � � � ; (n�1),
can be written as a function of

Pn
j=1(�52j), assuming

that d0 = 0:

�6j =

"
nP
j=1

(�52j)

#
:dj�

mQ
r=1

(tarwrr )
� 1

mP
r=1

wr

:

8>>><>>>:
0BBB@ 


1
mP
r=1

wr

j

(dj�d(j�1))
1+ 1

mP
r=1

wr

1CCCA

�

0BBB@ 


1
mP
r=1

wr

j+1

(dj+1 � dj)
1+ 1

mP
r=1

wr

1CCCA
9>>>=>>>;

j = 1; 2; � � � ; (n� 1): (45)

Also, �52n can be written as a function of
Pn
j=1(�52j)

and �51n as a function of
Pn
j=1(�52j) and cons, using

Eqs. (40) and (41).
From Eqs. (12) and (28), we deduce:

�1 = 1�
mX
r=1

(�2r)

= 1�
mX
r=1

0BB@ econs:crr:tarr

fc+ econs:
mP
r=1

(crr:tarr)

1CCA : (46)
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And using Eqs. (10), (41), and (46), �6n can be written
as a function of

Pn
j=1(�52j), as follows:

�6n = �51n + �52n � �1: (47)

Therefore, using Eqs. (40)-(43) and (47), problem
(24) with (2n + m) variables is �nally reduced to the
following single-constraint optimization problem with
only two variables:

Pn
j=1(�52j) and cons:

Maximize f 0
0@ nX
j=1

(�52j); cons

1A :

Subject to:

g

0@ nX
j=1

(�52j); cons

1A = 0: (48)

Problem (52) can be solved by applying the Lagrangian
relaxation technique as follows:

Maximize f 0
0@ nX
j=1

(�52j); cons

1A
� �:g

0@ nX
j=1

(�52j); cons

1A ; (49)

where � is the Lagrangian multiplier. It can be shown
that cons and � are the same. Therefore, problem (49)
has only two variables,

Pn
j=1(�52j) and �.

The problem is �nally converted to the following
two-variable unconstrained optimization problem for
any size of the original problem, even for very large
sizes of the original one (X =

Pn
j=1(�52j), Y = �).

Maximize a1:X + a2:X: ln(X) + a3:X:e�Y

� a4:X:(a5:e�Y � 1): ln(1� a6:eY )

� a7:X:Y +
1

1 + a8:e�Y
:(a9 � Y )

+ ln(1 + a10:eY ) + a11:

Also, we can obtain some lower and upper limits for X
and Y , for example:

1� a6:eY > 0! Y < � ln(a6);

that lead to decrease in the solving time of the problem.
Optimal solution of this relaxed dual problem

is applied to obtain the original decision variables
corresponding to the primal problem (5). Suppose that

[
Pn
j=1(�52j)]� and �� (or cons�) are the optimal values

of variables of problem (48), and let f 0� be the optimal
value of its objective function. The optimal values of all
dual variables corresponding to problem (24), i.e. �4�r ,8r; �51�j , j = 2; 3; � � � ; n; �52�n; �6�j , 8j, can be easily
obtained by Eqs. (40)-(43) and (47). Also, the optimal
values of all remaining dual variables corresponding to
the original dual problem can be computed by Eqs. (16)
to (22). Now, the optimal primal variables can be
computed by the relationships between the primal and
dual problems of GP as follows:

C�n =
�1�:f�
fc

if �1� > 0; (50)

TCR�r =
�2�r :f�
crr

8r if �2�r > 0; (51)

R�rj = TCR�r :
�3�rj
�3�r

=
�2�r :f�
crr

:
�3�rj
�3�r

8r; j

if �2�r ; �3�rj > 0; (52)

TCR�r = tarr 8 r if �4�r > 0; (53)

C�j�1

C�j
=
�51�j
�5�j

j=2; 3; � � � ; n if �51�j >0; (54)

C�j =

j :

mQ
r=1

(R��wrrj ):�5�j
�52�j

8j if �52�j >0; (55)

C�j = dj 8j if �6�j > 0: (56)

In the next section, we use the proposed method to
solve a numerical example.

3.3. Numerical example
The parameter values for the numerical example are as
follows:
n = 5; m = 2; d1 = 1; d2 = 5;

d3 = 14; d4 = 25; d5 = 60; 
1 = 30000;


2 =60000; 
3 =40000; 
4 =70000; 
5 =10000;

w1 = 1:2; w2 = 1:1; tar1 = 220; tar2 = 290;

cr1 = 60; cr2 = 35; fc = 600:

This example is solved by using the procedure ex-
plained in this section. The procedure �rst solves two-
variable unconstrainted optimization problem (53).
The results are as follows:24 nX

j=1

(�52j)

35� = 5:1224962; �� = �3:904;

f 0� = 53114:8:
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Using Eqs. (45)-(49) and (51), the optimal values of all
dual variables corresponding to Problem (24) can be
obtained as follows:
�4�1 = 5:898474; �4�2 = 5:443648;

�51�2 = 0:333665; �51�3 = 0:4369322;

�51�4 = 1:170035; �51�5 = 0:2824099;

�52�5 = 0:2779718;

�6�1 = 1:470406; �6�2 = 1:231394;

�6�3 = 0:0534; �6�4 = 1:806939;

�6�5 = 0:

And the optimal values of all remaining dual variables
corresponding to the original dual problem can be
computed by Eqs. (16) to (22) as follows,

��1 = 0:5603817;

�2�1 = 0:2485209; �2�2 = 0:1910975;

�3�1;1 = 2:164885; �3�1;2 = 1:601593;

�3�1;3 = 0:9437739; �3�1;4 = 1:103177;

�3�1;5 = 0:3335661;

�3�2;1 = 1:984478; �3�2;2 = 1:468127;

�3�2;3 = 0:8651261; �3�2;4 = 1:011246;

�3�2;5 = 0:3057689;

�52�1 = 1:804071; �52�2 = 1:334661;

�52�3 = 0:7864783; �52�4 = 0:9193141;

�3�1 = 6:146996; �3�2 = 5:634746;

�5�1 = 1:804071; �5�2 = 1:668326;

�5�3 = 1:223411; �5�4 = 2:089349;

�5�5 = 0:5603812:

Now, the optimal primal variables can be computed by
Eqs. (54) to (60), as follows:

C�1 = 1; C�2 = 5; C�3 = 14;

C�4 = 25; C�5 = 49:607;

R�1;1 = 77:48095; R�1;2 = 57:32081;

R�1;3 = 33:77755; R�1;4 = 39:48257;

R�1;5 = 11:93811; R�2;1 = 102:1340;

R�2;2 = 75:55926; R�2;3 = 44:52495;

R�2;4 = 52:04521; R�2;5 = 15:73660;

TCR�1 = 220; TCR�2 = 290:

4. Conclusion

In many task scheduling problems in the real world,
processing of tasks (jobs) requires some continuously
divisible constrained nonrenewable resources, such as
manpower, energy, fuel, gas, oxygen, catalyst, raw
materials, money, etc. In theses situations, a good re-
source allocation may considerably improve the system
performance and decrease the total cost. In this paper,
the single-machine scheduling problem with resource
dependent processing times, subject to meeting job
deadlines, was studied. We considered multi-resource
allocation problem that was a more general and much
more complex problem, instead of single-resource al-
location problem extensively studied in the literature.
This multi-resource problem is very 
exible to apply
in the real problems and can be used for even non-
common limited resources. The problem was more
generalized by assuming that the job processing times
were a convex function of the amounts of resources
allocated. This form of the function is more applicable
in the real problems in comparison with the linear
form, widely studied in the literature. The objective
was to minimize the total cost, including the resource
allocation costs and the �xed costs. We presented
a solution method based on geometric programming
for the problem. In the proposed exact method, the
original problem of any size was reduced to a two-
variable unconstrainted optimization problem, which
could easily be solved by a simple grid search. The
proposed method can be applied for many real-world
resource allocation problems with task deadlines.
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