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Abstract. In the present study, we obtained some new analytical solutions, such as
trigonometric function, rational function, and hyperbolic function solutions by using new
extension of the (G0=G)-expansion method to the coupled (2 + 1)-dimensional Painlev�e
integrable Burgers equation with the aid of the computer software Maple. This method
allows one to carry out the solution process of nonlinear wave equations more thoroughly
and conveniently by computer algebra systems such as the Maple and Mathematica.
In addition, some �gures of partial solutions are provided for direct-viewing analysis.
The method can also be extended to other types of nonlinear evolution equations in
mathematical physics.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Exact solutions of NPDEs play an important role in the
proper understanding of qualitative features of many
phenomena and processes in the mentioned areas of
natural science. Because exact solutions of nonlinear
equations graphically and symbolically are substanti-
ated by unscrambling the mechanisms of many complex
nonlinear phenomena such as spatial localization of
transfer processes, multiplicity or absence of steady
states under various conditions, existence of peaking
regimes, and many others. Most physical systems
involve several unknown variables and unknown pa-
rameters. For example, a system of partial di�erential
equations to describe the motion of a uid might
require density, pressure, temperature, and the particle
velocity as independent variables.

Exact solutions allow researchers to design and
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run experiments, by creating appropriate natural con-
ditions, to determine these parameters or functions.
Therefore, investigating exact traveling wave solutions
is becoming successively attractive in nonlinear sci-
ences day by day. However, not all equations posed
for these models are solvable. As a result, many new
techniques have been successfully developed by diverse
groups of mathematicians and physicists, such as the
Kudryashov method [1-3], the homotopy perturbation
method [4-10], the (G0=G)-expansion method [11-15],
the Exp-function method [16-18], the modi�ed simple
equation method [19-22], and Hirota's bilinear trans-
formation method [23,24].

The objective of this article is to present new
extension of the (G0=G)-expansion method [25] to
construct the exact traveling wave solutions for NLEEs
in mathematical physics via the coupled (2 + 1)-
dimensional Painlev�e integrable Burgers equation [25].
We assume the solution of NLEEs is of the form
u(�) =

Pn
i=0 �i(m + F (�))i +

Pn
i=1 �i(m + F (�))�i

where F (�) = G0=G and G = G(�) satisfy the ordinary
di�erential equation G00(�)+�G0(�)+�G(�) = 0, where
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k and l are arbitrary constants. From our observation,
we found that if we set m = 0 and leave out the portionPn
i=1 �i(m+F (�))�i in our solution, then our solutions

will coincide with the solution introduced by Wang et
al. [11]. Hence, we conclude that the basic (G0=G)-
expansion method established by Wang et al. [11] is
the particular case of our new extension of the (G0=G)-
expansion method and some useful references [26-36]
that can be complementary.

The paper is organized as follows. In Section 2,
the enhanced new extension of the (G0=G)-expansion
method is discussed. In Section 3, we apply this
method to the Painlev�e integrable Burgers equation.
Section 4 shows the graphical illustration of obtained
solutions, and conclusions are given.

2. An analytical method

Suppose the general nonlinear partial di�erential equa-
tion:

P (u; ut; ux; utt; uxx; � � � ) = 0; (1)

where u = u(x; t) is an unknown function, P is a
polynomial in u(x; t) and its partial derivatives in which
the highest order partial derivatives and the nonlinear
terms are involved. The main steps of new extension of
(G0=G)-expansion method combined with the algebra
expansion are as follows:

- Step 1: The traveling wave variable ansatz:

� = x� !t; u(x; t) = u(�); (2)

where ! 2 < � f0g is the speed of the traveling
wave, and it permits us to transform Eq. (1) into
the following ODE:

Q(u; u0; u00; � � � ) = 0; (3)

where the superscripts stand for the ordinary deriva-
tives with respect to �;

- Step 2: Suppose the traveling wave solution of
Eq. (3) can be expressed by a polynomial in F (�)
as follows:

u(�)=
nX
i=0

�i(m+F (�))i+
nX
i=1

�i(m+F (�))�i; (4)

where F (�) = G0=G; �n and �n are not zero simul-
taneously. Also, G = G(�) satis�es the ordinary
di�erential equation:

G00(�) + �G0(�) + �G(�) = 0; (5)

where � and � are arbitrary constants to be deter-
mined later. The solutions for Eq. (5) can be written
as follows:

When 
 = �2 � 4� > 0:

F1 =
p



2

coth

 
A+

p



2
�

!
� �

2
; (6)

F2 =
p



2

tanh
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2
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!
� �

2
: (7)

When 
 = �2 � 4� < 0:

F3 =
p



2

cot

 
A+

p



2
�

!
� �

2
; (8)

F4 =
p



2

tan

 
A�

p



2
�

!
� �

2
: (9)

When 
 = �2 � 4� = 0:

F5 =
B

A+B�
� �

2
: (10)

- Step 3: The positive integer n can be determined
by considering the homogeneous balance between the
highest order derivatives and the nonlinear terms
appearing in Eq. (1) or Eq. (3). Moreover, precisely,
we de�ne the degree of �(�) as D(u(�)) = n which
gives rise to the degree of other expression as follows:

D
�
dqu
d�q

�
= n+ q;

D
�
up
�
dqu
d�q

�s�
= np+ s(n+ q): (11)

Therefore, we can �nd the value of n in Eq. (4) using
Eq. (11);

- Step 4: Substituting Eq. (4) along with Eq. (5)
into Eq. (3) together with the value of n obtained
in Step 3, we obtain polynomials in F i and F�i(i =
1; 2; 3; � � � ), then setting each coe�cient of the re-
sulted polynomial to zero yields a system of algebraic
equations for �n, �n, and !;

- Step 5: Suppose that the values of the constants
�n, �n, and ! can be determined by solving the
system of algebraic equations obtained in Step 4.
Since the general solutions of Eq. (5) are known, by
substituting �n, �n, and ! into Eq. (4), we obtain
some exact traveling wave solutions of the nonlinear
evolution Eq. (1).

3. Application to the coupled
(2 + 1)-dimensional Painlev�e integrable
Burgers equation

In the present work, we consider the following coupled
(2 + 1)-dimensional Painlev�e integrable Burgers equa-
tion [25] with parameters of the form:(�@u@t + u@u@y + �v @u@x + � @

2u
@y2 + �� @

2u
@x2 = 0;

@u
@x � @v

@y = 0:
(12)
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q
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Box I

a1 = 2�; m =
1
2
�; �0 = �2

p
�2�2 � 3�2��2 + 3�2�2�2 + 2�2�2�� 6�2��� 3�2�

�+ 1
;

�1 = �2�
�
�1

4
�2 + �

�
; R =

�! + 2
p
�2�2 � 3�2��2 + 3�2�2�2 + 2�2�2�� 6�2��� 3�2�

�
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Box II

The traveling wave transformation equations:

u(�)=u(x; y; t); v(�)=v(x; y; t); �=x+y�!t; (13)

transforms Eq. (12) to the following ordinary di�eren-
tial equation:

!u0+uu0+�vu0+�u00+��u00=0; u0 � v0=0: (14)

Integrating the second relation of Eq. (14) with respect
to �, we get:

v = u+R; (15)

where R is a constant of integration.
Substituting Eq. (15) into the �rst relation of

Eq. (14), and then integrating it with respect to �,
setting constant of integration to zero yields:

(! + �R)u+
1
2

(�+ 1)u2 + �(�+ 1)u0 = 0: (16)

By balancing the highest order derivative u0 and non-
linear term u2 from Eq. (16), we obtain 2n = n + 1,
which gives n = 1. So:

u = �0 + �1(m+ F ) + �1(m+ F )�1: (17)

Now, substituting Eq. (17) along with Eq. (5) into
Eq. (16), we get a polynomial in F (�). Equating the co-
e�cient of the same power of F i(�)(i = 0;�1;�2; � � � ),
we attain the system of algebraic equations, and by
solving these obtained systems of equations for �0, �1,

�1, m, and R as well as solving the obtained systems,
we get the following values:

Set 1: Please refer to Box I.

Set 2: Please refer to Box II.

Now, by using these sets of solutions for �0,
�1, �1, m, and R, and by using Eq. (17) along
with Eqs. (6)-(10), we have the following solutions for
coupled (2+1)-dimensional Painlev�e integrable Burgers
equation.

3.1. Hyperbolic function solutions
When 
 = �2� 4� > 0, we get the following solutions:

Family 1: By using Set 1 and Eq. (6) along with
Eq. (17), we have solutions of Eq. (12) as shown in
Box III.

Related graph for this solution is displayed in
Figure 1.

By using Set 1 and Eq. (7) along with Eq. (17),
we have solutions of Eq. (12) as shown in Box IV, and,
from Eq. (15), we have equations shown in Box V.

Related graph for this solution is displayed in
Figure 2.

Family 2: By using Set 2 and Eq. (6) along with
Eq. (17), we have solutions of Eq. (12) as shown in
Box VI.

Related graph for this solution is displayed in
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Figure 3, and the equation shown in Box VII is
obtained.

By using Set 2 and Eq. (7) along with Eq. (17),
we have solutions of Eq. (12) as shown in Box VIII,
and, from Eq. (15), we obtain the equation shown in
Box IX.

3.2. Trigonometric function solutions
Family 3: By using Set 1 and Eq. (8) along with
Eq. (17), we have solutions of Eq. (12) as shown in
Box X, and, from Eq. (15), we have equation shown in

Box XI.
Related graph for this solution is displayed in

Figure 4.
By using Set 1 and Eq. (9) along with Eq. (17),

we have solutions of Eq. (12) as shown in Box XII, and,
from Eq. (15), we have equation shown in Box XIII.

Related graph for this solution is displayed in
Figure 5.

Family 4: By using Set 2 and Eq. (8) along with
Eq. (17), we have solutions of Eq. (12) as shown in
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Box XIV, and, from Eq. (15), we have the equation
shown in Box XV.

By using Set 2 and Eq. (9) along with Eq. (17),
we have solutions of Eq. (12) as shown in Box XVI.

Related graph for this solution is displayed in
Figure 6. From Eq. (15), the equation shown in Box
XVII is obtained.

3.3. Rational function solutions
Family 5: By using Set 1 and Eq. (10) along with
Eq. (17), we have solutions of Eq. (12) as shown in
Box XVIII, and, from Eq. (15), we have the equation
shown in Box XIX.

Related graph for this solution is displayed in
Figure 7.

Family 6: By using Set 2 and Eq. (10) along with
Eq. (17), we have solutions of Eq. (12) as shown in
Box XX, and, from Eq. (15), we obtain the equation
shown in Box XXI.

4. Discussion and conclusion

From obtained solutions, we observe that solutions
from Family 1 to Family 2 are hyperbolic function
solutions for �2 � 4� > 0, from Family 3 to Family 4
are trigonometric function solutions for �2 � 4� < 0,
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and from Family 9 to Family 12 are rational function
solutions for �2 � 4� = 0. Figures 1, 3, 5, and 6
represent periodic solutions; Figures 2 and 7 represent
soliton solutions, and Figure 4 represent kink solutions
of Painlev�e integrable Burgers equation. In this paper,
we have successfully used the new extension of the
(G0=G)-expansion method introduced by Islam [25]

for solving the coupled (2 + 1)-dimensional Painlev�e
integrable Burgers equation. We have successfully
obtained some exact traveling wave solutions of the
coupled (2+1)-dimensional Painlev�e integrable Burgers
equation with parameters. When the parameters are
taken as special values, the solitary wave solutions
and periodic wave solutions are originated from the
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Figure 1. Kink pro�le of solutions u1;1 and v1;1 of
Painlev�e integrable Burgers equation for � = �1, R = 0,
! = 0, � = 1, � = 1, � = 1 and A = 0 within the intervals
�10 � x � 10 and �10 � y � 10.

Figure 2. Soliton pro�le of solutions u2;1, and v2;1 of
Painlev�e integrable Burgers equation for � = �1, R = 0,
! = 0, � = 1, � = 1, � = 1, and A = 0 within the intervals
�10 � x � 10 and �10 � y � 10.

Figure 3. Periodic solutions u3;2 and u7;4 of Painlev�e
integrable Burgers equation for � = 2, � = �1, R = 0,
! = 0, � = 1, � = 1, and A = 0 within the intervals
�4 � x � 4 and �4 � y � 4.

Figure 4. Periodic pro�le of solutions u5;3 and v5;3 of
Painlev�e integrable Burgers equation for � = �1, R = 0,
! = 0, � = 1, � = 1, � = 1, and A = 0 within the intervals
�10 � x � 10 and �10 � y � 10.

Figure 5. Periodic pro�le of solutions u6;3 and v6;3 of
Painlev�e integrable Burgers equation for � = �1, R = 0,
! = 0, � = 1, � = 1, � = 1, and A = 0 within the intervals
�10 � x � 10 and �10 � y � 10.

Figure 6. Periodic solutions u4;2 and u8;4 of Painlev�e
integrable Burgers equation for � = 2, � = �1, R = 0,
! = 0, � = 1, � = 1, and A = 0 within the intervals
�4 � x � 4 and �4 � y � 4
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Figure 7. Soliton pro�le of solution v9;5 of Painlev�e
integrable Burgers equation for � = �1, R = 0, ! = 0,
� = 1, � = 1, � = 1, A = 0, and B = 1 within the intervals
�2 � x � 2, �2 � y � 2.

exact solutions. The merit of the method is that
it is independent of the integrability of the coupled
NLPDEs; therefore, it can be used to solve both
integrable and nonintegrable coupled NLPDEs. This
work shows that the new extension of the (G0=G)-
expansion method is su�cient, e�ective, and suitable
for solving other nonlinear evolution equations; it
deserves further applying and studying as well. To our
knowledge, the solutions obtained in this paper have
not been reported in the literature so far.
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