
Scientia Iranica B (2017) 24(2), 673{683

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

A modi�ed model for stability analysis of narrow-width
NEMS tweezers: Corrections due to surface layer, scale
dependency, and force distributions

A. Koochia;�, H. Hosseini-Toudeshkya and M. Abadyanb

a. Department of Aerospace Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran.
b. Mechanical Engineering Group, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Received 10 September 2015; received in revised form 31 December 2015; accepted 26 April 2016

KEYWORDS
Nanotweezers;
Stability analysis;
Scale dependency;
Surface layer;
Strain gradient theory.

Abstract. Stability analysis and modeling the electromechanical response of nanotweezers
are crucial for reliable designing and manufacturing of these nano-devices. Herein, a
modi�ed model is developed for static and dynamic stability analyses of nanotweezers
with low width to thickness ration (narrow width). The surface elasticity was employed
in conjunction with the strain gradient theory to consider the coupled e�ects of scale
dependency, i.e. size-dependency of material characteristics and surface layer. The
nonlinear governing equation was solved using analytical Rayleigh-Ritz Method (RRM).
The inuence of various parameters is addressed including scale dependency, surface
stresses, damping parameter, and dispersion forces on the stability of the tweezers.
Furthermore, the maximum length and the minimum gap of the tweezers were computed,
which are important design parameters.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Manipulating nano-scale objects is of the great interest
in nanotechnology and nanofabrication. Nanotweezers
are basic manipulators, which are composed of two
parallel arms with a distance in between [1-5]. By
imposing a DC voltage di�erential between the arms,
they move closer together; hence, the tweezers can
manipulate ultra-small particles. At a critical volt-
age, i.e. the pull-in voltage, the Coulomb attraction
overcomes the elastic resistance and the arms sud-
denly stick together. This critical voltage limits the
range of stable displacement of the arms (tweezing
range), and consequently, the size of objects that can
bemanipulated by the tweezers. Therefore, predicting
the stable tweezing range and the instability param-
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eters is crucial to design reliable nano-devices. As
the dimensions of electromechanical systems reduce,
dispersion forces, i.e. Casimir and van der Waals (vdW)
attractions, appear [6-8]. At separations typically less
than several micrometers, the dispersion forces between
interacting surfaces can be described by the well-known
Casimir force [6]. However, when the retardation is
not signi�cant, i.e. the separation is less than several
ten nanometers, the quantum interactions should be
modeled as vdW attraction [2,7,8].

It should be noted that the nano-scale structural
e�ects, i.e. size dependency and surface layer are
the other crucial issues that should be considered in
nanotweezers modeling. Some experimental works [9-
11] demonstrate that the size dependency is an inherent
property of conductive metals when the characteristic
size of the structures is comparable with the internal
material length scale. The length-scale parameter of
materials can be measured experimentally via bending,
torsion, or hardness tests [12,13]. Also, molecular
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dynamic simulations could be used to compute the
material length-scale parameters [14]. The classi-
cal continuum model is not able to model the size-
dependent behavior of materials and structures at sub-
micron distances. In this regard, the non-classical
theories, such as non-local elasticity [15], couple stress
theory [16], strain gradient theory [10], modi�ed couple
stress theory [17], etc., have been developed to consider
the e�ect of size on theoretical continuum models. One
of the most successful size-dependent theories is the
strain gradient elasticity theory proposed by Lam et
al. [10]. This non-classic continuum theory introduces
three material length-scale parameters to characterize
the dilatation gradient tensor, the deviatoric stretch
gradient tensor, and the symmetric rotation gradient
tensor. The strain gradient theory has been applied to
analyze mechanical behavior of ultra-small beams and
other structures by many authors [18-21].

Beside the size dependency, the surface layer char-
acteristics, i.e. the surface residual stress and surface
sti�ness, might be important in the behavior of nano-
scale systems. Gurtin and Murdoch [22,23] developed
a continuum theory for modeling both residual surface
stress and surface elasticity. Wang et al. [24] studied
the inuences of surface tension and the residual stress
on the elastic properties of nano structures. In recent
years, some researchers have investigated the inuence
of surface layer on the pull-in characteristics of elec-
tromechanical systems including double-clamped nano-
bridge [25], cantilever nano-switches [26], graphite
NEMS [27], and micro-plates [28].

In this work, the coupled e�ects of surface layer
and size e�ect on the static and dynamic pull-in
behaviors of nanotweezers have been investigated.
The modi�ed force distribution (i.e., electrical force,
Casimir interaction, and van der Waals force) has
been considered in the continuum model. Analytical
Rayleigh-Ritz Method (RRM) is employed to solve the
nonlinear governing equation of the system.

2. Theory

2.1. Size e�ect
Figure 1 shows the schematic representation of nan-
otweezers. Each arm of nanotweezers can be considered

Figure 1. Schematic representation of nanotweezers.

as a cantilever beam of length, L, a uniform cross-
section of thickness, h, and width, b.

Regarding the strain gradient theory modi�ed and
suggested by Lam et al. [10], stored strain energy
density in the linear elastic and isotropic material with
small deformation is written as follows:

�U =
1
2

�
�ij"ij + pii + � (1)

ijk�
(1)
ijk +ms

ij�
s
ij

�
; (1)

where the components of Eq. (1) are explained in
Appendix A.

For an Euler-Bernoulli beam, the displacement
�eld can be expressed as [29]:

uX = �Z @W (X; t)
@X

; uY = 0; uZ = W (X; t); (2)

where W is the centerline deection of the beam in the
Z direction; uX , uY , and uZ are the displacement of
the beam in the X, Y , and Z directions, respectively.

Substituting Relations (A.9) into Eq. (1) after
some elaboration and integrating over the beam vol-
ume, the bending strain energy is obtained as follows:
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In the above equation, I is the second cross-section
moment around Y axis, and A is the cross-section area.

2.2. Strain energy in the surface layer
According to surface elasticity theory, the strain energy
in the surface layer (US) is written as:

US =
1
2

LZ
0

I
@A

�ij"ijdsdX; (4)
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where the components of Eq. (4) are explained in
Appendix B.

By substituting Eqs. (A.9a) and (B.3) in Eq. (4),
the surface energy concludes as:
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2.3. Work of external forces
Considering the distribution of external forces per unit
length of the beam (Fext), the work done by these
external forces can be obtained as:

Wext =
LZ

0

WZ
0

Fext(X; t)dWdX: (6)

The external force is the summation of electrical and
dispersion forces (Casimir, or vdW, depends on the
separation regime).

2.3.1. Electrical force
Batra et al. [30] showed that for two parallel narrow
micro-beams, the electrical force can be obtained as:
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where "0 = 8:854�10�12 c2N�1m�2 is the permittivity
of vacuum, and "r is the relative permittivity of
dielectric.

It should be noted that by applying the external
voltage to the nanotweezers, the arms will deect
to each other to reduce their gaps between g and
g �W1 �W2. If both arms have the same geometry
and material properties, their deections will be equal
(W1 = W2 = W ) [31]. Thus, by replacing g with
g � 2W , the electrostatic force per unit length of the
arm is written as:
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2.3.2. Casimir force
By considering the �nite dimension and edge e�ects,
the Casimir force per unit length between two �nite
parallel plates can be explained as [32]:

fCas =
�2~cb
240g4 + 0:00231

~c
g3 ; (9)

where h = 1:055�10�34 Js is Planck's constant divided
by 2�, and c = 2:998�108 m/s is the light speed. Now,
by replacing g with g�2W , the modi�ed Casimir force
per unit length of beam is obtained as:

fCas =
�2~cb

240(g � 2W )4
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(g � 2W )3 : (10)

2.3.3. vdW force
A reliable continuum model has been established to
compute the vdW energy by double-volume integral
of Lennard-Jones potential [33]. Using this approach,
the vdW energy of two parallel beams with the same
geometry and material properties can be de�ned as:
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�
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where �A is the Hamaker constant.
By replacing g with g � 2W , the vdW force per

unit length can be obtained as:
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2.4. Kinetic energy and damping loss
The kinetic energy of each arm can be expressed as:
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Finally, the virtual work performed by damping e�ects
of Wd can be expressed as:

Wd =
LZ

0

WZ
0

cdWtdWdX; (14)

where cd is the damping coe�cient.

2.5. Dimensionless energy of system
The total energy of system can be summarized as:
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Now, by substituting Eqs. (8), (10), and (12) into
Eq. (15), considering x = X=L and w = W=g,
and some mathematical elaboration, the dimensionless
total energy can be explained as:

��=
1
2

1Z
0

�A
�
@w
@�

�2

dX�
1Z

0

wZ
0

ĉ
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where the dimensionless parameters are identi�ed as:
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It should be noted that for rectangular section, we have:
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3. Solution methods

3.1. Rayleigh-Ritz Method (RRM)
It is extremely di�cult to calculate the exact mode
shapes of the nano-beam based on strain gradient the-
ory incorporated with the surface energy. Therefore,
the well-known Galerkin method might not be easily
applied to solve the governing equation. To overcome
this di�culty, in this section, the Rayleigh-Ritz method
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is employed in conjunction with the total energy of
the system (Eq. (16)) to solve the governing equation
of the system. The displacement is expressed as a
combination of a complete set of independent basis
functions �i(x) in the form of:

ŵ(x) =
nX
i=1

qi(t)�i(x); (19)

where the index i refers to the number of modes
included in the simulation. We use the linear mode
shapes of the nano-beam (based on the classic contin-
uum theory) as basic functions in the Rayleigh-Ritz
procedure:
�i(�) = cosh(!i�)� cos(!i�)

� cosh(!i) + cos(!i)
sinh(!i) + sin(!i)

(sinh(!i�)� sin(!i�)); (20)

where !i is the ith root of characteristic equation of the
cantilever beams in the classical theory. To minimize
the total energy of the system, we must have:
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This leads to a system of time-dependent equa-
tions which can be solved numerically. Substituting
Eqs. (16) and (19) into Eq. (21), assuming the orthog-
onality of �i(x), and then following some straightfor-
ward mathematical operations, a system of governing
equations can be de�ned by Eq. (22) as shown in Box I.

In the equations shown in Box I, N is the number
of the considered terms of Rayleigh-Ritz. The Maple
software is employed to numerically solve the system of
equations.

4. Results and discussion

In this section, the inuence of size e�ect, surface en-
ergies, and dispersion forces on the static and dynamic
pull-in behaviors of nano-switches is studied.

4.1. Validation
In order to validate the presented model, the nonlinear
governing di�erential equation is solved neglecting the
size and surface e�ects, and the obtained results are
compared with those of Ramezani [4] who studied
the pull-in behavior of nanotweezers by parallel plate
assumption for external forces (i.e., electrical, vdW,

�qi+ĉ _qi+

"
1+

�s
15

 
30
�
l0
l2

�2

+8
�
l1
l2

�2

+15+e0

!#
!4
i qi� �s

30(L=h)2

"
5
�
l0
l2

�2

+2
�
l1
l2

�2
# 1Z

0

�i
@6

@x6

0@ NX
j=1

qj�j

1A
�

1Z
0

�i

8><>:fi+t0+6
�

�

�2
264 1Z

0

0@ NX
j=1

qj
d�j
dx

1A2

dx

375 NX
j=1

qj
d2�j
dx2

9>=>; dx�
1Z

0

�Fext�idx+
�s

30(L=h)2

�
5
�
l0
l2

�2

2
�
l1
l2

�2�
@3

@X3

0@ NX
j=1

qj�j

1A d2�i
dX2

����
x=1
� �s

30(L=h)2

 
5
�
l0
l2

�2

+2
�
l1
l2

�2
!

@3

@X3

0@ NX
j=1

qj�j

1A d2�i
dX2

����
x=0

= 0; i=1; 2; ::; N;
(22)

where:

�Fext =
2�2 

1� 2
NP
j=1

qj�j

!2

2641 + 0:2650:75

0@1� 2
NX
j=1

qj�j

1A0:75

+ 0:53

vuuut�

0@1� 2
NX
j=1

qj�j

1A375

+

8>>>>>>>>>><>>>>>>>>>>:

�3

0B@ 1 
1�2

NP
j=1

qj�j

!3 + 1 
1�2

NP
j=1

qj�j+2 �

!3 � 2 
1�2

NP
j=1

qj�j+ �


!3

1CA vdW

�4 
1�2

NP
j=1

qj�j

!4

 
1 + 0:056

 
1� 2

NP
j=1

qj�j

!!
Casimir

(23)

Box I



678 A. Koochi et al./Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 673{683

Table 1. A comparison between the pull-in voltages calculated by presented model and literature ( = 1).
Analytical [4] Numerical [4] RRM

�PI , vdW regime
(�3 = 0:3)

0.3346 0.3346 0.338

�PI , Casimir regime
(�4 = 0:2)

0.3728 0.3728 0.373

Figure 2. Inuence of residual surface stress on the
pull-in voltage ( = 1, � = 0:2, �n = 0:25).

and Casimir). The values of non-dimensional static
pull-in voltage (�PI) for the system, calculated by
di�erent methods, are presented in Table 1. It is
obvious from the reported results that the values of
computed static pull-in voltage (�PI) agrees well with
those reported in the literature. On the other hand,
Table 1 reveals that for wide beams, the results of the
presented method converge with results obtained by
the parallel plate assumption.

4.2. Surface layer
The inuence of surface residual stress and dispersion
forces on the static and dynamic pull-in voltages of
nanotweezers is presented in Figure 2. This �gure
shows that by increasing the surface residual stress, the
pull-in voltage enhances. It should be noted that t0 =
0 is subjected to neglecting surface stress condition.
Figure 2 reveals that surface stress induces hardening
or softening e�ect depending on its sign; when the
surface stress is positive, the surface e�ect increases
the pull-in voltage; if the surface stress is negative, the
surface e�ect reduces the pull-in voltage. Furthermore,
Figure 2 shows that the dispersion forces decrease
the pull-in voltage. The dynamic pull-in voltage of
nanotweezers is lower than static pull-in voltage as the
result of inertia force.

The inuences of surface elastic modulus and
dispersion forces on the static and dynamic pull-in
voltages are presented in Figure 3. This �gure reveals

Figure 3. Inuence of surface elasticity on the pull-in
voltage ( = 1, � = 0:2, �n = 0:25).

that by increasing the surface elastic modulus, the pull-
in voltage enhances. It should be noted that e0 = 0
is subjected to ignoring surface elastic modulus e�ect
(E0 = 0). Figure 3 reveals that surface elastic modulus
induces hardening or softening e�ect depending on the
sign of E0; when the surface elastic modulus is positive,
the surface e�ect increases the pull-in voltage; if the
surface elastic modulus is negative, the surface e�ect
reduces the pull-in voltage.

4.3. Size e�ect and surface e�ect
The inuences of size e�ect and surface residual stress
on the static and dynamic pull-in voltages of nan-
otweezers are shown in Figure 4 for l0 = l1 = l2. This
�gure reveals that decreasing h=l2 results in decreasing
the pull-in voltage. It should be noted that decrease in
h=l2 value corresponds to an increase in size e�ect. This
means that size e�ect provides a hardening behavior
that enhances the elastic resistance and consequent
pull-in voltage of the nanotweezers.

4.4. Free standing nanotweezers
When the gap between the arms is su�ciently small,
the arms of nanotweezers can adhere to each other due
to the dispersion forces even without voltage di�erence.
The critical values of vdW or Casimir forces, �nC , and
the corresponding critical value of arm tip deection,
wC , can be acquired by setting � = 0, and then
solving the governing equation. The maximum length
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Figure 4. Inuence of size e�ect and surface residual
stress on the static pull-in voltage: (a) Static, and (b)
dynamic.

of the arms, Lmax, in a way that the arms do not
stick together without any voltage di�erence is called
the detachment length [34]. The detachment length
is the maximum permissible length of the freestanding
arms. On the other hand, if the length of the arms are
known, there is a minimum gap, gmin, which prevents
stiction between the arms due to the dispersion forces.
The maximum length and minimum gap are very
important in designing nanotweezers. Substituting �nC
into de�nition of �n in Eq. (17b), one can calculate the
values of Lmax and gmin. For vdW regime, we have:

Lmax = 5

s
6g4EI�3C

�C6�b
; (24a)

gmin = 4

s
�C6�bL5

6EI�3C
; (24b)

and for Casimir regime, one can obtain:

Figure 5. Inuence of size e�ect and surface residual
stress on the critical dispersion forces: (a) vdW, and (b)
Casimir.

Lmax = 4

r
240g5EI�4C

�2~cb ; (25a)

gmin = 5

s
�2~cbL4

240EI�4C
: (25b)

Figure 5 shows the critical values of dispersion forces
(�nC) for di�erent values of parameter h=l2. This
�gure reveals that decreasing the parameter h=l2 (i.e.,
increasing the size parameter or reducing the thick-
ness) increases �nC value. Hence, the size parameter
increases the detachment length and reduces the min-
imum gap (see Eqs. (24) and (25)). Furthermore, this
�gure shows that surface residual stress increases the
critical values of dispersion forces (�nC).

4.5. E�ect of damping
The inuence of the damping on the dynamic behavior
of vibrating nanotweezers is illustrated in Figure 6. The



680 A. Koochi et al./Scientia Iranica, Transactions B: Mechanical Engineering 24 (2017) 673{683

Figure 6. Inuence of damping parameter on the dynamic behavior of nanotweezers (h=l2 = 10; t0 = 0:1, e0 = 0:05,
�n = 0:25, ĉ = 1): (a) Time history, vdW, (b) time history, Casimir, (c) phase plane, vdW, and (d) phase plane, Casimir.

obtained results show that the stable center equilibrium
point becomes a stable focus point when the damping
parameter is taken into account. It can be concluded
that the nanotweezers make convergent oscillations
near the focus point because of the damping and make
periodic oscillations if the damping is neglected. On the
other hand, the second equilibrium point is unstable
saddle point for any value. When the actuation voltage
reaches the pull-in voltage, the trajectories, which are
attracted to the stable focus due to the damping e�ect,
diverge and the nanotweezers become unstable.

5. Conclusions

In this work, a modi�ed formulation was derived
for modelling the pull-in behavior of nanotweezers.
The surface elasticity in conjunction with the strain
gradient theory was employed to consider the coupled
e�ects of size dependency of material characteristics
and surface layer. It was found that for positive surface
stress, the e�ect of surface layer increased the pull-
in voltage. However, if the surface stress be negative,
the surface e�ect reduces the pull-in voltage. On the
other hand, the size phenomenon always increases the
pull-in voltage of nanotweezers, while the dispersion

forces decrease the instability voltage. The detachment
length and minimum gap of the tweezers were deter-
mined. The dynamic pull-in voltage of nanotweezers
was lower than static pull-in voltage as a result of
inertia forces. When the damping e�ect was included
in the simulations, the stable center point became the
stable focus point.
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Appendix A

Strain Gradient theory
The components of strain energy in strain gradient
theory are:

"ij =
1
2

(ui;j + uj;i); (A.1)

i = "mm;i; (A.2)

�(1)
ijk =

1
3

("jk;i + "ki;j + "ij;k)

� 1
15
�ij ("mm;k + 2"mk;m)

� 1
15

[�jk("mm;i + 2"mi;m)

+ �ki("mm;j + 2"mj;m)]; (A.3)

�sij =
1
2
ejklul;ki: (A.4)

In the above equations, ui, i, �(1)
ijk, �sij , �ij , and

eijk indicate displacement vector, dilatation gradient
vector, deviatoric stretch gradient tensor, symmetric
rotation gradient tensor, Kronocker delta, and permu-
tation symbol, respectively. Also, "ij , �ij , pi, �

(1)
ijk

and ms
ij are strain tensor, Cauchy's stress, and high

order stress tensors, respectively, which are identi�ed
as follows [10]:

�ij = 2�
�
"ij +

�
1� 2�

"mm�ij
�
; (A.5)

pi = 2�l20i; (A.6)

� (1)
ijk = 2�l21�

(1)
ijk; (A.7)

ms
ij = 2�l22�

s
ij : (A.8)

In the above equations, � and � are Poisson's ratio
and shear modulus, respectively. Also, l0, l1, and l2
are additional material length-scale parameters which
appear in the constitutive equations of higher order
stresses.

Substituting the linear displacement �eld of
Eq. (2) into Eqs. (A.1)-(A.8), the non-zero component
is obtained as the following relations:

"11 = �Z @2W
@X2 ; (A.9a)

�11 = �EZ @2W
@X2 ; (A.9b)

1 = �Z @3W
@X3 ; 3 = �@2W

@X2 ; (A.9c)

p1 = �2�l20Z
@3W
@X3 ; p3 = �2�l20

@2W
@X2 ; (A.9d)

�s12 = �s21 = �1
2
@2W
@X2 ; (A.9e)

ms
12 = ms

21 = ��l22 @
2W
@X2 ; (A.9f)

�(1)
111 = �2

5
Z
@3W
@X3 ;

�(1)
113 = �(1)

131 = �(1)
311 = � 4

15
@2W
@X2 ;

�(1)
122 = �(1)

212 = �(1)
221 = �(1)

133 = �(1)
313 = �(1)

331 =
1
5
Z
@3W
@X3 ;

�(1)
223 = �(1)

232 = �(1)
322 =

1
15
@2W
@X2 ;

�(1)
333 =

1
5
@2W
@X2 ; (A.9g)

� (1)
111 = �4

5
�l21Z

@3W
@X3 ;

� (1)
113 = � (1)

131 = � (1)
311 = � 8

15
�l21

@2W
@X2 ;

� (1)
122 = � (1)

212 = � (1)
221 = � (1)

133 = � (1)
313 = � (1)

331 =
2
5
�l21Z

@3W
@X3 ;

� (1)
223 = � (1)

232 = � (1)
322 =

2
15
�l21

@2W
@X2 ;

� (1)
333 =

2
5
�l21

@2W
@X2 : (A.9h)

Appendix B

Surface elasticity
According to continuum theory proposed by Gurtin
and Murdoch [22,23], the in-plane components of the
surface stress tensor are given by:

��� =�0(u�;� + u�;�) + (�0 + �0)up;p���

+ �0(��� � u�;�); (B.1)

where �0 and �0 are the surface elastic constants,
�0 is the residual surface stress. The out-of-plane
components of the surface stress tensor are given
by [22]:

�n� = �0(un;�): (B.2)

By substituting Eq. (2) into Eqs. (B.1) and (B.2), the
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non-zero components of surface stress are obtained as:

�XX = �0 + E0
@ux
@X

; �nX = �0
@un
@X

; (B.3)

where E0 = �0 + 2�0 is the surface elastic modu-
lus, which can be determined from atomistic calcula-
tions [22].
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