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Abstract. Control charts are popular tounderols for process monitoring and are mainly
classi�ed into memory and memory-less structures. Exponentially Weighted Moving
Average control charts (EWMA) are widely used for the detection of small shifts in
process parameters. The traditional design structures of these types of charts rely on
the stringent assumption of normality. In practice, quality characteristics generally do
not follow normality; hence, alternative charting structures are needed. Nonparametric
control chart is one such alternative that do not depend on the mentioned distributional
assumption(s). This study deals with nonparametric EWMA charts for an e�cient
detection of smaller shifts in location. We have investigated asymptotic, time-varying,
and Fast Initial Response (FIR) based time varying control limits for nonparametric
EWMA charts. We have considered two variants of FIR with time varying limits for
nonparametric EWMA structure. A variety of run length properties have been investigated
for performance evaluations. It is observed that FIR-based nonparametric EWMA charts
with time-varying limits are quite sensitive to detecting smaller shifts, and they o�er
attractive run length properties. A real-life example is also provided to illustrate the
application of the time-varying and FIR-based nonparametric EWMA control charts.

© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Process monitoring is an essential activity for the
improvement of product and service quality. All the
processes experience variations in their outputs, and
quality is a�ected by them. These variations are
mainly classi�ed into two types: natural and un-
natural. The natural variations are inherent parts of
any process, and these are not harmful to the process.
The unnatural variations deteriorate the process
quality and lead us, generally, to unusual patterns in
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the process behavior. We may live with the natural
variations in a process, while the unnatural variations
need timely detection and corrective actions. Control
charts are very popular tools used in the monitoring
of manufacturing and non-manufacturing processes.
We are generally concerned with the stability of
the parameters of the quality characteristic(s) of
interest such as location and dispersion. There are
two main types of control charts, namely memory-less
(Shewhart) and memory (Exponentially Weighted
Moving Average control charts (EWMA) and
cumulative sum (CUSUM)). The Shewhart type charts
are meant for larger shifts, while EWMA and CUSUM
type charts deal with the smaller shifts ([1-3]). Under
the ideal conditions, we assume normality of the
quality characteristic(s) of interest for the traditional
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design structures of di�erent types of control charts.
In practice, normality assumption is quite stringent,
and we may not be able to ful�ll it for many variables
of interest in di�erent processes. This necessitates the
use of some alternative procedures that do not depend
on this hard to meet assumption of normality.

Nonparametric control charts are designed for the
reason mentioned above, where we are free from the
distributional assumptions. An inappropriate use of
parametric control charts, instead of nonparametric
charts, may lead us to unfavorable outcomes in the
form of detection ability and high false alarm rates.
Therefore, in the absence of strict distributional as-
sumptions, it is always better to use the nonparametric
control charts. We may �nd a variety of literature
including some recent contributions in the direction
of nonparametric control charts such as [4-14], among
many others.

In the direction of nonparametric memory-less
charts, we may �nd di�erent proposals in the form of
nonparametric EWMA (NPEWMA) and nonparamet-
ric CUSUM (NPCUSUM) control charts. Li et al. [15]
used Man-Whitney statistics and suggested NPEWMA
and NPCUSUM charts. Zou and Tsung [16] proposed
a multivariate EWMA control chart using the weighted
version of the sign statistic. Graham et al. [17]
proposed NPEWMA sign chart for monitoring process
location using individual observations. Yang et al. [18]
proposed two NPEWMA control charts, namely the
nonparametric EWMA sign and the nonparametric
Arcsine EWMA sign charts, for quick detection of
shifts from process target using the well-known sign
statistic. They [18] used the asymptotic control limits
due to the ease of computation for NPEWMA charts.
This makes the NPEWMA chart insensitive to startup
quality problems. When the process is initially out-
of-control, it is important to detect the sources of
these out-of-control conditions as early as possible
so that corrective actions may be taken at an early
stage. The time-varying structure of the limits helps
resolve this issue. Moreover, the sensitivity of time-
varying NPEWMA chart can be increased further
at process startup using Fast Initial Response (FIR)
feature. This study investigates the performance of
NPEWMA charts using asymptotic, time-varying, and
two variants of FIR based control limits. For the said
purposes, we used the nonparametric Arcsine EWMA
sign chart proposed by Yang et al. [18]. We will refer
to this asymptotic control limits-based chart as NPAS
chart for the rest of this study. The time-varying
structure will be referred to by TNPAS using time-
varying feature given in [19]. We will also consider two
FIR-based control structures, namely FNPAS chart
using FIR feature of [20] and IFNPAS chart using FIR
feature of [21]. The rest of the study is organized
as follows. Section 2 introduces the structure of

the NPAS chart and further presents the designs of
TNPAS, FNPAS, and IFNPAS charts. Section 3
evaluates run length characteristics of di�erent charting
structures under study and provides a comparative
analysis. Section 4 provides an application example
for illustration purposes. Section 5 gives a summary
and the concluding remarks of the study.

2. Design structures of NPEWMA control
charts

This section provides the structure of NPAS chart and
further extends its design by using time-varying and
fast initial response features in the form of three charts,
namely TNPAS, FNPAS, and IFNPAS charts. Before
de�ning these structures, we �rst provide description
of some necessary terms and symbols below.

Let X1; X2; :::; Xn be a random sample of size n
drawn from a process with � as its location parameter.
Let us de�ne a transformed variable Y as Yi = Xi��.
Suppose that p is a probability measure de�ned as
p = Pr(Yi > 0) which takes an in-control value of p0
and otherwise out-of-control. It is to be mentioned
that we will be monitoring the location parameter by
assessing the stability of p with reference to its in-
control value p0. Let I be an indicator variable de�ned
as I = 1 if Yi > 0 and zero otherwise. Based on this
indicator variable, we have M =

Pn
i=1 Ii; where M

follows binomial distribution with parameters n and p0
(cf. [18]).

Using the above-de�ned variable M , the arcsine
transformation and the approximate distribution are
provided as (cf. [18]):

Z = sin�1
p
M=n � N �sin�1pp0; 1=4n

�
:

The EWMA statistic for Z is de�ned as: Wt = �Zt +
(1 � �)Wt�1, where � is the smoothing constant (0 <
� � 1) and W0 = sin�1pp0.

Based on the EWMA statistic Wt, Yang et al. [18]
introduced a nonparametric EWMA control chart (we
named it as the NPAS chart). The control limits
(Upper Control Limit (UCL) and Lower Control Limit
(LCL)) for NPAS chart are given as (cf. [18]):

NPAS Chart

UCL = sin�1pp0 + L
p

(�=(2� �)) (1=4n)
LCL = sin�1pp0 � Lp(�=(2� �)) (1=4n)

�
(1)

where L represents the control limits multiplier that
depends on n and �. It is to be mentioned that the
Central Line (CL) is de�ned as CL = sin�1pp0 for
NPAS charts (and all the other charts under discussion
in this study). The statistic Wt is used as plotting
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TNPAS chart

UCL = sin�1pp0

+Lt
p

(�=(2��)) (1� (1��)2t) (1=4n)

LCL = sin�1pp0

�Ltp(�=(2��)) (1� (1��)2t) (1=4n)

9>>>>=>>>>; (2)

FNPAS chart

UCL = sin�1pp0 + Lf
�

1� (1� f)1+a(t�1)
�p

(�=(2� �)) (1� (1� �)2t) (1=4n)

LCL = sin�1pp0 � Lf
�

1� (1� f)1+a(t�1)
�p

(�=(2� �)) (1� (1� �)2t) (1=4n)

9>>>>>>=>>>>>>;
(3)

IFNPAS chart

UCL = sin�1pp0

+Lif
���

1�(1�f)1+a(t�1)
��1+(1=t)

�
p

(�=(2� �)) (1� (1� �)2t) (1=4n)

LCL = sin�1pp0

�Lif
���

1�(1�f)1+a(t�1)
��1+(1=t)

�
p

(�=(2� �)) (1� (1� �)2t) (1=4n)

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(4)

Box I

statistics against these control limits in the form of
UCL, LCL, and CL.

We intend to extend here the design structure of
NPAS chart using time-varying and fast initial response
features. The time-varying structure will be referred to
by TNPAS, while FNPAS and IFNPAS further add the
usual and an improved FIR features, respectively, in
rest of this study. Previous studies showed that the use
of time-varying control limits, as compared to asymp-
totic limits, signi�cantly improves the out-of-control
run length behavior of the NPEWMA control chart.
A further increase in the sensitivity of NPEWMA
chart to detect shifts in process target can be achieved
by an FIR feature. The FIR feature, introduced by
Lucas and Crosier [22] for CUSUM charts, detects out-
of-control signals more quickly at process startup by
assigning some non-zero constant to the starting values
of CUSUM chart statistics. Lucas and Saccucci [23]
proposed the idea of applying the FIR feature to
EWMA control structures by two one-sided EWMA
charts. Rhoads et al. [24] used the FIR approach
for time-varying control limits and showed superior

performance of their proposed scheme compared to
the [23] FIR Scheme. Both of these schemes were
criticized as they required the use of two EWMA
charts instead of one for monitoring changes in process
parameters. Steiner [20] presented another FIR scheme
for EWMA charts that is based on further narrowing
the time-varying control limits by an exponentially
decreasing FIR adjustment. Furthermore, Haq et
al. [21] suggested an improvement over the FIR scheme
of [20]. The description of the three said charts is given
in Box I, where a is known as the adjustment parameter
and is chosen such that the FIR adjustment has very
little e�ect after a speci�ed time period (say at t = 20,
we have FIRadj = 0:99. To obtain a substantial bene�t
from FIR feature, f should be fairly small. In this
study, we used f = 0:5 and limited the e�ect of FIR
adjustment till t = 20 following [20,25].

It is to be noted that the design structures of
TNPAS and FNPAS charts given in Eqs. (2) and (3),
respectively, may be linked with each other by a
mathematical relationship. For example, if we consider
the UCLs of the two structures, we may observe the



S.A. Abbasi et al./Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 424{438 427

following relationship:

UCLFNPAS =UCLTNPAS

+
p

(�=(2� �)) (1� (1� �)2t) (1=4n)h
Lf (1�(1�f))1+a(t�1)�Lt

i
: (5)

We may also replace
h
Lf (1� (1� f))1+a(t�1) � Lt

i
with Lu to get:

UCLFNPAS =UCLTNPAS

+Lu
p

(�=(2��)) (1�(1��)2t) (1=4n):
(6)

In addition to the above relationship given in Eqs. (5)
and (6), one may also observe the asymptotic relation-
ship of the design structures of IFNPAS charts (given
in Eq. (4), respectively) with the design structure of
other charts.

3. Performance evaluation and comparisons

In this section, the control charts under study are com-
pared with each other in terms of di�erent measures in-
cluding Average Run Length (ARL), median run length
(MDRL), Standard Deviation Run Length (SDRL),
Extra Quadratic Loss (EQL), Relative Average Run
Length (RARL), and Performance Comparison Index
(PCI). The measures ARL, MDRL, and SDRL are
obtained from the distribution of Run Length (RL)
at each shift value. On the other hand, EQL and
RARL are calculated over the entire shift range to
explore overall e�ectiveness of a control structure,
while PCI is obtained from EQL values. Usually, two
ARL values, namely ARL0 and ARL1, are used for
performance evaluation. ARL0 is the average number
of samples from an in-control process until an out-
of-control signal is detected by a control chart, while
ARL1 is the average number of samples until an out-
of-control signal is detected by a control chart when
the process is shifted to out-of-control scenario. It is
usually preferable to get large values of ARL0 and small
values of ARL1 for any control chart setting. It is also
expected to get smaller value of MDRL and SDRL for
an e�cient control chart. The measures EQL, RARL,
and PCI can be de�ned mathematically as:

EQL =
1

�max � �min

Z �max

�min

�2ARL(�)d�;

RARL =
1

�max � �min

Z �max

�min

ARL(�)
ARLopt(�)

d�;

PCI =
EQL

EQLopt
;

where � is the amount of shift in the process mean
�y. The EQL is a weighted average ARL over the
whole process shift domain �min < � < �max using the
square of shift (�2) as a weight. It is to be mentioned
that a chart with minimum EQL value is considered to
be an optimum chart. The measure RARL describes
the overall e�ectiveness of a particular chart relative to
the optimum chart, where ARL(�) and ARLopt(�) are
the average run lengths of the particular and optimum
charts at �, respectively. The RARL = 1 may be
observed for optimum chart, while RARL > 1 is for
other charts which shows that the particular chart
exhibits inferior performance relative to the optimum
chart. The PCI is the ratio between the EQL values
of the particular chart and the optimum chart. PCI
= 1 may be observed for the chart with minimum
EQL value, while PCI > 1 for other charts. Some
of the researchers used di�erent versions of the above
measures in their studies; for instance [26-36]. As
both RARL and PCI usually result in similar relative
performance of the charts (cf. [30]), hence, we are only
concentrating on RARL for the rest of the study.

For the computation of these measures, we have
used Monte Carlo simulations (for ARL) and numerical
integration (for the other measures). The computa-
tional algorithm for these measures is given as: i)
Generate random samples from any probability model;
ii) Compute the sample statistics; iii) Set the control
limits using the description given in Section 2; iv) Use
steps (i)-(iii) to implement the procedural steps of ARL
depending on the choices of and control chart multi-
pliers (L, Lt, Lf , Lif ) as de�ned above in Section 2
(this results in ARL values); v) Based on the results
of step (iv) for ARL as a function of �, multiply ARL,
divide range of values, and then integrate the output
over the entire range using an appropriate numerical
integration technique (like Simpson or Trapezoidal)
(this results in EQL value); vi) Repeat steps (iv) and
(v) for all the charts; and vii) Based on the results
of step (vi), take the ratio of the ARL of a particular
chart by the ARL of the benchmark chart (the usual
one in this study), divide by the range of values,
and then integrate the output over the entire range
using an appropriate numerical integration technique
(like Simpson or Trapezoidal) (this results into RARL
value).

It is to be mentioned that the number of values de-
termines the number of subintervals used by the numer-
ical integration technique and with the increase in this
number, one may obtain more precise results for these
measures. For our study purposes, we have used Simp-
son's method of numerical integration. By varying the
values of control chart parameters, ARLs are calculated
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Table 1. Run length characteristics of NPAS chart for di�erent values of n and p when ARL0 = 370 and � = 0:05 and
0.25.

P
� n 0.05 0.20 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.95

0.05

5 ARL 3.81 7.14 12.28 17.95 32.47 90.35 370.77 90.98 31.84 17.89 12.30 7.11 3.81
MDRL 4.00 7.00 11.00 16.00 28.00 68.00 256.00 68.00 27.00 16.00 11.00 7.00 4.00
SDRL 0.88 2.34 5.17 8.85 20.23 74.05 363.54 77.15 19.97 8.86 5.15 2.32 0.89

7 ARL 3.30 5.82 9.86 14.36 25.04 70.38 372.60 70.13 25.09 14.33 9.78 5.83 3.31
MDRL 3.00 6.00 9.00 13.00 22.00 54.00 263.00 54.00 22.00 13.00 9.00 6.00 3.00
SDRL 0.54 1.73 3.68 6.40 14.19 56.34 360.39 55.18 14.27 6.51 3.69 1.73 0.55

10 ARL 2.71 4.78 7.90 11.26 19.12 52.54 372.33 52.56 19.23 11.23 7.88 4.79 2.71
MDRL 3.00 5.00 8.00 10.00 17.00 41.00 264.00 42.00 17.00 11.00 8.00 5.00 3.00
SDRL 0.59 1.29 2.63 4.48 9.65 38.71 354.41 38.27 9.70 4.37 2.61 1.29 0.59

15 ARL 2.31 3.97 6.32 8.88 14.62 38.84 369.02 38.37 14.65 8.85 6.31 3.94 2.31
MDRL 2.00 4.00 6.00 8.00 13.00 32.00 260.00 32.00 13.00 8.00 6.00 4.00 2.00
SDRL 0.47 0.94 1.83 3.04 6.50 26.05 356.40 25.89 6.39 3.04 1.81 0.93 0.46

0.25

5 ARL 2.58 6.07 14.12 26.21 58.78 174.46 369.03 170.97 60.30 25.94 13.90 5.91 2.52
MDRL 2.00 5.00 11.00 20.00 43.00 121.00 255.00 121.00 43.00 19.00 11.00 6.17 2.58
SDRL 0.85 3.40 10.46 21.87 53.41 171.39 370.82 164.71 56.53 21.99 10.27 5.00 2.00

7 ARL 2.39 4.89 10.91 20.15 47.69 150.97 366.12 149.61 47.56 20.35 10.99 3.49 1.39
MDRL 2.00 4.00 9.00 15.00 34.00 106.00 254.00 105.00 34.00 16.00 9.00 4.86 2.40
SDRL 0.60 2.43 7.55 16.34 43.43 146.56 367.95 145.83 43.30 16.58 7.70 4.00 2.00

10 ARL 1.47 3.42 6.99 12.37 29.13 109.55 368.93 110.84 29.65 12.29 7.02 2.42 1.41
MDRL 1.00 3.00 6.00 10.00 22.00 76.00 257.00 79.00 22.00 10.00 6.00 3.40 1.47
SDRL 0.61 1.56 4.04 8.80 25.13 106.10 367.92 107.20 25.41 8.98 4.07 3.00 1.00

15 ARL 1.53 2.71 4.84 7.98 17.03 69.72 373.21 70.04 17.36 7.97 4.87 1.56 1.13
MDRL 2.00 3.00 4.00 7.00 13.00 49.00 256.50 50.00 14.00 7.00 4.00 2.71 1.55
SDRL 0.51 0.89 2.25 4.72 13.09 67.03 377.22 64.80 13.34 4.75 2.26 3.00 2.00

for all the charts, followed by the computations of EQL
and RARL using the algorithm provided above. In
order to obtain these measures, 10,000 repetitions are
used that provide the results with satisfactory relative
standard errors (c.f. [23,37-39]). It is to be mentioned
that the precision of the results may be increased by
increasing the number of simulations, however, up to
5000 simulations may serve the purpose quite e�ec-
tively, as may be seen in the literature such as [40,41].

In order to see the impact of smoothing param-
eter �, the performance of NPAS, TNPAS, FNPAS,
and IFNPAS charting schemes are investigated using
the above performance measures for � = 0:05 and
0:25. The summary of the run length characteristics
including ARL, MDRL and SDRL of NPAS, TNPAS,
FNPAS, and IFNPAS charts is reported in Tables 1-
4, respectively, for � = 0:05 and 0.25. The relative
standard errors of the results are found to be around
1.5% as checked by repeating the simulations. This is
quite acceptable in control chart studies (for details,
see [40,41]). The columns, corresponding to p = p0 =
0:50 in Tables 1-4, provide the run length character-

istics of four charts when the process is assumed to
be in statistical control. The process is said to be
out-of-control for p 6= 0:50. Control chart multiples
L, Lt, Lf are Lif also chosen as to give the same
in-control average run length of 370 (i.e., ARL0 =
370) to NPAS, TNPAS, FNPAS, and IFNPAS charts,
respectively.

3.1. Comparison of run length characteristics
of NPAS and TNPAS charts

In this section, we evaluate the performance of NPAS
and TNPAS charts using the performance measures
discussed earlier. The ARL results for the NPAS chart
are in close agreement with the results reported in [18],
showing the accuracy of our simulation routines. [18]
investigated the ARL behavior of his proposed NPAS
chart only for � = 0:05. The results in Tables 1
and 2 indicate that for small values of � (which is
most popular choice of EWMA charts), the ARL1 of
the TNPAS chart is signi�cantly lower than the ARL1
of NPAS chart, see, for example, when n = 10 and
� = 0:05, the ARL1 = 47.30, 14.54 and 7.31 for TNPAS
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Table 2. Run length characteristics of TNPAS chart for di�erent values of n and p when ARL0 = 370 and � = 0:05 and
0.25.

P
� n 0.05 0.20 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.95

0.05

5 ARL 1.32 3.44 7.66 12.77 26.15 83.15 370.58 82.93 26.11 13.01 7.80 3.49 1.32
MDRL 1.00 3.00 7.00 11.00 21.00 59.00 241.00 60.00 21.00 11.00 7.00 3.00 1.00
SDRL 0.68 2.55 5.89 10.17 22.48 81.62 401.11 81.23 22.51 10.36 5.96 2.60 0.67

7 ARL 1.33 2.94 6.08 10.05 20.04 63.50 370.51 63.87 20.25 10.10 6.10 2.94 1.33
MDRL 1.00 2.00 5.00 9.00 16.00 47.00 251.00 48.00 17.00 9.00 5.00 2.00 1.00
SDRL 0.53 1.77 4.09 7.08 15.57 59.18 388.69 59.10 15.74 7.15 4.06 1.77 0.53

10 ARL 1.08 2.17 4.49 7.31 14.57 46.96 369.55 47.30 14.54 7.31 4.47 2.17 1.09
MDRL 1.00 2.00 4.00 6.00 12.00 36.00 247.00 37.00 12.00 6.00 4.00 2.00 1.00
SDRL 0.28 1.24 2.87 5.01 10.83 40.98 386.56 41.18 10.78 5.00 2.82 1.24 0.29

15 ARL 1.04 1.77 3.21 5.22 10.32 33.20 369.44 33.28 10.33 5.25 3.25 1.75 1.04
MDRL 1.00 2.00 3.00 4.00 9.00 27.00 246.00 27.00 9.00 4.00 3.00 2.00 1.00
SDRL 0.19 0.76 1.80 3.33 7.23 27.19 388.63 26.97 7.20 3.36 1.84 0.75 0.19

0.25

5 ARL 2.53 5.77 13.66 26.23 60.51 175.59 370.24 173.38 59.31 26.05 13.66 5.79 2.52
MDRL 2.00 5.00 11.00 20.00 43.00 123.00 254.00 119.00 43.00 19.00 11.00 5.00 2.00
SDRL 0.77 3.43 10.66 22.61 57.33 174.50 370.98 173.26 55.43 22.76 10.51 3.49 0.77

7 ARL 1.42 4.05 10.02 18.93 46.16 147.45 369.76 149.04 46.83 19.19 9.86 4.01 1.43
MDRL 1.00 4.00 8.00 14.00 33.00 104.00 256.00 103.50 33.00 15.00 8.00 4.00 1.00
SDRL 0.74 2.73 8.05 16.57 44.54 146.75 369.54 149.25 44.59 16.83 7.77 2.66 0.75

10 ARL 1.42 3.04 6.51 11.71 28.49 110.14 370.71 111.43 28.72 11.91 6.55 3.03 1.41
MDRL 1.00 3.00 6.00 10.00 21.00 78.00 255.00 78.00 21.00 10.00 6.00 3.00 1.00
SDRL 0.52 1.50 4.15 8.54 25.22 104.99 369.52 109.17 25.52 8.90 4.18 1.49 0.52

15 ARL 1.04 1.95 4.13 7.11 16.47 68.80 370.08 70.68 16.36 7.18 4.10 1.96 1.04
MDRL 1.00 2.00 4.00 6.00 13.00 48.00 255.00 50.00 13.00 6.00 4.00 2.00 1.00
SDRL 0.19 1.00 2.48 4.88 13.67 66.73 381.88 67.43 13.45 4.93 2.44 1.01 0.19

chart at p = 0:55, 0.60 and 0.65, respectively, while for
NPAS chart, the ARL1 = 52.56, 19.23 and 11.23 for the
same values of n, �, and p. It indicates that TNPAS
chart requires on average nearly �ve less samples as
compared to NPAS chart to detect a shift in process
target when � = 0:05. Moreover, MDRL of TNPAS
chart is also lower than MDRL of NPAS chart, while
there is a slight increase in SDRL of the TNPAS chart
as compared to NPAS chart. The ARL curves of NPAS
and TNPAS charts along with other charts will be
compared graphically in the next section.

3.2. E�ect of fast initial response on
NPEWMA chart

We have seen in the previous section that the use of
time-varying control limits as compared to asymptotic
limits signi�cantly improved the out-of-control run
length behavior of the NPEWMA control chart. In
this section, we examine the e�ect of FIR on the
performance of NPEWMA chart. The run length
characteristics of FNPAS and IFNPAS charts are re-
ported in Tables 3 and 4, respectively. By comparing

the results, we can observe the superior run length
performance of the IFNPAS chart as compared to the
FNPAS chart, respectively. For example, the ARL1 =
31.62, 7.96 and 3.40 for IFNPAS chart at p = 0.55,
0.60 and 0.65, while for FNPAS chart, the ARL1 =
39.02, 10.80 and 4.79 using n = 10 and � = 0:05
while the corresponding ARL1 values from Tables 1
and 2 exhibit the inferior performance of TNPAS and
NPAS charts, respectively, as compared to IFNPAS
and FNPAS charts. This indicates that the FNPAS
chart requires on average nearly 8, 4 and 3 less samples
as compared to TNPAS chart and 13, 9, 7 less samples
as compared to the NPAS chart to detect departures
from � = 0:05 to p = 0:55, 0.60, and 0.65. On the other
hand, the IFNPAS chart requires on average nearly 8,
3, and 1 samples as compared to FNPAS chart; 16, 7,
and 4 samples as compared to TNPAS chart; 21, 12,
and 8 samples as compared to NPAS chart. Moreover,
MDRL of IFNPAS chart is also lower than MDRL of
FNPAS chart followed by TNPAS and NPAS charts,
while there is slight increase in SDRL of these charts
with the same order.
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Table 3. Run length characteristics of FNPAS chart for di�erent values of n and p when ARL0 = 370 and � = 0:05 and
0.25.

P
� n 0.05 0.20 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.95

0.05

5 ARL 1.25 2.52 5.67 10.21 22.14 75.18 371.19 76.31 22.77 10.30 5.60 2.50 1.24
MDRL 1.00 2.00 3.00 6.00 15.00 49.00 211.00 49.00 16.00 6.00 3.00 2.00 1.00
SDRL 0.46 1.94 5.55 10.47 23.55 86.74 467.12 89.38 23.96 10.57 5.57 1.95 0.47

7 ARL 1.05 1.77 3.83 6.99 15.34 54.71 370.30 54.56 15.34 6.85 3.79 1.76 1.05
MDRL 1.00 1.00 2.00 4.00 9.00 35.00 203.00 35.00 9.00 3.00 2.00 1.00 1.00
SDRL 0.23 1.24 3.83 7.39 16.64 64.63 473.06 63.61 16.59 7.39 3.69 1.23 0.23

10 ARL 1.01 1.43 2.71 4.77 10.71 39.25 369.82 39.02 10.80 4.79 2.70 1.42 1.01
MDRL 1.00 1.00 2.00 3.00 6.00 26.00 200.00 25.00 6.00 3.00 2.00 1.00 1.00
SDRL 0.10 0.75 2.38 4.83 11.36 44.28 466.38 45.09 11.53 4.77 2.40 0.72 0.11

15 ARL 1.00 1.18 1.94 3.19 7.20 27.00 370.04 26.43 7.25 3.21 1.95 1.19 1.00
MDRL 1.00 1.00 1.00 2.00 4.00 18.00 199.00 18.00 4.00 2.00 1.00 1.00 1.00
SDRL 0.02 0.45 1.41 3.01 7.47 29.81 466.66 29.15 7.50 2.97 1.39 0.45 0.02

0.25

5 ARL 1.28 3.27 8.86 18.61 49.16 158.61 370.17 163.82 48.93 18.17 8.59 3.24 1.29
MDRL 1.00 2.00 5.00 10.00 27.00 95.00 227.00 100.00 27.00 9.00 5.00 2.00 1.00
SDRL 0.60 2.94 10.32 22.66 61.54 188.42 431.19 191.99 60.07 22.33 9.70 2.87 0.62

7 ARL 1.05 2.00 5.60 12.48 35.85 136.47 370.91 136.54 35.76 12.26 5.56 1.98 1.04
MDRL 1.00 1.00 3.00 6.00 18.00 77.00 220.00 74.00 18.00 6.00 3.00 1.00 1.00
SDRL 0.23 1.67 6.82 16.27 46.42 169.75 464.29 174.97 46.29 15.94 6.86 1.71 0.22

10 ARL 1.01 1.49 3.27 6.69 20.41 100.58 369.96 99.25 20.39 6.72 3.28 1.50 1.01
MDRL 1.00 1.00 2.00 4.00 10.00 56.00 213.00 55.00 9.00 4.00 2.00 1.00 1.00
SDRL 0.12 0.90 3.30 8.05 26.92 125.21 448.51 123.59 26.64 8.04 3.33 0.92 0.10

15 ARL 1.00 1.20 2.10 3.75 10.16 57.47 370.49 57.28 10.06 3.74 2.11 1.20 1.00
MDRL 1.00 1.00 1.00 2.00 5.00 29.00 218.00 28.00 5.00 2.00 1.00 1.00 1.00
SDRL 0.02 0.51 1.66 3.89 12.72 75.33 461.12 75.68 13.22 3.93 1.71 0.51 0.02

The performances of NPAS, TNPAS, FNPAS,
and IFNPAS charts are also evaluated graphically by
creating ARL curves, provided in Figures 1 and 2, for
the same values of n, p, ARL0, and � as discussed in
Tables 1-4. It can be observed from Figures 1 and 2
that the di�erence in the ARL curves of NPAS and
TNPAS charts is larger for small value of � (i.e., �=
0.05). As the value of � increases to 0.25, the di�erence
seems to be smaller. For �= 1, we expect to see a
similar performance of these two charts. The bene�t
of using the FIR feature can be easily seen here as
the ARL curves of the FNPAS chart are consistently
lower than the ARL curves of both NPAS and TNPAS
charts, while the ARL curve of IFNPAS chart lies lower
than FNPAS chart for every choice of n, p, and �
in general. Moreover, from EQL and RARL values
provided in Table 5, it is indicated that for every choice
of n, p, and �, the EQL values of IFNPAS chart are
smaller than those of FNPAS chart followed by TNPAS
and NPAS charts in general. Moreover, the values of
RARL for IFNPAS chart are equal to 1, while these
values are greater than 1 for other charts, justi�ng the

superiority of IFNPAS chart over other charts. This
indicates that the FIR-based NPEWMA charts detect
shifts in process target more quickly as compared to
NPEWMA charts based on asymptotic or time-varying
control limits.

3.3. Investigation of some additional features
In this subsection, we provide some additional inves-
tigations about di�erent features of NPAS, TNPAS,
FNPAS, and IFNPAS charts. These include the
following: control chart coe�cients at di�erent ARL0
values; run length characteristics of EWMA charts
using FIR without the time varying feature; the e�ect
of parameter f on the performance of EWMA chart
using FIR feature; and percentile points of the run
length distribution for in-depth analysis.

Control chart coe�cients at di�erent ARL0
values: We have considered ARL0=370 for the per-
formance evaluation of all the EWMA charts. The
similar results can also be obtained for the other
values of ARL0. We have provided the control charts
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Table 4. Run length characteristics of IFNPAS chart for di�erent values of n and p when ARL0 = 370 and � = 0:05 and
0.25.

P
� n 0.05 0.20 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.95

0.05

5 ARL 1.03 1.75 4.10 7.73 17.35 63.19 370.37 63.63 17.39 7.65 4.07 1.74 1.03
MDRL 1.00 1.00 1.00 2.00 3.00 8.00 45.00 9.00 3.00 2.00 1.00 1.00 1.00
SDRL 0.19 1.74 5.53 10.77 25.18 97.96 603.93 99.86 24.56 10.63 5.48 1.71 0.21

7 ARL 1.00 1.31 2.71 4.89 11.32 43.76 369.29 44.38 11.42 4.91 2.62 1.31 1.00
MDRL 1.00 1.00 1.00 1.00 1.00 2.00 3.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.06 0.98 3.62 7.23 17.55 71.86 658.63 73.39 17.20 7.17 3.48 0.99 0.07

10 ARL 1.00 1.16 1.97 3.49 7.97 31.62 369.92 31.62 7.96 3.40 1.93 1.16 1.00
MDRL 1.00 1.00 1.00 1.00 2.00 3.00 38.50 4.00 2.00 1.00 1.00 1.00 1.00
SDRL 0.03 0.50 2.14 4.64 11.55 47.79 606.97 47.78 11.39 4.52 2.07 0.50 0.03

15 ARL 1.00 1.02 1.29 1.92 4.05 16.39 370.68 16.51 3.98 1.91 1.28 1.02 1.00
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.00 0.17 1.03 2.55 6.92 31.08 816.46 31.23 6.94 2.55 1.04 0.18 0.00

0.25

5 ARL 1.03 1.85 5.42 12.80 41.08 146.54 369.14 149.03 41.67 12.87 5.38 1.85 1.03
MDRL 1.00 1.00 1.00 2.00 3.00 9.00 64.00 12.00 3.00 2.00 1.00 1.00 1.00
SDRL 0.23 2.06 9.25 22.78 72.09 249.71 600.01 250.87 72.26 23.42 9.20 2.15 0.20

7 ARL 1.00 1.33 3.44 8.28 26.68 120.44 370.19 117.05 26.94 8.23 3.35 1.33 1.00
MDRL 1.00 1.00 1.00 1.00 1.00 2.00 3.00 2.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.06 1.11 5.98 16.32 52.69 215.66 655.82 215.89 52.10 16.36 5.87 1.11 0.05

10 ARL 1.00 1.19 2.31 4.95 16.22 91.82 370.69 92.65 16.47 4.93 2.29 1.19 1.00
MDRL 1.00 1.00 1.00 1.00 2.00 10.00 85.00 11.00 2.00 1.00 1.00 1.00 1.00
SDRL 0.03 0.61 2.97 8.21 29.05 152.83 592.49 154.93 29.72 8.33 2.99 0.64 0.02

15 ARL 1.00 1.07 1.58 2.67 7.54 49.82 370.22 50.78 7.62 2.68 1.56 1.07 1.00
MDRL 1.00 1.00 1.00 1.00 2.00 6.00 102.00 7.00 2.00 1.00 1.00 1.00 1.00
SDRL 0.00 0.28 1.32 3.51 12.61 83.04 574.30 84.39 12.72 3.48 1.32 0.30 0.00

Table 5. EQL and RARL measures for di�erent values of n and � when ARL0 = 370.

� = 0:05
n 5 7 10 15

Charts EQL RARL EQL RARL EQL RARL EQL RARL
NPAS 7.2129 3.4271 6.1441 3.5766 5.0283 3.3312 4.2396 3.3723

TNPAS 2.8850 1.6519 2.7110 1.8528 2.1396 1.6375 1.9349 1.6878
FNPAS 2.5031 1.3229 1.9921 1.2514 1.8106 1.1858 1.7059 1.2279
IFNPAS 1.9791 1.0000 1.7752 1.0000 1.7059 1.0000 1.6369 1.0000

� = 0:25

NPAS 5.4310 2.6095 4.0051 2.5009 2.9299 2.0641 2.4926 1.9149
TNPAS 5.3455 2.5517 3.3081 2.2631 2.9280 2.0693 2.0379 1.6834
FNPAS 2.9300 1.4817 2.1861 1.3308 1.8995 1.1860 1.7370 1.1306
IFNPAS 2.1513 1.0000 1.8836 1.0000 1.7762 1.0000 1.6825 1.0000

coe�cients Lt and Lf for di�erent choices of ARL0
in Figures 3 and 4 for TNPAS and FNPAS charts,
respectively. These �gures can be used to obtain the
values of Lt and Lf to approximate control limits at
the desired ARL0 values ranging from 50 to 500 for

TNPAS and FNPAS charts, respectively, at � = 0:05
and 0.25. For example, the �rst plot in Figure 3 shows
that Lt = 3:615 approximately gives ARL0 = 370 for
TNPAS chart using n = 7 and � = 0:25. Similar plots
can also be created for NPAS and IFNPAS charts.
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Figure 1. ARL comparison of NPAS, TNPAS, FNPAS, and IFNPAS charts for di�erent values of n when � = 0:05 and
ARL0 = 370.

Figure 2. ARL comparison of NPAS, TNPAS, FNPAS, and IFNPAS charts for di�erent values of n when � = 0:25 and
ARL0 = 370.

Run length characteristics of EWMA charts
using FIR without the time varying feature: In
order to investigate the e�ect of FIR feature without
the time-varying factor, we have studied the run length
characteristics of FNPAS chart without the time-
varying factor. The resulting outcomes are presented in
Table 6 at n = 7, 10 and � = 0:05, 0.25 for ARL0 = 370.

These choices are made for a valid comparison with
the FNPAS chart using the time-varying run length
characteristics provided in Table 3. By looking at
results of Tables 7 and 3, we may observe that time-
varying feature improves the performance of FNPAS
chart as compared to the chart without time-varying
feature at any value of n and �.
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Figure 3. The choice of Lt at di�erent ARL0 values for TNPAS chart.

Figure 4. The choice of Lf at di�erent ARL0 values for FNPAS chart.

Table 6. Run length characteristics of FNPAS chart without the time-varying features for di�erent values of n and � at
ARL0 = 370.

P

� n 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 7
ARL 2.17 2.61 3.27 4.22 5.72 8.13 12.72 23.84 69.40 370.47 67.98 23.80 12.91 8.15 5.73 4.22 3.27 2.61 2.19

MDRL 2.00 2.00 3.00 4.00 5.00 8.00 12.00 21.00 54.00 261.00 52.00 21.00 12.00 7.00 5.00 4.00 3.00 2.00 2.00

SDRL 0.44 0.86 1.31 1.90 2.78 4.19 7.02 15.02 56.37 364.49 56.33 15.11 7.10 4.19 2.77 1.87 1.30 0.86 0.46

0.25 10
ARL 1.08 1.29 1.58 1.99 2.72 4.19 7.99 22.61 101.11 370.07 103.97 22.43 7.77 4.16 2.74 2.02 1.57 1.29 1.09

MDRL 1.00 1.00 1.00 2.00 2.00 3.00 5.00 13.00 65.00 245.50 66.00 13.00 5.00 3.00 2.00 2.00 1.00 1.00 1.00

SDRL 0.28 0.50 0.73 1.07 1.75 3.37 8.15 25.78 113.75 407.61 119.09 25.26 7.62 3.35 1.78 1.10 0.72 0.50 0.29

Run length characteristics of EWMA charts
(using the FIR feature) at di�erent levels of f :
To study the e�ect of parameter f on the run length
performance of EWMA charts using the FIR feature,
we have obtained the run length results of FNPAS
chart at n = 7 and � = 0:25. These are provided
in Table 7. From these results, it can be observed that
the performance of FNPAS chart is inversely related
to the choice of f . It means that FNPAS chart shows

better performance at small values of f as compared to
the relatively larger values.

Percentile points of the run length distribution:
The percentile points of the run length distribution
of NPAS, TNPAS, FNPAS, and IFNPAS charts are
calculated and provided in Table 8. Based on this
table, we can also identify the superior performance of
FNPAS and IFNPAS charts as compared to NPAS and
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Table 7. Run length characteristics of FNPAS chart at di�erent levels of f when n = 7, � = 0:25, and ARL0 = 370.

P
F 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.25
ARL 1.00 1.03 1.12 1.33 1.83 3.24 7.75 26.13 115.17 370.69 115.17 26.13 7.75 3.24 1.83 1.33 1.12 1.03 1.00

MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 3.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.06 0.22 0.52 1.10 2.34 5.63 15.80 52.40 211.90 658.97 211.90 52.40 15.80 5.63 2.34 1.10 0.52 0.22 0.06

0.40
ARL 1.05 1.19 1.45 1.95 2.96 5.27 11.83 34.61 132.92 370.36 132.92 34.61 11.83 5.27 2.96 1.95 1.45 1.19 1.05

MDRL 1.00 1.00 1.00 1.00 2.00 3.00 5.00 15.00 70.00 216.00 70.00 15.00 5.00 3.00 2.00 1.00 1.00 1.00 1.00
SDRL 0.22 0.51 0.91 1.59 3.03 6.44 16.02 47.25 169.25 460.82 169.25 47.25 16.02 6.44 3.03 1.59 0.91 0.51 0. 22

0.50
ARL 1.05 1.19 1.48 2.00 3.10 5.60 12.48 35.85 136.47 370.91 136.54 35.76 12.26 5.56 3.12 1.98 1.49 1.18 1.04

MDRL 1.00 1.00 1.00 1.00 2.00 3.00 6.00 18.00 77.00 220.00 74.00 18.00 6.00 3.00 2.00 1.00 1.00 1.00 1.00
SDRL 0.23 0.51 0.96 1.67 3.22 6.82 16.27 46.42 169.75 464.29 174.97 46.29 15.94 6.86 3.33 1.71 0.98 0.49 0.22

0.90
ARL 1.39 1.91 2.63 3.72 5.52 9.13 17.86 43.97 147.61 370.10 147.61 43.97 17.86 9.13 5.52 3.72 2.63 1.91 1.39

MDRL 1.00 2.00 2.00 3.00 5.00 7.00 13.00 30.00 100.00 254.00 100.00 30.00 13.00 7.00 5.00 3.00 2.00 2.00 1.00
SDRL 0.67 1.11 1.64 2.48 4.08 7.51 16.69 44.35 152.41 380.87 152.41 44.35 16.69 7.51 4.08 2.48 1.64 1.11 0.67

Table 8. Percentiles of the run length distribution for NPAS, TNPAS, FNPAS, and IFNPAS charts when n = 7, � = 0:25,
and f = 0:5.

Charts p
Percentile point 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

NPAS

1 2 2 3 4 6 4 3 2 2
5 3 4 6 11 21 11 6 4 3
25 6 9 17 45 108 45 17 9 6
50 9 16 34 105 257 105 34 16 9
75 14 27 65 207.25 505 207.25 65 27 14
95 26 54 134 445.05 1091 445.05 134 54 26
99 38 79 208 681.01 1730.03 681.01 208 79 38

TNPAS

1 1 1 1 1 1 1 1 1 1
5 1 1 3 6 13 6 3 1 1
25 4 7 15 41 102 41 15 7 4
50 8 14 32 102 254 102 32 14 8
75 13 26 63 206 507.25 206 63 26 13
95 25 53 133 447.05 1104.05 447.05 133 53 25
99 37 78 206.01 692.01 1768.01 692.01 206.01 78 37

FNPAS

1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
25 1 1 3 8 27.75 8 3 1 1
50 3 6 17 73 218 73 17 6 3
75 7 17 51 196 537.25 196 51 17 7
95 20 47 130.05 482.05 1297.15 482.05 130.05 47 20
99 31 75 214.01 760 1998.03 760 214.01 75 31

IFNPAS

1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1
50 1 1 1 2 3 2 1 1 1
75 2 6 27 146 497.25 146 27 6 2
95 14 40 134 570.05 1731 570.05 134 40 14
99 28 76 245.01 955 3002.18 955 245.01 76 28

TNPAS charts. For example, the 25th percentile point
of IFNPAS chart is 1 at p = 0:30, whereas the same
percentile for NPAS chart is 6. It clearly shows the
added advantage of using IFNPAS chart as compared
to NPAS chart. Similar comparisons can also be made
for the other percentile points.

4. Illustrative example

In order to illustrate the application of under-study
charts, the same example is used here as was used
earlier by [42] and [18] from [19]. The �lling volume
of soft-drink beverage bottles is an important quality
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Table 9. EWMA statistic and the control limits for di�erent charts.

Control limits

NPAS Chart TNPAS Chart FNPAS Chart IFNPAS Chart

Sample EWMA LCL UCL LCL UCL LCL UCL LCL UCL

1 0.7957 0.7224 0.8484 0.7640 0.8068 0.7743 0.7965 0.7795 0.7913

2 0.8002 0.7224 0.8484 0.7559 0.8149 0.7672 0.8036 0.7706 0.8002

3 0.7944 0.7224 0.8484 0.7501 0.8207 0.7609 0.8099 0.7627 0.8081

4 0.7779 0.7224 0.8484 0.7456 0.8252 0.7552 0.8156 0.7559 0.8149

5 0.7622 0.7224 0.8484 0.7420 0.8288 0.7501 0.8207 0.7499 0.8209

6 0.7583 0.7224 0.8484 0.7389 0.8319 0.7457 0.8251 0.7448 0.8260

7 0.7494 0.7224 0.8484 0.7363 0.8345 0.7418 0.8290 0.7403 0.8305

8 0.7351 0.7224 0.8484 0.7341 0.8367 0.7384 0.8324 0.7365 0.8343

9 0.7376 0.7224 0.8484 0.7321 0.8386 0.7354 0.8354 0.7331 0.8377

10 0.7297 0.7224 0.8484 0.7305 0.8403 0.7328 0.8380 0.7302 0.8405

11 0.7275 0.7224 0.8484 0.7290 0.8418 0.7305 0.8403 0.7278 0.8430

12 0.7201 0.7224 0.8484 0.7277 0.8431 0.7286 0.8422 0.7256 0.8452

13 0.7072 0.7224 0.8484 0.7265 0.8443 0.7268 0.8440 0.7237 0.8471

14 0.7061 0.7224 0.8484 0.7255 0.8453 0.7253 0.8455 0.7221 0.8487

15 0.7101 0.7224 0.8484 0.7246 0.8462 0.7240 0.8468 0.7207 0.8501

characteristic that is measured (approximately) by
placing a gauge over the crown. The control limits of
NPAS, TNPAS, FNPAS, and IFNPAS charts compare
the height of the liquid in the neck of the bottle against
a coded scale at which a reading of zero corresponds to
the correct �lling height. Fifteen samples of size n = 10
with � = 0:25 have been analyzed and the data set with
the EWMA statistic Wt and variable M are plotted
in Figure 5. In this �gure, X1; X2; :::; X10 represent
the observations in each sample. The control chart
multipliers, La = 2:490, Lt = 2:709, Lf = 2:811, and
Lif = 3:486, have been used for the NPAS, TNPAS,
FNPAS, and IFNPAS charts, respectively, that give
the desired ARL0 = 370 for each chart. The EWMA
statistic with control limits for all charts has been
reported in Table 9 and plotted in Figure 6.

It can be observed from Figure 6 that the control
limits of the TNPAS chart converge with the limits of
NPAS chart as the number of samples increases, while
the EWMA control limits of the FNPAS and IFNPAS
charts are always narrower than the other two charts.
We can clearly see that the FNPAS and IFNPAS charts
have better detection abilities as compared to the other
two charts as the out-of-control signal is detected at

the 8th sample by the FNPAS and IFNPAS charts,
at the 10th sample by the TNPAS chart and at the
12th sample by the NPAS chart. This simple example
clearly shows the bene�t of using the time-varying and
FIR-based limits for the NPEWMA control charts as
compared to the asymptotic limits.

5. Conclusions and recommendations

In this study, we investigated the performance of
NPEWMA chart using asymptotic, time-varying, and
FIR-based control limits. Computations have been per-
formed using NPAS chart proposed by Yang et al. [18];
these results can be generalized for the other nonpara-
metric charts. The comparisons among under-study
charts have been made on the basis of run length char-
acteristics with some e�ective performance measures.
It has been observed that the ability of the NPEWMA
chart to detect shifts in process target can be improved
by using exact (time-varying limits) instead of asymp-
totic control limits, particularly for smaller values of
smoothing parameter �. The FIR feature has been also
shown to contribute signi�cantly to further increase
the sensitivity of NPEWMA chart to detect shifts in
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Figure 5. Plot of data values with M and Wt statistics.

Figure 6. Control charts display for NPAS, TNPAS, FNPAS, and IFNPAS charts.

process target. In future, this study can be helpful
for quality practitioners to choose a more sensitive
NPEWMA chart for monitoring process target.

The scope of this study can be extended to
the design structures of other control charts such
as mixed EWMA CUSUM [43], combined Shewhart-
EWMA [44], Shewhart-CUSUM [45], and double
EWMA charts [46]. Moreover, these ideas may also
be investigated for multivariate setups [47].
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