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Abstract. In this paper, a two-stage supply chain, including a wholesaler and a retailer,
is investigated, in which the retailer acts as a vendor and sells the products to the
�nal customers. This chain only produces a single deteriorating product with constant
deteriorating rate. In this chain, demand is deterministic, and lead time for replenishment
and replacement of retailer's stock is considered to be zero. The objective of this study
is to maximize total chain's pro�t by determining the optimal values of retailer's selling
price (p) and order cycle length (T ). Since due to deterioration, a part of the initial stock
is deteriorated, the retailer residuals recycle the deteriorated part and replace them with
healthy product as needed instead. Two scenarios with and without shortage assumptions
are developed. Finally, numerical examples are presented to show the applicability of the
proposed models, and sensitivity analysis on some parameter's values is conducted.
© 2017 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, a supply chain coordination has great im-
portance in competitive business environments. Close
cooperation between the members of the multi-stage
supply chain results in a noticeable increase in total
pro�t as well as faster response to the client's demand.
Also, determining the optimal inventory control policy
and selling price for di�erent products is one of the
main issues of industrial and scienti�c studies, espe-
cially when the product is perishable. So, in this paper,
we concentrate on simultaneous pricing and inventory
decisions in a two-stage supply chain for deteriorating
products with replacement and shortage assumptions.
In this section, we will review some research pieces
about replacement, pricing, and inventory decision for
deteriorating product.
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Since in the absence of product price is usually
the main factor for customer's buying decision, joint
determination of pricing and inventory decisions is
an important problem. Yu et al. [1] determined the
joint optimal price-inventory decisions in a fuzzy price-
dependent newsvendor framework. Huang et al. [2]
modeled the coordination of suppliers and components
selection, pricing and replenishment decisions in a
three-level supply chain as a dynamic non-cooperative
game model. Ghoreishi et al. [3] dealt with an
economic production quantity inventory model for non-
instantaneous deteriorating items under in
ationary
conditions, permissible delay in payments, customer re-
turns, and price- and time-dependent demand. Zhu [4]
formulated the combined pricing and inventory control
problem in a random demand condition and �nite
planning horizon with return and expediting. You
et al. [5] studied a seasonal inventory model with
trial periods during which customers can return their
purchases without paying any penalty and developed a
mathematical model. Lee et al. [6] formulated a novel
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fuzzy multi-level multi-objective production planning
model for a supply chain under a fuzzy environment.
Su and Geunes [7] examined the degree to which
the bullwhip e�ect results from price 
uctuation in
a two-stage supply chain with deterministic demand.
Mutlu and C�etinkaya [8] concentrated on a carrier-
retailer channel and compared the pro�tability of the
centralized and decentralized channels under a price-
dependent demand. Hong and Lee [9] studied a
single-product inventory system and applied shipment
consolidation (time-based policy) in order to maximize
total pro�t and determine optimum values of selling
price, replenishment quantity and dispatch cycle length
simultaneously. Abad [10] formulated a model to deter-
mine selling price and order size for perishable products
with partial backordering. Adida and Perakis [11]
presented a model for dynamic pricing and inventory
problem for a make-to-stock manufacturing system.
Dong et al. [12] studied the problem of product line
selection and pricing. G�um�us and G�uneri [13] reviewed
the literature, addressing multi-echelon inventory man-
agement in supply chains from 1996 to 2005.

On the other hand, since in today's market, the
number of deteriorating products shows a real increas-
ing trend, so many researchers have concentrated on
inventory control of these products. In this way, Chew
et al. [14] studied an inventory system and determined
the inventory allocation and the price for a perishable
product with a predetermined lifetime. Taleizadeh
and Nematollahi [15] developed an inventory control
model that investigates the e�ects of time value of
money and in
ation on optimal ordering policy of
deteriorating products. Lee and Chung [16] used sys-
tem dynamics thinking to propose a new order system
for deteriorating products and prepare a systematical
simulation. Maity and Maiti [17] presented an opti-
mum production and advertising policy for a multi-
product system with in
ation and time discounting
under di�erent constraints. Yu et al. [18] studied
an inventory problem for a VMI system, where both
the raw material and �nished products are perishable.
Mahata [19] formulated an EPQ-based inventory model
for deteriorating products that investigates the optimal
retailer's replenishment decisions under trade credit
policy. Also, as we know, the pricing models of
deteriorating items due to similarity to real business
environments, has a special place in scienti�c research.
For example, Chung et al. [20] investigated the e�ects
of stock- and warranty- dependent demands on an
integrated two-stage production-inventory deteriorat-
ing model. Yang [21] developed an optimal pricing
and ordering policy for a deteriorating item using a
quantity discount pricing strategy. Dye et al. [22]
found the optimal inventory and pricing strategies for
a single-product economic order quantity that maxi-
mize total pro�t over an in�nite horizon. Tsao and

Sheen [23] studied the problem of dynamic pricing,
promotion, and replenishment for a deteriorating item
with supplier's trade credit and retailer's promotional
e�orts. Huang [24] developed an integrated inventory
model in a two-stage supply chain to determine the
optimal policy under order processing cost reduction
and permissible delay in payments. Maihami and
Nakhai [25] considered a joint pricing and inventory
control model for non-instantaneously deteriorating
items with permissible delay in payments; shortage is
allowed and partially backlogged in their model.

Furthermore, in case of deteriorating products,
using a kind of replacement policies in relation with
deteriorated items can be useful. For example, Gomez
et al. [26] investigated the simultaneous production
planning and quality problem for an unreliable single
machine manufacturing system responding to a single-
product type demand. Nguyen et al. [27] studied
the impact of spare parts inventory on equipment
maintenance and replacement decisions under tech-
nological change via a Markov process formulation.
Jain and Gupta [28] studied an optimal replace-
ment policy for a repairable system with multiple
vacations and imperfect fault coverage. Berthaut
et al. [29] considered a joint preventive maintenance
and production/inventory control policy of an unreli-
able single machine, mono-product manufacturing cell.
Guchhait et al. [30] developed Economic Production
Quality (EPQ) models for breakable items. Cheng
and Li [31] studied an optimal replacement policy
for a degenerative system with two types of failure
states. Chang [32] considered an optimal replacement
policy for a degenerative system with two types of
failure states. Sivazlian and Danusaputro [33] dis-
cussed economic inventory and replacement manage-
ment of a system in which components are subject
to failure. Teimoury and Fathi [34] studied Order
Penetration Point (OPP) strategic decision-making,
which is the boundary between Make-To-Order (MTO)
and Make-To-Stock (MTS) policies, considering two-
echelon supply chain. Teimoury et al. [35] employed
some innovative methodologies of multi-agent systems
development to create an automation of the supply
chain performance measurement based on multi-agent
system. Teimoury and Fathi [36] studied An integrated
operations-marketing perspective for making decisions
about order penetration point in multi-product supply
chain using a queuing approach. Teimoury and Had-
dad [37] studied a supply chain production scheduling
with deterioration and release date. Taleizadeh et
al. [38] developed a VMI model for a two-level supply
chain in which both the raw material and the �nished
product have di�erent deterioration rates. The market
demand for the �nished product is deterministic and
price-sensitive. The Stackelberg approach is considered
between the chain partners, where the vendor is the



344 E. Teimoury and S.M.M. Kazemi/Scientia Iranica, Transactions E: Industrial Engineering 24 (2017) 342{354

leader, and the retailers are the followers. Rahdar
and Nookabadi [39] considered a supply chain including
a manufacturer and several buyers and assumed that
the inventory items deteriorate over time and its
inventory level decreases. In order to determine the
order policies, coordination over the supply chain is
achieved by scheduling the buyers' delivery days and
their coordination with the manufacturer's production
cycle. Sarkar [40] considered that a production-
inventory model is developed for a deteriorating item in
a two-echelon Supply Chain Management (SCM). An
algebraic approach is applied to �nd the minimum cost
related to this entire SCM. Three types of the continu-
ous probabilistic deterioration function are considered
to �nd the associated cost.

As a result, although many outstanding research
pieces about pricing and inventory control model for
deteriorating product have been separately developed
up to now, none of them has considered replacement,
inventory, and pricing policies in a two-stage supply
chain together. As for more clari�cation, the sig-
ni�cance of our research comes up whenever one is
studying the pro�tability of food industries by focusing
on a special dairy product factory in which a large
number of products are deteriorating every minute and
the inventory of healthy products are becoming smaller;
since there is a direct relationship between stock's
healthy inventory and pro�t, a smaller pro�t will be
obtained. Now, here a replacement policy can help us
to replace the deteriorated items with healthy ones,
and in this way to compensate for a part of our loss.
The above-mentioned hints are the noticeable gaps in
this context that motivate us for this study. In this
research, we develop an integrated pricing-inventory
system for a deteriorating item in a two-stage supply
chain, in which a kind of replacement policy is used.

The rest of the paper is organized as follows.
The problem is de�ned in Section 2. In Section
3, we develop a mathematical model for products
with constant deteriorating rate and price-dependent
demand, and then, we determine the optimum values
of product price and order cycle length simultaneously,
and a solution method is presented. In Section 4, we
present our �rst model by adding shortage assumption.
Numerical examples are provided in Section 5. Finally,
paper is concluded in Section 6.

2. Problem de�nition

Consider a two-stage supply chain consisting of a
wholesaler and a retailer, that is, a single item deterio-
rating system with constant deteriorating rate. In this
chain, the wholesaler buys the products from the upper
level, the manufacturer (that is not considered in this
study), and sells them to the retailer. Then, the retailer
sells the products to the �nal customers. The main

purpose of this paper is to study the inventory system
of this chain and extend models to determine the
optimum values of retailer's selling price (P ) and order
cycle length (T ) simultaneously in order to maximize
total chain's pro�t. In this paper, the retailer at the
beginning of the order cycle purchases (orders) as cy-
cle's demand, but since the products are deteriorating,
a part of the initial stock will deteriorate during the
order cycle. So, in order to respond to the customer's
demand, the retailer replaces deteriorated quantities
with healthy products. In other words, retailer recycles
(residuals) the deteriorated products, and then replaces
the deteriorated products with the healthy products.
Replacement is instantaneous and repurchasing cost
is considered as equal as the initial purchasing price.
Also, lead time for stock's replenishment is considered
to be zero. Moreover, in order to determine the
retailer's optimal selling price, it is assumed that cus-
tomer's demand is deterministic and a linear function
of product price D(p) = (a � bp), where a and b are
positive and constant values a; b > 0. Two scenarios are
developed with and without shortage assumptions. In
the �rst scenario, shortage is not permitted and all de-
mands must be satis�ed; in the second scenario, short-
age is permitted and will be completely backlogged.

In this section, we present mathematical models
for integrated pricing and inventory decisions for de-
teriorating products in a two-stage supply chain with
replacement and shortage assumption. In order to
model the problem, the following notations are used.

Parameters
I(t) The inventory level at time t in interval

[0; T ]
�(t) The inventory level at time t in interval

[T; T 0]
� The constant deteriorating rate
D(p) The price-sensitive demand
FD The �xed cost of a dispatch
CD The dispatching cost per unit product
Fp The �xed cost of a ordering

(purchasing)
Cp The ordering (purchasing) cost per

unit product
CH The recycling cost (salvage value) of

per unit deteriorated product
Qp The amount of deteriorated product
h The holding cost per unit product per

unit of time
S The maximum backlogged shortage
� The backlogged shortage cost per unit

product
T 0 The ordering time
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C 0 The wholesaler's purchasing price

Decision variables
P The retailer's selling price
T The ordering (purchasing) cycle length

3. Mathematical modelling

3.1. The �rst scenario: without shortage
In this scenario, shortage is not permitted and all
demands must be satis�ed. In this part, we present a
mathematical model for integrated pricing and inven-
tory decisions for deteriorating products in a two-stage
supply chain in which shortage is not permitted. First,
we model the retailer and wholesaler's pro�t functions
separately, and then form an integrated pro�t function.

3.1.1. Retailer's pro�t function
According to Figure 1, di�erential equations, shown in
Eq. (1), present the changes of inventory level of the
retailer during the ordering cycle, interval [0; T ]:

dI(t)
dt

= ��I(t)�D(p); t 2 [0; T ]: (1)

Using the boundary condition I(T ) = 0, we have:

I(t) =
D(p)
�

�
e�(T�t) � 1

�
: (2)

Moreover, the maximum inventory level during the
interval [0; T ] will be:

I(0) =
D(p)
�

�
e�T � 1

�
: (3)

In order to determine the optimal value of decision
variables, �rstly, we need to model the pro�t function,
and we know that pro�t is the di�erence between
income and cost. In this study, T is considered as
ordering cycle and demand during this cycle is D(p).
So, income will be:

Figure 1. Inventory diagram without shortage.

D(p)Tp = (a� bp)Tp: (4)

Moreover, the cost function of retailer includes purchas-
ing, dispatch, holding, and replacement costs which are
calculated as below.

Purchasing cost:

In this model, the purchasing quantity is equal to the
cycle's demand D(p)T . By having Fp as the �xed cost
of purchasing and Cp as purchasing cost of per unit
product, for purchasing cost, we have:

Fp + CpD(p)T: (5)

Dispatch cost:

Dispatch quantity is equal to D(p)T . So, by having FD
as the �xed cost of dispatching and CD as dispatching
cost of per unit product, the dispatch cost during the
ordering cycle will be:

FD + CDD(p)T: (6)

Holding cost:

According to Eq. (2), we know that the inventory level
at time t is I(t) = D(p)

�

��1 + e�(T�t)
�
. Utilizing a

truncated Taylor series expansion for the exponential
term, e�T = 1 + �T + �2T 2

2 , the inventory holding cost
in each ordering cycle is:

h
Z T

0
I(t)dt = h

Z T

0

�
D(p)
�

(�1 + e�(T�t))
�
dt

=
hD(p)T 3

2
=
h(a� bp)T 2

2
: (7)

Replacement cost:

Replacement cost is de�ned as the di�erence between
the purchasing cost of per unit deteriorated product
and its salvage value (recycling cost). Now, the
deteriorated quantity is equal to:

Qp = I(0)� I(T )�D(p)T; (8)

where I(0) = D(p)
� (e�T � 1), I(T ) = 0 and demand

during the ordering cost is D(p)T . So, deteriorated
quantity is:

Qp = I(0)� I(T )�D(p)T

=
D(p)
�

(e�T � 1)�D(p)T: (9)

Utilizing a truncated Taylor series expansion for the
exponential term, e�T = 1 + �T + �2T 2

2 , replacement
cost in each ordering cycle is:
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Cp(Qp)�CH(Qp)=(CP�CH)Qp

=(Cp�CH)
�
D(p)�T 2

2

�
; (10)

where Cp is the purchasing cost of per unit deterio-
rated product, which is considered equal to the initial
purchasing price. And, CH is recycling cost (residual
value), which means that if the deteriorated product
is repairable, then CH is the recycling cost; otherwise,
CH is the residual value. Using Eqs. (4)-(7) and (10),
the retailer's total pro�t function is:

TPr(p; T ) =D(p)pT �
�
FP + CPD(p)T

+
hD(p)T 2

2
+ FD + CDD(p)T

+ (CP � CH)
�
D(p)�T 2

2

��
: (11)

3.1.2. Wholesaler's pro�t function
Wholesaler's pro�t function is also the di�erence be-
tween its income and cost. Here, wholesaler's cost
function only includes purchasing cost, and income is
the obtained from selling the products to the retailer:

TPw(p; T ) = CpI(0)� C 0I(0) = (Cp � C 0)I(0)

= (Cp � C 0)D(p)T

+
(Cp � C 0)D(p)�T 2

2
; (12)

where I(0) is the product quantity that wholesaler sells
to the retailer, Cp is the selling price from wholesaler
to retailer, and C 0 is the wholesaler's purchasing cost
(the wholesaler buys the products with purchasing cost
C 0 from manufacturer; manufacturer is not considered
in this study).

Using Eqs. (11) and (12), the integrated total
pro�t function is the sum of total pro�t functions of
retailer and wholesaler, and it is obtained as below:

TP (p; T ) = TPw(p; T ) + TPr(p; T )

= (Cp � C 0)D(p)T +
(Cp � C 0)D(p)�T 2

2

+D(p)pT �
�
FP + CPD(p)T

+
hD(p)T 2

2
+ FD+CDD(p)T

+(CP�CH)
�
D(p)�T 2

2

��
: (13)

3.2. Solution method
Theorem1. TP (p; T ) is strictly concave if and only
if:

CD < 3p� C 0� a
b

+
T
2

(�(C 0�CH)+h)
�
a
bp
�3
�
:

Proof. TP (p; T ) is strictly concave if and only if:

X:H:XT = [p T ]�H � [p T ]T < 0

where:

H=

"
@2TP
@p2

@2TP
@p@T

@2TP
@T@p

@2TP
@T 2

#
=
� �2bT
b
�
(C 0 + CD)+T (�(C 0�CH+h)

�
+(a�2bp)

b
�
(C 0+CD)+T (�(C 0�CH)+h)

�
+(a�2bp)

�D(p)(�(C 0�CH)+h)

�
:
(14)

So, we have:

X�H �XT = �6bTp2 + 3bpT 2�C 0 + 3bpT 2h

� 3bp�CHT 2 + 2bpTC 0 + 2apT + 2bpTCD

� a�C 0T 2 � ahT 2 + a�CHt2: (15)

We should show that:

X�H �XT =
�
�6bTp2 + 3bpT 2�C 0 + 3bpT 2h

� 3bp�CHT 2 + 2bpTC 0 + 2apT + 2bpTCD

� a�C 0T 2 � ahT 2 + a�CHT 2
�
< 0:

(16)

So, the pro�t function TP (p; T ) is strictly concave if
and only if:

CD < 3p�C 0� a
b + T

2 (�(C 0 � CH) + h)
�
a
bp � 3

�
.

The proof is completed �.
Now, taking the �rst derivative of Eq. (13) with

respect to p, we have:

@TP (p; T )
@p

=aT � 2bpT + bTC 0 + btCD +
bC 0�T 2

2

� bCH�T 2

2
+
bhT 2

2
: (17)

On the other hand, the �rst derivatives of Eq. (13) with
respect to T yield:
@TP (p; T )

@T
=
��C 0 � C 0�T � hT � CD
+ CH�T

�
D(p) +D(p)p: (18)

By setting Eq. (17) equal to zero, we have:
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p� =
a
2b

+
C 0
2

+
CD
2

+
C 0�T

4
� CH�T

4
+
hT
4
: (19)

By substituting Eq. (19) into Eq. (18) and setting it
equal to zero, Eq. (18) changes to Eq. (20) as follows:

AT 2 +BT + C = 0; (20)

where:

A =
3b
16

(�(C 0 � CH) + h)2 ; (21)

B =
1
2

(b(C 0 � CD)� a) (�(C 0 � CH) + h) ; (22)

C =
1
4

�p
b(C 0 + CD)� ap

b

�2

: (23)

By solving the above equation, T � is obtained as
follows:

T � =
2
�a
b � (C 0 + CD)

�
[�(C 0 � CH) + h]

or

T � = 2
�a
b � (C 0 + CD)

�
3 [�(C 0 � CH) + h]

: (24)

4. The second scenario: with shortage

4.1. Mathematical model
Retailer's pro�t function:

According to Figure 2, di�erential equations, shown in
Eq. (1), present the changes of inventory level of the
retailer during the �rst interval.

In second interval, shortage will happen and will
be completely backlogged. So, di�erential Eq. (25)
presents the changes of inventory level during the
second interval:

Figure 2. Inventory diagram under shortage.

d�(t)
dt

= D(p); t 2 [T; T 0]: (25)

Using the boundary condition, �(T ) = 0, for interval
[T; T 0], we have:

�(t) = D(p)(t� T ): (26)

The maximum level of backlogged shortage (S) will be:

S = �(T 0) = D(p)(T 0 � T ): (27)

In the following model, as we know, income will be
the sum of which obtained from selling of products
in the �rst interval and income which obtained from
selling of backlogged shortages in the second interval.
According to Eq. (4), income in the �rst interval is
D(p)Tp; income in the second interval is:

p� S=p� (D(p)(T 0�T ))=pD(p)T 0�pD(p)T: (28)

So, the total income of replenishment cycle will be:

pD(p)T + pD(p)T 0 � pD(p)T = pD(p)T 0: (29)

Moreover, the cost function of retailer includes pur-
chasing, dispatch, holding, replacement, and shortage
costs which are calculated as below.

Purchasing cost:

In this model, we purchase according (as) to the
demand of the �rst interval D(p)T and the maximum
level of backlogged shortage S. So, for purchasing cost,
we have:
FP + CP (D(p)T + S) = FP + CP

�
D(p)T �D(p)T

+D(p)T 0
�

= FP + CPD(p)T 0: (30)

Dispatch cost:

As mentioned, the dispatch cost in the �rst interval is
FD + CDD(p)T ; in second interval, in order to reduce
customer's waiting time, it is assumed that all the
backlogged shortages will be dispatched at once. So,
the total dispatch costs in each ordering cycle is:

FD +CDD(p)T+FD+CDS=FD+CDD(p)T+FD

+CDf�D(p)T+D(p)T 0g=2FD+CDD(p)T 0:(31)

Holding cost:

Since inventory exists in the �rst interval, the holding
cost is de�ned only in the �rst interval. And, according
to Eq. (7), it is hD(p)T 2

2 .

Backlogged shortage cost:

Backlogged shortage cost is only de�ned in the second
interval and is calculated as below:
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��S=� (D(p)(T 0�T ))=��(Dp)T+�D(p)T 0: (32)

Replacement cost:

Accordingly, Eq. (10) is equal to (Cp�CH)
�
D(p)�T 2

2

�
.

Using Eqs. (7), (10) and (29) to (32), the retailer's
total pro�t function is:

TPr(p; T ) =D(p)pT 0 �
�
FP + CPD(p)T 0

+
hD(p)T 2

2
+ 2FD + CDD(p)T 0

+ (CP � CH)
�
D(p)�T 2

2

�
+ �D(p)T 0

� �D(p)T
�
: (33)

Wholesaler's pro�t function:

As mentioned before, wholesaler's pro�t function is:

TPw(p; T ) = Cp (I(0) + S)� C 0(I(0) + S)

= (Cp�C 0)(I(0)+S)=(Cp�C 0)D(p)T 0

+
(Cp � C 0)D(p)�T 2

2
; (34)

in which (I(0) + S) is the product quantity that
wholesaler sells to the retailer.

Using Eqs. (33) and (34), the integrated total
pro�t function is the sum of retailer and wholesaler's
total pro�t functions and is obtained as below:

TP (p; T ) = TPw(p; T ) + TPr(p; T )

= (Cp � C 0)D(p)T 0 + (Cp � C 0)D(p)�T 2

2

+D(p)pT 0�
�
FP +CPD(p)T 0+ hD(p)T 2

2

+ 2FD + CDD(p)T 0 + (CP � CH)�
D(p)�T 2

2

�
+ �D(p)T 0 � �D(p)T

�
:

(35)

4.2. Solution method
Theorem 2. TP (p; T ) is strictly concave if and only
if a > 3bp.

Proof. TP (p; T ) is strictly concave if and only if:

X:H:XT = [p T ]�H � [p T ]T < 0

where:

H =

"
@2TP
@p2

@2TP
@p@T

@2TP
@T@p

@2TP
@T 2

#
=
� �2bT 0
�bT (�(CH � C 0)� h)� b�
�bT (�(CH � C 0)� h)� b�
D(p) (�(CH � C 0)� h)

�
: (36)

So, we have:

X �H �XT =� T 2 (�(C 0 � CH) + h) (a� 3bp)

� 2bp(T 0p+ T�): (37)

We should show that:

X �H �XT =� T 2 (�(C 0 � CH) + h) (a� 3bp)

� 2bp(T 0p+ T�) < 0: (38)

By having this assumption that C 0 � CH , the pro�t
function, TP (p; T ), is strictly concave if and only if
a > 3bp. The proof is completed �.

Considering Eq. (35) with respect to p, we have:

@TP (p; T )
@p

=aT 0 � 2bpT 0 + bT 0C 0 + bT 0CD

+
bC 0�T 2

2
� bCH�T 2

2
+ b�T 0

� b�T +
bhT 2

2
: (39)

On the other hand, the �rst derivatives of Eq. (35) with
respect to T yield:

@TP (p; T )
@T

=(�C 0�T � hT + CH�T + �)D(p): (40)

By setting Eq. (39) equal to zero, we have:

p�=
a
2b

+
C 0
2

+
CD
2

+
�
2
� �T

2T 0+
C 0�T 2

4T 0 +
hT 2

4T 0 : (41)

By substituting Eq. (41) into Eq. (40) and setting it
equal to zero, Eq. (40) changes to Eq. (42) as follows:

AT 3 +BT 2 + CT +D = 0; (42)

where:

A =
b

4T 0 (�(CH � C 0)� h)2 ; (43)

B =
3�b
4T 0 (�(CH � C 0)� h) ; (44)

C=
1
2

(�(CH�C 0)�h) (a�b(C 0+CD+�))+
b�2

2T 0 ; (45)

D =
�
2

(a� b(C 0 + CD + �)) : (46)
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Finally, the optimal values of period length should
be determined by solving Eq. (42).

The following solution method mentioned in Fig-
ure 3 has been presented to simplify the solution
procedure for both of the proposed models as follows:

- Step 1. Computing the coe�cients of polynomials
shown in Eqs. (20) and (42);

- Step 2. Calculate all positive real roots of Eqs. (20)
and (42) using MATLAB software. Then, check the
feasibility. If the results are feasible, then go to Step
3, terminate the solution process;

- Step 3. Determine p for all feasible values of (T )
resulted from Step 2;

- Step 4. For all combinations of (p; T ), compute
the total pro�t function and choose the higher one.
Also, check the concavity condition. If the results
show the concavity, then the results are the optimal

values and terminate the procedure, or else go to
Step 5;

- Step 5. Using a nonlinear solver toolbox solves the
problem.

5. Numerical examples

5.1. The �rst example
For the �rst model, consider the parameters values as
Fp = 40, FD = 40, h = 14, CH = 10, � = 0:04,
C 0 = 20, b = 0:3, a = 10, CD = 3, Cp = 30,
and CR = 40. According to the above-mentioned
solution procedure, the highest pro�t obtains TP =
78:2973 which corresponds to the optimum value of
p� = 29:8889 as retailer's selling price and optimum
value of T � = 0:4784 as order cycle length.

5.2. The second example
For the second model, consider the parameters values
as Fp = 40, FD = 40, h = 14, CH = 10, � = 0:04, C 0 =

Figure 3. Flowchart of solution method.
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Table 1. E�ects of parameter changes on optimal values of the �rst scenario.

Changes in parameter's values
% Changes in parameter T p TP

h

-0.5 +94.58 -0.0003 -2.057
-0.25 +32.10 0 -0.698
+0.25 -19.54 +0.0006 +0.425
+0.5 -32.71 -0.0003 +0.711

�

-0.5 +1.400 -0.0003 -0.03
-0.25 +0.689 -0.0006 -0.015
+0.25 -0.689 0 9.583
+0.5 -1.379 -0.006 0.0297

CH

-0.5 -1.379 -0.0006 +0.029
-0.25 -0.689 0 +0.014
+0.25 +0.689 -0.0006 -0.015
+0.5 +1.400 -0.0003 -0.030

C0
-0.5 +102.4038 -11.151 -14.875
-0.25 +50.480 -5.575 -5.030
+0.25 -49.101 +5.575 +1.879
+0.5 -96.86 +11.152 +2.1745

Table 2. E�ects of parameter changes on optimal values of the second scenario.

Changes in parameter's values
% Changes in parameter T p TP

h

-0.5 +16.711 -5.45 +5.679
-0.25 +8.755 -2.639 +3.175
+0.25 -9.173 +2.4116 -3.604
+0.5 -18.064 +4.528 -7.322

�

-0.5 -0.356 +0.001 -0.002
-0.25 -0.172 -0.0002 +0.0003
+0.25 +0.184 -0.001 +0.002
+0.5 +0.368 -0.002 +0.003

CH

-0.5 +0.368 -0.002 +0.003
-0.25 +0.184 -0.001 +0.002
+0.25 -0.172 -0.0002 +0.0003
+0.5 -0.356 +0.001 -0.002

C0
-0.5 -32.870 -7.343 +6.840
-0.25 -14.96 -4.066 +4.557
+0.25 +11.85 +4.770 -7.78
+0.5 +20.67 +10.133 -19.66

20, b = 0:3, a = 10, CD = 3, Cp = 30, T 0 = 1:5, � = 35,
and CR = 40. According to the above-mentioned
solution procedure, the highest pro�t obtains TP =
111:1546 which corresponds to the optimum value of
p� = 37:7664 as retailer's selling price and optimum
value of T � = 0:8132 as order cycle length.

6. Sensitivity analysis

In this part, we have conducted several numerical
experiments to investigate the sensitivity of optimal
solutions to changes in parameter's values, and the

results are shown in Tables 1 and 2 and Figures 4 to 7.
Also, it must be said that in both �gures and tables, the
percent of changes in decision variables with respect to
percentage of parameter's values changes is shown. In
this part, the sensitivity analysis is only conducted on
the most e�ective parameters such as CH , C 0, h, and �.

Figure 4 represent the e�ects of change in holding
cost (h) on optimal values of retailer's selling price
and order cycle length in both scenarios (with and
without shortage). And, as is seen that there is a
direct relationship between changes in holding cost and
changes in optimal values of retailer's selling price and
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Figure 4. E�ects of changes in holding cost on decision variables.

Figure 5. E�ects of changes in wholesaler's purchasing price on decision variables.

Figure 6. E�ects of changes in deterioration rates on decision variables.

a reverse relationship between changes in holding cost
and changes in optimal values of order cycle length.
The optimal values of retailer's selling price increase as
per unit holding cost increases and the optimal values
of order cycle length decrease as the per unit holding
cost increases.

Figure 5 represents the e�ects of changes in
wholesaler's purchasing price (C 0) on optimal values

of retailer's selling price and order cycle length in both
scenarios (with and without shortage). And, as is seen,
there is a direct relationship between changes in whole-
saler's purchasing price and changes in optimal value
of retailer's selling price (in both scenarios) and order
cycle length (in the scenario with shortage). The opti-
mal values of retailer's selling price (in both scenarios)
and order cycle length (in the scenario with shortage)
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Figure 7. E�ects of changes in recycling cost (residual value) on decision variables.

increase as the wholesaler's purchasing price increases.
But, the optimal value of order cycle length (in the
scenario without shortage) �rst increases, and then
decreases as the wholesaler's purchasing price increases.

Figure 6 represents the e�ects of changes in
deterioration rate (�) on optimal values of retailer's
selling price and order cycle length in both scenarios
(with and without shortage). And, as is seen, there is
an alternative and also a reverse relationship between
changes in deterioration rate and changes in retailer's
selling price (in both scenarios), a reverse relationship
between changes in deterioration rate and changes in
order cycle length (in the scenario without shortage),
and �nally, a direct relationship between changes in
deterioration rate and changes in order cycle length (in
the scenario with shortage).

Figure 7 represents the e�ects of change in recy-
cling cost (CH) on optimal values of retailer's selling
price and order cycle length in both scenarios (with
and without shortage). And, as is seen, there is
an alternative and also a direct relationship between
changes in recycling cost and changes in optimal values
of retailer's selling price (in both scenarios), a reverse
relationship between changes in recycling cost and
changes in order cycle length (in the scenario with
shortage), and �nally, a direct relationship between
changes in recycling cost and changes in order cycle
length (in the scenario without shortage).

7. Conclusion

In this paper, a two-stage supply chain with a single
deteriorating product system is considered, and two
mathematical models for jointly determining the op-
timum values of retailer's selling price p and order
cycle length T under two di�erent scenarios (with and
without shortage assumption) are presented. Also,
in this study, since products are deteriorating, a re-

placement cost for deteriorating items is considered,
in which the deteriorated products are recycled and
healthy products are replaced instead. Then, using
some theorems, the concavity of pro�t functions of the
two proposed models is proved. Finally, a solution
method (algorithm) is proposed to solve the models. At
the end, numerical examples are provided to show the
applicability of the proposed policies. The presented
models in this paper are comprehensive and considered
nearly all costs of an inventory system. For the future
studies, permissible delay in payments, promotions,
and stochastic and fuzzy demands can be considered.
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