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Abstract. Network dilation is a way of o�ering system families, at a range of sizes and
computational powers, which share an underlying communication architecture and routing
algorithm. We consider indirect networks that connect processing nodes via intermediate
switch nodes. In the simplest such indirect networks, there is a switching network of some
regular topology, where each switch is connected to d other switches and to exactly one
processing node. A variant, which we adopt here because it is more robust in the sense of
not losing any processing capability to single-switch failures, is the use of 2-port processing
nodes that connect to two neighboring switches. This alternate architecture also has the
advantage of increasing the number of processing nodes from n to (d=2)n with a factor-
of-2 increase in internode distances. A k-dilated version of the latter architecture replaces
each processing node with a path network (linear array) of length k, thus growing the
network size to k(d=2)n and also further increasing internode distances. In this paper,
we study topological and performance attributes of such dilated network architectures,
proving general theorems about worst-case and average internode distances and deriving
the routing algorithm from that of the underlying switch network.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The list of proposed interconnection architectures in
parallel and distributed systems is rather extensive,
as noted by Duato et al. [1], Haddadi et al. [2],
Parhami [3], and Xu [4]. Liszka et al. [5] have
observed that comparing such networks with respect
to their suitability for a particular application domain
is quite challenging, given the multitude of static
attributes (diameter, average distance, bisection width,
VLSI layout area) and dynamic properties (routing
algorithms, deadlock prevention, tra�c balance, fault
tolerance) that must be taken into consideration. Thus,
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introduction of new interconnection networks, while
enriching the repertoire of parallel computer designers,
also adds to the selection di�culty.

Interconnection networks can be direct (switches
and routers are built into processing nodes) or indirect
(a separate switch network connects the processing
nodes), with the latter type being more readily scalable
and thus preferred in modern parallel computing im-
plementations. The optimal interconnection network
depends on the volume of data exchange, expected
interchange patterns, and, of course, system size.
Given that parallel processors are built in a range of
sizes constituting system families, it is unreasonable to
expect each member of the family to have a separately
optimized network that is incompatible with those of
other members. Among other di�culties, such an
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approach will lead to the need of di�erent routing
and computational algorithms for each member of the
system family.

In this paper, we propose a scheme based on
path dilation for expanding the system size, in terms
of the number of processing nodes, within a broad
range, while keeping the same underlying switching-
node structure and switch network architecture. This
approach allows all members of a computer family to
share their communication scheme within a range of
system sizes and computational capabilities. After
presenting the general method in Section 2, we prove
some theoretical results about static and dynamic
network attributes in Sections 3 and 4. Variations and
extensions are considered in Section 5. The paper is
concluded in Section 6.

2. Switch-network architectures and dilated
networks

We focus on indirect networks consisting of a separate
switch network and a rule for connecting the switches
to processing nodes. We use the switch-network
architectures depicted in Figure 1 as the bases for
our running examples. The network in Figure 1(a) is
an 8-node hypercube built of degree-3 switches. The
hypercube (Hayes and Mudge [6]) is a well-studied
network and has many interesting theoretical and
practical attributes that can make routing and other
aspects of application development fairly simple. Our
second network, shown in Figure 1(b), is derived from
K4, the 4-node complete graph, via the replacement
of each node with a cycle of length 3 and assigning
each of the original links of that node to one of the
nodes in the cycle. This is the same idea that is used
in deriving the cube-connected-cycles architecture of
Preparata and Vuillemin [7] from the hypercube, but
applied to K4.

The most straightforward way of connecting pro-
cessing nodes to switches is to dedicate one of the ports
of each switch for this purpose, using it to link the
switch to an associated processing node, as depicted in

Figure 1. Two switch networks for our running examples
in this paper: (a) Eight-node hypercube or 3-cube; and
(b) Twelve-node K4-connected-cycles.

Figure 2. Simplest parallel architecture based on our
example switch networks: (a) Eight-node hypercube or
3-cube; and (b) Twelve-node K4-connected-cycles.

Figure 3. Alternative parallel architecture with 2-port
processing nodes: (a) Eight-node hypercube or 3-cube;
and (b) twelve-node K4-connected-cycles.

Figure 2. With this scheme, an n-node switch network
will produce an n-processor parallel system. If the
switch network basis has node degree d, diameter D,
and average internode distance �, the corresponding
parameters for the parallel system will be d + 1 (for
switches, given that processing nodes are all degree-1),
D + 2, and � + 2. Similarly, if the switch network
is �-connected, the resulting architecture will have the
same robustness attribute.

A second scheme, which may be preferred due
to its robustness, in the sense of a single switch node
failure not isolating a node, is depicted in Figure 3,
where (d=2)n processors connect switch nodes that
were linked directly in the base architectures of Fig-
ure 1. In this scheme, switch nodes remain of degree d,
but the interprocessor diameter and average distance
become � 2D + 2 and � 2� + 2, respectively. We will
take the architectures of Figure 3 as our bases and use
the technique of dilation to expand the size, deriving
the relevant system parameters in the process.

Dilation means that we string k processors, in-
stead of placing just 1, on the link between two
switches. We call the resulting interconnection scheme
k-dilated, where the base case of no dilation (or, more
accurately, 1-dilation) is represented by Figure 3. Two
examples, 3-dialated hypercube-based architecture and
2-dilated K4-connected-cycles, are shown in Figure 4.
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Figure 4. Examples of 3-dilated and 2-dilated
interconnection architectures: (a) Eight-node hypercube
or 3-cube; and (b) twelve-node K4-connected-cycles.

Regardless of the value of the dilation parameter k,
the switch structure and switch network architecture
remain the same, thus allowing the same network to
be used for systems of varying sizes. Congestion in the
switches is, of course, an issue of concern that we will
address later.

For now, we note that the interprocessor diameter
and average distance will increase by a factor that is a
function of k (more on the relationship later). Thus,
this scheme cannot be used for growing the system size
inde�nitely, as the performance penalty may become
unacceptable for very large number k(d=2)n of process-
ing nodes. However, we can envisage growth within
a predetermined range for which the architecture has
been assessed and �ne-tuned. We note in passing here
that despite k-dilated paths, the performance penalty
is expected to be much less than a factor of k. One
reason is that the processors relaying messages make
no routing decisions. A processing node takes away a
message that is addressed to it and simply forwards all
other messages. Pipelined routing through processors
leads to very high performance. A second mitigating
factor is that the network's aggregate bandwidth grows
with an increase in k.

3. Static attributes of dilated networks

As already stated, node degrees do not change with the
dilation parameter k. Switch nodes remain of degree
d and processor nodes of degree 2, regardless of the
network size or total number k(d=2)n of processors.
A trivial upper bound on the network diameter is
(k + 1)(Ds + 1), where Ds is the switch network
diameter. This is because the length of each of the
Ds hops between switch nodes is multiplied by k + 1
and the initial distance to the �rst switch node plus
distance from the �nal switch node to the destination
processor is no more than k+1. We will prove a tighter
upper bound shortly. Similarly, (k + 1)(�s + 1=2)
is a trivial upper bound on the average internode
distance, where �s is the average distance of the switch
network.

Theorem 1. The diameter of a k-dilated network
based on a diameter-Ds switch network is bounded as
(k+ 1)Ds � D � (k+ 1)Ds + k: Both bounds are tight
in the sense of equality being possible on both sides for
suitably chosen networks.

Proof. Referring to Figure 5, a shortest path from
source/beginning node B �rst goes to one of the two
switch nodes UB or VB ; then, it follows a dilated path
along the shortest path of the switch network to UE
or VE on the two ends of the edge containing the
destination/end node E, and from there to E. We
�rst note that, in the worst case, all four UB ! UE ,
UB ! VE , VB ! UE , and VB ! VE paths are
diametral in the switch network. This is seen in the
example of Figure 1(b), where each of the two nodes
on the upper left is 3 hops away from each of the two
nodes on the lower right. In this case, the shortest
path from B to E goes through the closer of UB and
VB to B and the closer of UE and VE to E. For k
even, the total distance then becomes (k + 1)DS + k
and for k odd, it becomes (k + 1)DS + k � 1. In the
general case, when UB ! UE , say, is diametral but the
other three paths (UB ! VE , VB ! UE , VB ! VE),
may or may not be diametral, we note that UB ! VE
and VB ! UE will be no more than 1 hop shorter and
VB ! VE is no more than 2 hops shorter. In fact, the
hypercube example of Figure 1(a) demonstrates that
the VB ! VE path may also be diametral, even when
UB ! VE and VB ! UE are not. When the latter two
paths are one hop shorter, the shortest distance from
B to E corresponds to one of the following 4 paths:

P1 : jB ! UB ! UE ! Ej = jB ! UB j+ (k + 1)Ds

+ jUE ! Ej = x+ (k + 1)Ds + y;

P2 : jB ! UB ! VE ! Ej = jB ! UB j+ (k + 1)

(Ds � 1) + jVE ! Ej = x+ (k + 1)Ds � y;

Figure 5. Establishing bounds on the diameter of a
dilated network.
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P3 : jB ! VB ! UE ! Ej = jB ! VB j+ (k + 1)

(Ds � 1) + jUE ! Ej = �x+ (k + 1)Ds + y;

P4 : jB ! VB ! VE ! Ej = jB ! VB j+ (k + 1)Ds

+jVE ! Ej = �x+ (k + 1)Ds + 2(k + 1)� y:
Clearly, P2 is always shorter than P1 and P3 is always
shorter than P4. Thus, we need only to consider P2
and P3 in determining the shortest path. P2 is shorter
than P3 when x < y and P3 is shorter than P2 when
x > y. Each of the two paths has its worst-case length
of (k + 1)Ds for x = y. Thus, a lower bound on
network diameter is (k + 1)Ds. The upper bound is
achieved for networks, such as Figure 1(b), where all
4 paths considered above are diametral in the switch
network and k is even. The lower bound is achieved for
all values of k in cases where a diametral path in the
switch network becomes non-diametral upon changing
the source node to a neighboring node of the original
source or the destination node to a neighboring node
of the original destination.�

We next focus on the average internode dis-
tance. Let the average internode distance of the
switch network be �s. The average internode distance
of the corresponding k-dilated network will be more
than (k + 1)�s by an amount that represents the
average length of the initial path from the beginning
node B to a switch node, plus the average of the
path length from the �nal switch node to the ending
node E.

Theorem 2. The average internode distance of a k-
dilated network based on a switch network with average
internode hop distance �s is � = (k + 1)�s + k=2 +
1 + (kmod2)=(2k).

Proof. Depending on the evenness or oddness of k, the
average lengths of the initial and �nal path segments
will be:

[1 + 2 + :::+ k=2 + k=2 + :::+ 2 + 1]=k

= (k + 2)=4; k even

[1 + 2 + 3 + :::+ (k � 1)=2 + (k + 1)=2 + (k � 1)=2

+:::+ 3 + 2 + 1]=k = (k + 2)=4 + 1=(4k); k odd

Doubling each sum to account for both ends of the
path, we get � = (k + 1)�s + k=2 + 1 for even k and
� = (k + 1)�s + k=2 + 1 + 1=(2k) for odd k.�

Theorem 3. The bisection (band)width B of a dilated
network remains the same as the bisection Bs of the
switch network.

Proof. When k is even, any bisection of the switch
network leads to a bisection of the dilated network by
placing the original edge cut between the two middle
processors on each edge. When k is odd, we place the
cut alternately on one side or the other side of the
center processor on each edge. This leads to perfect
halving when the number e = nd=2 of edges in the
switch network is even. Note that both n and d cannot
be odd in a regular network, so nd=2 is always an
integer. If both k and e are odd, the total number ke
of processors is also odd and perfect halving becomes
impossible. By alternating the cuts for e � 1 of the
edges as before and cutting the last edge on either side
of the center node, we get a partition into (ek � 1)=2
and (ek+1)=2 nodes, forming a bisection (by de�nition
in the case of an odd number of nodes).�

4. Dynamic attributes of dilated networks

The bisection-width equality B = Bs can limit scal-
ability, as random communication patterns grow in
their required bandwidth with an increase in k, often
superlinearly. However, in application domains where
communication tends to be mostly local, it is the
average aggregate bandwidth and not the bisection
(band)width that is important.

Assuming that the bandwidth of each port is b,
regardless of whether the port belongs to a switch or
a processing node, the network's aggregate bandwidth
(the maximum data volume that can be in transit
at any given time) is (k + 1)ndb, if the parameter b
denotes bandwidth in each direction of a full-duplex
link. With half-duplex links, the aggregate bandwidth
is (k + 1)ndb=2. This bandwidth is more scalable
than B, as it grows linearly with the number knd=2
of nodes. The required aggregate bandwidth is often
a superlinear function of the number of nodes, but
in many practical interconnection networks, such as
mesh, torus, and any other �xed-degree network, the
linear aggregate bandwidth growth is something we
accept and deal with. Any network tra�c through
the processors of a dilated network can be e�ciently
pipelined, as messages or its follow one another in an
orderly fashion, with no conicts ever arising between
switch nodes.

Fair comparison of aggregate bandwidth between
di�erent networks dictates that we divide the �gure
derived above by the average internode distance. This
is because each message will use up more of the band-
width when the routing distance is greater. Approxi-
mating the average internode distance of Theorem 2 for
our dilated network by (k+1)�s, we get the bandwidth
scalability ratio of about ndb=�s. If the same number
knd=2 of nodes are interconnected as a square 2D torus
of side length (knd=2)1=2, the pertinent bandwidth
scalability ratio will be 4(knd=2)b=[(knd=2)1=2=2] =
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8(knd=2)1=2b, where the square-bracketed term in the
denominator is the average internode distance for a
square 2D torus and the initial constant 4 is the
node degree of a 2D torus. A hypercube with the
same number knd=2 of nodes will have a bandwidth
scalability ratio of kndb=2, when the logarithmic node
degree and average internode distance are factored in.
Therefore, with appropriate choice of a switch network
having an associated �s parameter, a dilated network
can perform better than a torus, but likely worse than
a hypercube, which has a signi�cantly greater cost and
much lower physical scalability. Even a torus, with its
degree-4 nodes is likely more expensive than a dilated
network of the same size.

The conclusions above must be con�rmed with
simulation studies on reasonably chosen con�gura-
tions of dilated and ordinary networks, which we
have not yet performed. We have reasons to believe,
however, that dilated networks will inherit many de-
sirable performance attributes from their underlying
switch networks. For example, the dilation process
preserves network edge-Hamiltonicity. Therefore, for
adaptive routing algorithms that rely on a vertex-
Hamiltonian or edge-Hamiltonian path for deadlock
avoidance or recovery, no additional e�ort will be
needed when the chosen switch network is vertex- or
edge-Hamiltonian. We are in the process of proving
that the switch network being a Cayley graph leads
to the dilated network also being a Cayley graph.
Cayley graphs possess many desirable symmetry and
robustness attributes, and are believed to be Hamil-
tonian in all cases, so proving this property would
be quite helpful in ensuring good performance and
reliability.

Issues such as deadlock, adaptive routing (to
avoid congested routes or for fault tolerance), and
the like are also readily addressed as in the original
routing algorithm, with no modi�cation. This ability
to use a single routing scheme for a family of networks
of various sizes is an important advantage of our
dilated networks. Despite the observation by Duato [8]
that many commercial parallel computers forego the
use of adaptive routing algorithms due to their com-
plexities and subtle implementation challenges, it is
important that support mechanisms be made available
in the architecture to allow adaptive routing when
needed.

With processing nodes of degree 2, the maximum
connectivity that we can hope for is 2. This maximum
connectivity can be achieved with nearly any switching
network. All that is needed is for the two of the
four paths depicted in Figure 5 that have di�erent end
points to be node-disjoint. This property is o�ered by
many di�erent networks.

A key advantage of dilated networks is the direct
transfer of a routing algorithm for the switch network

to the overall network, with di�erent values of the
dilation parameter k. If the algorithm used is opti-
mal (shortest-path) in the switch network, then the
resulting algorithm for the dilated network will also
be optimal. The only addition to the switch-network
routing algorithm is a decision process to choose in
which direction to leave B on the dilated path to get
to a switch node (UB or VB in Figure 5) and which
of the two switch nodes UE and VE of Figure 5 to
use before arriving at E via the associated dilated
path.

A simple decision process to always target the
nearest switch node works �ne, but is slightly subop-
timal in some cases. Because a shorter path within
the switch network is always advantageous, regard-
less of the distance from the potential intermediate
destinations UE and VE to E, as evident from the
paths considered in the proof of Theorem 1, we only
need to keep a bit vector at every source processor
that indicates the direction to take for each possible
destination. Such a table is easily compiled and takes
a nominal amount of space. Once at a switch node,
the message will be sent on the outgoing link dictated
by the routing algorithm of the switch network, and
the route from UE or VE to E is forced (requires no
decision).

5. Variations and extensions

Our work can be extended and generalized in many
di�erent directions. For example, one can use half
of the switch ports to make a switch network and
the other half for connecting switches to strings of
processors (Figure 6). Switch node degree doubles as a
result, if we want to accommodate the same number of
nodes with the same dilation factor, but the network
diameter becomes O(k +D), instead of O(kD), which
represents a big improvement.

Of course, one should pay close attention to the
trade-o� between cost and performance as well as cost-
e�ectiveness. For example, when we use only half of

Figure 6. Networks obtained by superimposing a direct
network and its dilated version: (a) Eight-node hypercube
or 3-cube; and (b) twelve-node K4-connected-cycles.
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the links for placing the processors, we need to place
twice as many processors there to end up with the same
total network size. The switch network diameter also
changes to D0 > D when we have half as many links for
linking switches together. Therefore, the fair diameter
comparison is between 2k + D0 versus k + D. And
this is not all! The aggregate network bandwidth and
bandwidth scalability factor, and thus expected routing
conicts and delays, will also be di�erent. These
are challenging problems to be addressed by future
research.

Further extending from our basic con�guration
discussed here, we can view our network family as
comprised of n switch nodes with a total of dn ports,
plus various con�gurations of processor nodes that con-
nect to (a subset of) these ports. In our basic dilated
arrangement, switches are not connected to each other,
except via strings of processors. In the superimposed
architecture of Figure 6, half of the switch ports are
connected to each other directly and the other half
are linked via strings of processors. Continuing the
trend of Figure 6, we can go to the near extreme case
where each switch node has only one port available for
connection to processing nodes. However, instead of
connecting that one port to a single processor, as in the
conventional arrangement of Figure 2, we can pool the
n free ports together and connect them, for example,
to the n free ports of an n2-node swapped/OTIS [9,10]
network. In this way, we have two separate networks
linked to each other: a direct processor network and
a switch network. Finding the best cross-connection
architecture, static parameters, and e�cient routing
algorithms for such composite networks appears to be
a challenging problem.

Still another variation is when exactly two ports
of each switch are connected to processing nodes in a
dilated con�guration. These two ports can be chosen to
belong to a Hamiltonian path in the switch network, as
depicted in Figure 7. In fact, this particular variation
has already been tried by Xiao et al [11] and has been
shown to lead to excellent results. These networks
are coset graphs and can often be made into Cayley
graphs[12], with their desirable properties.

Figure 7. Partially dilated de Bruijn network along one
of its Hamiltonian paths [11].

6. Conclusion

The design of interconnection networks for parallel
processing has a rich history and many basic choices
and attendant variations have emerged over time, as
noted by Haddadi et al. [2] and Liszka et al. [5].
In recent years, proposals for data-center networks
have emerged, which, while sharing some of the same
attributes and performance parameters as interconnec-
tion networks for parallel processing, lead to di�erent
optimal designs due to the speci�c communication
tra�c that they face. In particular, energy e�ciency
is a major criterion in data centers due to their
scale [13,14].

We believe that the criteria for choosing good
switch networks that would allow e�cient use of the
dilation method in building families of parallel com-
puters may turn out to be di�erent from the criteria
used for existing direct and indirect parallel-processing
networks as well as from data-center networks. Future
work must be directed toward identifying network
features that bear greater relevance to the overall
network e�ciency, performance, and robustness, when
used with dilation.

We have already discussed some possible direc-
tions for further research in Section 4. Designing
dilated networks is comprised of the two tasks of
choosing a switch network and an associated range
[kmin; kmax] of the dilation parameter k. The same
overall system sizes can be achieved by a small, dense
switch network with large dilations, or by a large,
sparse switch network with smaller dilation values. A
clear trade-o� exists here that must be studied.

As for any other family of designs, the �xed
features of the system that are at the heart of the
family's compatibility and common capabilities will
be optimized for neither the low end nor the high
end of the system size. Any reasonable compromise
choice will represent an overkill for smaller system
sizes and potentially bottleneck-inducing at the higher
end. Thus, detailed studies are needed for choosing
the architecture and its associated parameters, given a
desired system size range [Nmin; Nmax].

References

1. Duato, J., Yalamanchili, S. and Ni, L., Interconnection
Networks: An Engineering Approach, Morgan Kauf-
mann (2002).

2. Haddadi, H., Rio, M., Iannaccone, G., Moore, A. and
Mortier, R. \Network topology: Inference,modeling,
and generation", IEEE Communications Surveys &
Tutorials, 10(2), pp. 48-69 (2008).

3. Parhami, B., Introduction to Parallel Processing: Al-
gorithms and Architectures, Plenum (1999).

4. Xu, J., Topological Structure and Analysis of Intercon-
nection Networks, Kluwer (2001).



B. Parhami/Scientia Iranica, Transactions D: Computer Science & ... 23 (2016) 2891{2897 2897

5. Liszka, K.J., Antonio, J.K. and Siegel, H.J. \Problems
with comparing interconnection networks: Is an alli-
gator better than an armadillo?", IEEE Concurrency,
5(4), pp. 18-28 ( 1997).

6. Hayes, J.P. and Mudge, T. \Hypercube supercomput-
ers", Proc. IEEE, 77(12), pp. 1829-1841 (1989).

7. Preparata, F.P. and Vuillemin, J. \The cube-connected
cycles: A versatile network for parallel computation",
Commun. ACM, 24(5), pp. 300-309 (1981).

8. Duato, J. \Why commercial multicomputers do not
use adaptive routing", IEEE Computer Architecture
Technical Committee Newsletter, pp. 20-22 (1994).

9. Zane, F., Marchand, P., Paturi, R. and Esener,
S. \Scalable network architectures using the optical
transpose interconnection system (OTIS)", J. Parallel
Distrib. Comput., 60(5), pp. 521-538 (2000).

10. Parhami, B. \Swapped interconnection networks:
Topological, performance, and robustness attributes",
J. Parallel Distrib. Comput., 65(11), pp. 1443-1452
(2005).

11. Xiao, W., Liang, H. and Parhami, B. \A class of data-
center network models o�ering symmetry, scalability,
and reliability", Parallel Proc. Lett., 22(4), Article
1250013 (2012).

12. Biggs, N., Algebraic Graph Theory, Cambridge Univer-
sity Press, 2nd Ed. (1994).

13. Hamadi, A. and Mhamdi, L. \A survey on architec-
tures and energy e�ciency in data center networks",
Computer Commun., 40(1), pp. 1-21 (2014).

14. Bilal, K., Malik, S.U.R., Khalid, O., et al. \A taxon-
omy and survey on green data center networks", Future
Gen. Computer Syst., 36, pp. 189-208 (2014).

Biography

Behrooz Parhami (PhD in Computer Science from
University of California, Los Angeles, 1973) is Professor

of Electrical and Computer Engineering, and former
Associate Dean for Academic Personnel, College of
Engineering, at University of California, Santa Bar-
bara. He has research interests in computer arithmetic,
parallel processing, and dependable computing. In
his previous position with Sharif (formerly Arya-Mehr)
University of Technology in Tehran, Iran (1974-88), he
was also involved in educational planning, curriculum
development, standardization e�orts, technology trans-
fer, and various editorial responsibilities, including
a �ve-year term as Editor of Computer Report, a
Persian-language computing periodical. His technical
publications include over 280 papers in peer-reviewed
journals and international conferences, a Persian-
language textbook, and an English/Persian glossary
of computing terms. Among his publications are
three textbooks on parallel processing (Plenum, 1999),
computer arithmetic (Oxford, 2000; 2nd ed. 2010),
and computer architecture (Oxford, 2005). Professor
Parhami is a Life Fellow of IEEE, a Fellow of IET, a
Chartered Fellow of the British Computer Society, a
member of the Association for Computing Machinery
and American Society for Engineering Education, and
a Distinguished Member of the Informatics Society
of Iran for which he served as a founding member
and President during 1979-84. Professor Parhami
has served on the editorial boards of IEEE Trans.
Sustainable Computing (since 2016), IEEE Trans.
Computers (2009-14 and 2017), IEEE Trans. Parallel
and Distributed Systems (2006-10), and International
J. Parallel, Emergent and Distributed Systems (2006-
12). He also chaired IEEE's Iran Section (1977-86),
received the IEEE Centennial Medal in 1984, and
was honored with a most-cited paper award from J.
Parallel & Distributed Computing in 2010. His con-
sulting activities cover the design of high-performance
digital systems and associated intellectual property
issues.




