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Abstract. In J.D. Jackson's Classical Electrodynamics textbook, the analysis of Dirac's
charge quantization condition in the presence of a magnetic monopole has a mathematical
omission and an all-too-brief physical argument that might mislead some students. This
paper presents a detailed derivation of Jackson's main result, explains the signi�cance of the
missing term, and highlights the close connection between Jackson's �ndings and Dirac's
original argument.
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1. Introduction

In a 1931 paper [1], Dirac showed that the existence of
a single magnetic monopole in the universe su�ces to
explain the observed discreteness of electrical charge.
Dirac postulated a magnetic monopole residing at
the terminus of a semi-in�nite, uniformly magnetized
string, as shown in Figure 1. He thus ensured the
satisfaction of Maxwell's equation r.B = 0, which is a
prerequisite for de�ning the vector potential A via the
identity r�A = B.

Dirac's subtle argument relies on the strong vor-
ticity of the vector potential surrounding the string,
which prevents the quantum-mechanical wave-function
of an electrically charged particle (e.g., an electron)
from penetrating the string; the string thus remains
invisible to the electrically charged particle. However,
for the phase of the wave-function in the vicinity of
the string to be single-valued, Dirac argued that the
product of the particle's electric charge q and the
monopole's magnetic charge m0 must be an integer-
multiple of Planck's constant h. (Note: Dirac's quan-
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tization condition is qm0 = nh in the SI system of
units, and 4�qm0 = nhc in the Gaussian system; here,
h is Planck's constant, c is the speed of light in vacuum,
and n is an arbitrary nonzero integer.)

The presentation of Dirac's argument in J.D.
Jackson's Classical Electrodynamics textbook [2] devi-
ates somewhat from Dirac's original line of reasoning.
Jackson arrives at the correct charge quantization
condition despite a mathematical omission and a rather
hasty physical argument. There is much to recommend
Jackson's analysis of Dirac's quantization condition,
and it would be a pity if a minor omission and a hasty
shortcut distracted the reader from fully appreciating
the signi�cance of this analysis. The present paper
aims to expand upon and clarify Jackson's discussion of
charge quantization in the presence of a Dirac magnetic
monopole.

Following the publication of Dirac's famous 1931
paper, there have appeared many books and papers
that elaborate and expand upon Dirac's ideas. There
have also been several attempts at capturing and
detecting magnetic monopoles. The short list of cited
references here [3-7] is by no means intended to provide
a comprehensive guide to the vast literature of the sub-
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ject. We do hope, however, that, upon consulting these
references, the interested reader will catch a glimpse of
where the studies of magnetic monopoles stand today.

2. String's vector potential

With reference to Figure 1, a semi-in�nite magnetized
string (or solenoid) may be modelled as follows:

M(r) = m(z)� [x� xs(z)] � [y � ys(z)] : (1)

Here, m(z) is the magnetic dipole moment per unit
length of the string at [xs(z); ys(z); z] and M(r) is
the magnetization density at r = (x; y; z). There
are no magnetic charges anywhere along the length
of the string except at its extremities. As shown
in Appendix A, the z-component of m(z) must be
a constant, that is, mz(z) = m0, where m0 is the
charge of the magnetic monopole at the terminal point
[xs(z0); ys(z0); z0] of the string (here, the magnetic in-
duction B, the magnetic �eld H, and the magnetization
M are related via B = �0H + M; where �0 is the
permeability of free space. Both B and M thus have
units of weber/m2, resulting in m0 being in webers).

To con�rm that arbitrary bends and twists of a
tightly wound solenoidal string do not leak its inter-
nal magnetic ux to the outside world, a systematic
calculation of the string's vector potential is presented
in Appendix A. In the end, our derivation yields the
same simple formula for the string's vector potential as
that used by Jackson [2], namely, a direct integral over
in�nitesimal vector potentials at the observation point

r contributed by small lengths d` of the string located
at rs, as follows:

As(r) =
m0

4�

Z z0

1
�rrjr� rsj�1�� d`: (2)

As a simple example (and one that was analyzed
in detail by Dirac), we calculate AS1 for a monopole
at the end of a string S1 aligned with the negative z-
axis. The monopole m0 is thus located at the origin of
coordinates, and the observation point r = xx̂+yŷ+zẑ
has spherical coordinates (r; �; �). A straightforward
evaluation of Eq. (2) yields:

AS1(r)=
m0

4�

Z 0

�1

�
rr
�
x2+y2+(z � ~z)2��1=2

�
�ẑd~z

=�m0

4�

Z 0

�1
[xx̂+yŷ+(z�~z)ẑ]�ẑ
[x2 + y2+(z�~z)2]3=2

d~z

=
m0(xŷ � yx̂)
4�(x2 + y2)

Z 1
cot �

d�
(1 + �2)3=2

=
m0�̂

4�
p
x2 + y2

� �p
1 + �2

����1
cot �

=
m0�̂

4�r sin �

�
1� cot �p

1 + cot2 �

�
=
m0(1� cos �)�̂

4�r sin �
: (3)

Figure 1. Semi-in�nite magnetized string ending at a magnetic monopole at z = z0. The coordinates of the string at
elevation z are given by the functions xs(z) and ys(z). The magnetic dipole moment per unit length of the string at
[xs(z); ys(z); z] is given by m(z), which is aligned with the local orientation of the string and vanishes above z = z0. The
polar coordinates �(z) and �(z) of the string are related to its Cartesian coordinates via the identities x0s(z) = tan � cos�
and y0s(z) = tan � sin�. The alignment of m(z) with the local orientation of the string thus implies that
mx(z)=mz(z) = x0s(z) and my(z)=mz(z) = y0s(z). The model used for the string in Eq. (1) gives the string a constant
cross-section in the xy-plane. To ensure that magnetic charge does not appear anywhere along the string (except at
z = z0), the z-component of m(z) must be a constant, that is, mz(z) = m0. The magnetic charge of the monopole at
[xs(z0); ys(z0); z0] is thus equal to m0, which, in the SI system, has units of weber.
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The term (1 � cos �)= sin � may be further simpli�ed
and written as tan( 1

2�). The vector potential of a semi-
in�nite string aligned with the negative z-axis is thus
seen to have a singularity at the location of the string,
i.e. at � = �. The vortex-like AS1 circling the negative
z-axis integrates to m0 over a tight circle surrounding
the string, in accordance with

H
AS1 :d` =

R
BS1 :d� =

m0. Now, Dirac's original argument in [1] appears to
have been that the integral of AS1 around a tight loop
circling the string, when multiplied by e=}, is a phase-
factor for the Schr�odinger wave-function  S1(r) of an
electron of charge e in the presence of the magnetic
monopole, which must be equal to an integer-multiple
of 2�. Dirac's quantization condition, em0=} = 2�n, is
an immediate consequence of this assumption. (Here,
as usual, } = h=2�.)

Suppose now that a string, S2, extends from z = 0
to +1 along the positive z-axis, with the magnetic
monopole m0 residing at its lower terminus. A similar
analysis as in Eq. (3) now yields:

AS2(r) =
m0(�1� cos �)�̂

4�r sin �
: (4)

This time, the vector potential has vortex-like behavior
around the positive z-axis, but, elsewhere in space, it
produces the same B-�eld as does AS1 . The di�erence
between the two vector potentials in Eqs. (3) and (4)
is readily seen to be:

AS1(r)�AS2(r) =
m0�̂

2�r sin �
=r(

m0

2�
�): (5)

The two vector potentials thus di�er by the gradi-
ent of a scalar function, which might indicate that they
are related via a gauge transformation. Note, however,
that along the entire z-axis, the scalar function m0�=2�
is ill-de�ned. Consequently, the z-axis is a singularity
of the gradient of the scalar function. The di�erence
between AS1 and AS2 is more than a simple gauge
transformation; the curl of AS1 � AS2 is the in�nite
magnetization inside a long, thin string extending all
the way from z = �1 to z = +1.

3. Change in vector potential in consequence
of a change of the string

In Jackson's treatment [3] of Dirac's magnetic
monopole, we are reminded that the speci�c shape
and/or location of the string is irrelevant and that,
therefore, the vector potentials AS1 and AS2 corre-
sponding to two strings S1 and S2, which terminate
on the same monopole, must di�er by a gauge trans-
formation; see Figure 2. This means that AS1(r) �
AS2(r) = r�(r), where �(r) is some well-de�ned
function of the spatial coordinates. Jackson proceeds to
determine �(r) along the following lines, but, toward

the end, he appears to have inadvertently omitted a
term containing a �-function. (Justi�cations for some
of the steps taken below are given in Appendix B.)

AS1(r)�AS2(r)=
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+m0
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s
�3(r� rs)d� (6i)
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m0

4�
rr

Z
s
d
(r; rs)

+m0

Z
s
�3(r� rs)d� (6j)

=
m0

4�
r
c(r) +m0�(r?)r̂?: (6k)

In the preceding equation, 
c(r) is the solid angle
subtended by the contour c when viewed from r, and
r? is the perpendicular distance from r to the surface
s. Since �(r?) is nonzero only when r is extremely
close to s, the unit-vector r̂? coincides with the local
surface normal, its orientation being determined by the
sense of travel around c. The sign of r? is positive or
negative, depending on which side of the surface s (as
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Figure 2. When two semi-in�nite strings S1 and S2 terminate on the same magnetic monopole, the di�erence AS1 �AS2

between their vector potentials is given by an integral over the closed loop c, which is the boundary of the shaded area s.
The loop in this �gure is traversed counterclockwise. The solid angle subtended by the closed loop c at the observation
point r is denoted by 
c(r). The points on the surface s (and its boundary c) are denoted by rs. An elemental surface area
of s is denoted by d�, whose direction, while perpendicular to the local surface, is also tied to the direction of travel
around c via the right-hand rule. The elemental solid angle subtended at the observation point r by the surface element d�
at rs is denoted by d
(r; rs).

indicated by the direction of r̂?) the observation point
r happens to fall.

In Jackson's analysis [2], the term m0�(r?)r̂?
on the right-hand-side of Eq. (6k) is missing. This
is the aforementioned mathematical omission, whose
e�ects are subsequently compounded by the brevity
of Jackson's physical argument. Jackson notes that,
when the observation point r crosses the surface s along
the surface-normal r̂?, the solid angle 
c(r) suddenly
drops from 2� to �2�. This discontinuity of 
c(r) at
the surface s gives rise to a �-function of magnitude
4� whenever r
c(r) is evaluated at a point r located
on the surface s. However, the resulting �-function
contained in (m0=4�)r
c(r) is readily cancelled out by
the term m0�(r?)r̂? appearing in Eq. (6k). This means
that AS1�AS2 is a well-de�ned, continuous function of
r everywhere except on the closed loop c (i.e., on the
boundary of s). It is worth emphasizing that, while

c(r) is inherently discontinuous at the surface s, the
vector-potentials AS1(r) and AS2(r) are expected to
be smooth and well-behaved functions of r everywhere
in space|except, of course, on their respective strings
S1 and S2. Consequently, the presence of m0�(r?)r̂?
in Eq. (6k) is absolutely essential if the �-function
contained in r
c(r) is to be neutralized.

At this point, one is not yet in a position to specify
a gauge, because 
c(r), a function that is well-de�ned
everywhere except on c, has a 4� discontinuity on s.
This discontinuity gives rise to a �-function in r
c;
which is removed only after an equal and opposite
�-function is added to r
c. One must somehow
eliminate, or render invisible, the discontinuity of 
c
at s, which is responsible for the undesirable �-function

appearing in Eq. (6k). Removal of this discontinuity
requires that 
c be incorporated into a phase-factor,
as explained in the next section.

4. Schr�odinger's equation for point-charge in
the presence of magnetic monopole

Suppose  s2(r; t) is a solution of Schr�odinger's equation
for a point-particle of charge q and mass m in the
presence of the string S2, whose vector potential is AS2 .
Let us multiply the wave-function  s2 by the spurious
phase-factor exp[iqm0
c(r)=(4�})]. This phase-factor
will be discontinuous at the surface s, where 
c has
a 4� jump, unless qm0=} happens to be an integer-
multiple of 2�. Therefore, imposing Dirac's quantiza-
tion condition qm0 = 2�n} = nh renders invisible the
discontinuity of 
c at s. Under such circumstances,
when evaluating the gradient of the phase-factor, one
is obligated to add the necessary �-function to r
c
in order to ensure that the resulting function is well-
behaved, that is:

�i}rexp
�

iqm0
c
4�}

�
=
qm0

4�
[r
c + 4��(r?)r̂?] exp

�
iqm0
c

4�}
�
:
(7)

Substitution from Eq. (6) into the above equation now
yields:

�i}rexp
�

iqm0
c
4�}

�
=q(AS1�AS2)exp

�
iqm0
c

4�}
�
:

(8)
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Note how the imposition of Dirac's quantization condi-
tion has \patched up" the discontinuity of the phase-
factor in such a way as to render 
c e�ectively
continuous at the surface s. Had the �-function
in Eq. (6k) been absent, there would have been no
need in Jackson's analysis [2] for Dirac's quantization
condition, because the function (m0=4�)
c(r); in spite
of its discontinuity at s, would have been an acceptable
gauge.

It is now easy to show, with the aid of Eq. (8),
that the product of  s2 and the spurious phase-factor
satis�es Schr�odinger's equation for the point-particle of
charge q and mass m in the presence of AS1 , the vector
potential of S1. (To simplify the notation, we pretend
in what follows that 
c is continuous at the surface s
and proceed to omit the �-function that, in accordance
with Eq. (7), must accompany r
c.) We write:

1
2m

(�i}r�qAS1) : (�i}r�qAS1)
�
exp
�

iqm0
c
4�}

�
 s2

�
=

1
2m

(�i}r� qAS1)

:
�
�i}r s2�q(AS1�m0

4�
r
c) s2

�
exp
�

iqm0
c
4�}

�
=

1
2m

(�i}r� qAS1)

:
�
(�i}r s2 � qAS2 s2)exp

�
iqm0
c

4�}
��

=
1

2m

��
�i}r� q(AS1 � m0

4�
r
c)

�
:(�i}r s2 � qAS2 s2)

�
exp

�
iqm0
c

4�}
�

=
1

2m

�
(�i}r� qAS2)

:(�i}r� qAS2) s2

�
exp

�
iqm0
c

4�}
�

= (i}@t s2)exp
�

iqm0
c
4�}

�
= i}@t

�
exp

�
iqm0
c

4�}
�
 s2

�
: (9)

Clearly, exp[iqm0
c=(4�})] s2 is a solution of Schr�o-
dinger's equation for the charge q in the presence of S1.
However, multiplication by a phase-factor is physically
meaningless, since it is equivalent to a change of
gauge. The fact that the phase-factor is ill-de�ned
over the contour c does not seem to have any physical

signi�cance either, as the wave-functions always vanish
on the corresponding strings. It should now be clear
that the vector potential associated with one string, say
S1, can produce, aside from a spurious phase-factor, the
solution to Schr�odinger's equation for any other string,
such as S2, as well.

In his original paper [1], Dirac gives an explicit
example in which the vector potential associated with
a string along the negative z-axis produces two eigen
solutions to Schr�odinger's equation, namely,  1a =
f(r) cos(�=2) and  1b = f(r) sin(�=2)exp(i�). The
�rst solution corresponds to the string whose presence
along the negative z-axis has been assumed, while the
second solution, aside from the spurious phase-factor
exp(i�), represents an eigen wave-function associated
with a string along the positive z-axis. Note that the
function exp(i�) is ill-de�ned along the entire z-axis,
which, in the present example, represents the contour
c. (Note: There is a minus sign missing in Dirac's
paper; the spurious phase-factor for  1b should in fact
be exp(�i�), as can be readily checked by substitution
into his equation (13).)
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Appendix A

We derive a formula for the vector potential As(r) of
the arbitrary string S depicted in Figure 1, whose mag-
netization M(r) is given by Eq. (1). It must be pointed
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out that, in our notation, B = �0H + M, and that,
therefore, magnetic induction B and magnetization M
have the same units (tesla or weber/m2). Here H is the
magnetic �eld (ampere/m) and �0 is the permeability
of free space (henry/m). The fundamental constraint
on M(r) is that its magnetic charge-density along the
length of S must vanish, that is:

r:M(r) = mx(z)�0 [x� xs(z)] �[y � ys(z)]
+my(z)�[x� xs(z)]�0[y � ys(z)]
+m0z(z)�[x� xs(z)]�[y � ys(z)]
�mz(z)x0s(z)�0[x� xs(z)]�[y � ys(z)]
�mz(z)y0s(z)�[x� xs(z)]�0[y � ys(z)]

= 0: (A.1)

Consequently, x0s(z) = mx(z)=mz(z), y0s(z) = my(z)=
mz(z), and m0z(z) = 0, which yields mz(z) = m0. Note
that the string's local magnetic moment m(z), which
may also be described in terms of the polar angles
[�(z); �(z)], is aligned with the string's local orientation
d` = (x0sx̂ + y0sŷ + ẑ)dz. At the terminus of the string,
where z = z0, there is a sudden change in mz(z),
from m0 to zero. At this terminal point, therefore,
m0z(z0) = �m0�(z � z0), yielding the magnetic charge-
density of the string as follows:

�m(r) = �r:M(r)

= m0�[x� xs(z0)]�[y � ys(z0)]�(z � z0): (A.2)

The strength of the magnetic monopole located at
[xs(z0); ys(z0); z0] is thus seen to be m0, which has
the dimensions of magnetic-dipole-moment-per-unit-
length. In the SI system of units, m0 is in webers.
Note that while m(z) must terminate at z = z0, the
functions xs(z) and ys(z) may continue inde�nitely
beyond the terminal point.

To �nd the vector potential of the semi-in�nite
string, we �rst calculate its bound current-density,
namely:

Jbound(r) =��1
0 r�M(r)

=��1
0
�
@y[mz�(x� xs)�(y � ys)]
� @z[my�(x� xs)�(y � ys)]	x̂

+ ��1
0
�
@z[mx�(x� xs)�(y � ys)]
� @x[mz�(x� xs)�(y � ys)]	ŷ

+ ��1
0
�
@x[my�(x� xs)�(y � ys)]
� @y[mx�(x� xs)�(y � ys)]	ẑ

=��1
0
�
mz�(x� xs)�0(y � ys)
� @z(my)�(x� xs)�(y � ys)
+myx0s�0(x� xs)�(y � ys)
+myy0s�(x� xs)�0(y � ys)�x̂

+ ��1
0
�
@z(mx)�(x� xs)�(y � ys)
�mxx0s�0(x� xs)�(y � ys)
�mxy0s�(x� xs)�0(y � ys)
�mz�0(x� xs)�(y � ys)�ŷ

+ ��1
0
�
my�0(x� xs)�(y � ys)
�mx�(x� xs)�0(y � ys)�ẑ: (A.3)

The vector potential at an arbitrary point r is obtained
by integrating over the volume of space (coordinates
denoted by ~r) which contains the bound current-
density given by Eq. (A.3). The distance between the
observation point r and an arbitrary source point ~r is
written:

jr� ~rj = p(x� ~x)2 + (y � ~y)2 + (z � ~z)2: (A.4)

In what follows, @~xjr�~rj�1 is replaced with�@xjr�~rj�1

and @~yjr � ~rj�1 with �@yjr � ~rj�1. When ~r happens
to reside on the string, its distance to the observation
point r will be:

jr� rsj = p[x� xs(~z)]2 + [y � ys(~z)]2 + (z � ~z)2:
(A.5)

In this case, we will have:

@~zjr� rsj�1 = ��x0s(~z)@x+ y0s(~z)@y + @z
�jr� rsj�1:

(A.6)

The standard sifting properties of the �-function,
namely,Z 1
�1

f(x)�(x� ~x)dx = f(~x);

and:Z 1
�1

f(x)�0(x� ~x)dx = �f 0(~x);
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will be used in the following derivations. The vector
potential of the semi-in�nite string may now be written
as follows:

AS(r) =
�0

4�

ZZZ
Jbound(~r)
jr� ~rj d~xd~yd~z

=
x̂
4�

Z �
mz@yjr� rsj�1 � @~z(my)

jr� rsj
+myx0s@xjr� rsj�1

+myy0s@yjr� rsj�1
�
d~z

+
ŷ
4�

Z �
@~z(mx)
jr� rsj �mxx0s@xjr� rsj�1

�mxy0s@yjr� rsj�1

�mz@xjr�rsj�1
�
d~z

+
ẑ

4�

Z
(my@x �mx@y)jr� rsj�1d~z: (A.7)

The integral
R
@~z(mx)jr � rsj�1d~z can be evaluated

using the method of integration by parts, namely:Z z+
0

1
@~z(mx)
jr� rsjd~z =

mx(~z)
jr� rsj

����z+
0

1
+
Z z+

0

1
mx(~z)(x0s@x

+ y0s@y + @z)jr� rsj�1d~z: (A.8)

Note that the �rst term on the right-hand-side of
Eq. (A.8) vanishes at both ends of the string. A similar
procedure can be applied to

R
@~z(my)jr � rsj�1d~z.

Substitution into Eq. (A.7) and using the fact that
mx = x0smz and my = y0smz now yields:

AS(r) =
x̂
4�

Z
mz(@y � y0s@z)jr� rsj�1d~z

+
ŷ
4�

Z
mz(x0s@z � @x)jr� rsj�1d~z

+
ẑ

4�

Z
mz(y0s@x � x0s@y)jr� rsj�1d~z:(A.9)

Finally, noting that mz = m0, and that an in�nitesimal
segment of the string may be described as d` = (x0sx̂ +
y0sŷ+ẑ)d~z, one may further simplify Eq. (A.9) to arrive
at:

AS(r) =
m0

4�

Z z0

1
(rrjr� rsj�1)� d`: (A.10)

The above expression of AS(r) has the expected form
of an integral over the vector potentials produced

by elemental dipoles whose continuous arrangement
constitutes the string. Jackson rightly uses Eq. (A.10)
as the starting point of his analysis in [2]. Our
lengthy derivation of Eq. (A.10) has not uncovered
any problems with this straightforward integration of
the contributions by in�nitesimal dipoles to the vector
potential at the observation point r. The exercise is
nevertheless worthwhile considering that it is not a
priori obvious that the arbitrary turns and twists of
a tightly wound solenoid will not cause a leakage of
its internal magnetic ux. Our rigorous treatment of
the long thin string thus con�rms that it is possible
to avoid producing magnetic charges along the string
without constraining its geometric con�guration.

Appendix B

Use r � ( A) = r � A +  r � A in going from
Eq. (6a) to Eq. (6b) and also from Eq. (6e) to Eq. (6f);
use

H
c  d` = � Rsr � d� in going from Eq. (6c)

to Eq. (6d); use r � (r � A) = r(r:A) � r2A
in going from Eq. (6f) to Eq. (6g); use r:( A) =
A:r + r:A in going from Eq. (6g) to Eq. (6h); use
r2jr�1j = �4��3(r) in going from Eq. (6h) to Eq. (6i).

In Eq. (6j), the solid angle subtended by the
surface element d� located at rs and viewed from r
is d
(r; rs).

When the observation point r resides outside the
surface s, the second integral in Eq. (6j) vanishes.

In Eq. (6k), r? is the perpendicular distance
from the observation point r to the surface s. As r
approaches s, the unit-vector r̂? coincides with the
local surface-normal.
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