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Abstract. The hybrid localization using Angle Of Arrival (AOA) and Di�erential
Received Strength Signal Indicator (DRSSI) of an RF source with unknown power and Non-
Line-Of-Sight (NLOS) condition has been proven to be advantageous compared to using
each method separately. In this paper, the initial hybrid method, which was implemented
using particle �lters due to the multi-modal/non-Gaussian nature of localization in NLOS
condition, has been replaced by a multi-step Gaussian �ltering approach which provides
similar accuracy with better performance. This has been done using DRSSI input in the �rst
step of the �ltering to determine the linearization point, and then using AOA and DRSSI
inputs together in the second step of the �ltering to improve the localization accuracy.
The proposed method has been implemented using Extended Kalman �lter and Unscented
Kalman �lter. The simulation results show that the accuracy of the multi-step Gaussian
�ltering is comparable to the particle �ltering approach with much lower computational
load that is important for online localization of several RF sources. Furthermore, the
e�ects of uncertainty on the propagation parameters have been studied to show that the
robustness of the multi-step Gaussian �ltering to the uncertainties is comparable to the
particle �lter approach.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Having Radio Frequency (RF) based communication
devices is not a luxury anymore, and the majority
of people carry a cell phone that uses RF signals for
communication. Consequently, such devices can be
used for localization of their owner/user, especially in
search and rescue tasks (Figure 1). For instance, the
signal from the cell phone of a person who is lost on
a terrain can be used to localize him/her, even when
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he or she is unaware. That is why the researchers and
governments have a tendency to use cell phones in the
search and rescue mission for localization [1,2].

It is important to mention that due to the charac-
teristics of the RF signals and the accuracy needed for
localization, di�erent approaches for using the RF sig-
nals for localization should be considered for di�erent
cases such as collapsed buildings, urban environment,
and wide open areas. Furthermore, it is important
to distinguish between direct visibility of the source
of signal, i.e. being Line-Of-Sight (LOS), and indirect
visibility of the source of signal, i.e. being Non-Line-
Of-Sight (NLOS). The existence of local scattering and
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Figure 1. A UAV hovers over a terrain searching for an
RF signal to localize the source (the cell phone is shown
on the left and there is no LOS path between UAV and
RF source).

shadowing/blockage in a NLOS situation makes it a
much harder problem than LOS.

In practical sense, a UAV is 
ying over an open
area such as a terrain (Figure 1) and tries to localize
an RF source, which may also be called the target
throughout the paper. In such a case, multipath
and shadowing phenomena in NLOS propagation have
di�erent e�ects on AOA and RSSI measurements which
can be used to reduce the localization error. Therefore,
the authors developed a hybrid solution based on the
RSSI and AOA approaches, named RSSI+AOA, to
deal with NLOS propagation [3]. It is shown that
when the transmitted power estimation is not required,
it is possible to use DRSSI, instead of RSSI, and
AOA together to provide desired accuracy with fewer
numbers of particles, which reduces the processing
time due to the reduction in the number of particles.
DRSSI refers to the approach in which the di�erence
between the received powers at two di�erent way points
is used to estimate the location of the RF source.
It is noteworthy that it can achieve better accuracy
than RSSI+AOA when they use the same number of
particles. Another advantage of DRSSI+AOA, over
RSSI+AOA, is that it can be used in cases in which
the power of the target is time-varying and the use of
multi-UAV for localization becomes important.

Due to the nonlinear nature of the pose estimation
in NLOS propagation, the existence of non-modeled
nonlinear dynamics in practical circumstances, and
the multimodal nature of the problem, particle �lter
seemed more suitable than other options such as least
square methods and Kalman �lters. In other words,
the e�ect of shadowing on the received signal has log-
normal distribution that increases the non-linearity of
the estimation. Furthermore, AOA propagation has a
non-Gaussian term due to blockage and the problem
is multimodal due to combined unknown transmitted
power and unknown position of RF sources. Finally,
particle �lter seemed more robust against the uncer-
tainties in the propagation parameters.

In this paper, the DRSSI+AOA approach is
extended using multi-step Gaussian �ltering to better
eliminate the e�ects of nonlinear nature of NLOS local-
ization. The proposed method has been implemented
using extended Kalman �lter and unscented Kalman
�lter and has been compared to the particle �ltering
based DRSSI+AOA. The results show that the per-
formance of the proposed multi-step hybrid Gaussian
�ltering is comparable to the particle �ltering based
DRSSI+AOA with lower computational complexity.
This has been done using DRSSI input in the �rst
step of the �ltering to determine the linearization point.
Then, AOA and DRSSI inputs are used together in the
second step of the �ltering. The e�ect of uncertainty
in propagation parameters using di�erent �lters is
addressed in this paper to show that the robustness
of multi-step Gaussian �ltering can be comparable
to particle �lter. In other words, in this paper, we
propose the multi-step Gaussian �ltering which has the
accuracy of particle �ltering with lower computational
complexity. It should be noted that this paper does
not address the path planning of the 
ying robot and
its way points are predetermined.

2. Related work

As mentioned in the introduction, researchers and
governments have realized the capability in using RF
signals for localization and started to investigate its
possibility. For instance, Wireless Infrastructure over
Satellite for Emergency Communications (WISECOM)
aims to restore GSM (Global System for Mobile Com-
munication) infrastructure over satellite and to use
the restored system for tracking rescue teams and
victims [1]. By this infrastructure, it is possible
to provide information like the number of victims
involved, their health condition, and how to reach them
for rescue workers. I-LOV project [2] is another large
scale project focused on setting up its own mobile
phone network to provide emergency communication
and localize the victims.

In the wide open areas, the use of UAVs to
localize RF sources requires solving various issues such
as cooperation [4], path planning [5-8], and optimal
localization point [9-11] that ignited many studies in
these �elds. Localization of RF sources has been
addressed using triangulation [12], least square meth-
ods [13], and Bayesian �lters [12,14-16]. Lee et al. [14]
used a dual-EKF algorithm to obtain the estimation
of state values and unknown parameters of dynamic
state model based on TDOA measured with two UAVs.
Okello et al. [15] compared three tracking algorithms
using a Gaussian Mixture Measurement Integrated
Track Splitting Filter (GMM-ITSF), a multiple model
�lter with Unscented Kalman Filters (UKFs), and a
multiple-model �lter with Extended Kalman Filters
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(EKFs) for recursive estimation of emitter location
using TDOA measurements formed by two UAVs.
Kwon and Pack [16] extented out-of-order sigma-point
Kalman �lter (O3SPKF) method to handle mobile tar-
gets. The modi�ed O3SPKF incorporates an adapted
Sensor Fusion Quality (SFQ) principle to handle both
static and mobile targets.

Localization of RF sources with unknown trans-
mitted strength of signal is mostly performed in sensor
networks, in which nodes are deployed densely and
close to each other. To estimate the transmitted power
in addition to the location of target, the maximum
likelihood estimator [17-18] and/or a family of least
square estimators [19] are used. In some cases, the
path loss exponent is also estimated [17,19]. Unfor-
tunately, the proposed approaches are limited to the
given application, i.e. sensor networks, in which there
are a large amount of measurements collected over
time or by numerous stationary and close to each
other sensors. On the other hand, the researchers
tried to convert nonlinear and non-convex optimization
problem of maximum likelihood estimator into a convex
problem that can be solved e�ciently [17]. There
are also works to obtain analytical expressions for
the Maximum Likelihood (ML) estimator [18] and
achieve its global minimum [19]. Unfortunately, these
approaches have high computational cost and heavy
communication overhead that are not suitable for real-
time localization. Furthermore, there is a limitation
on uniquely estimating the unknown transmit power
and location of a node [18]. In sensor networks, there
are other protocol based power adaptive localization
algorithms [20] which cannot be used in our desired
application.

AOA-based localization is studied in many re-
searches [21-23]. It has also been used in combination
with Time of Arrival (TOA) or Time Di�erence of
Arrival (TDOA) [24-25]. But, the di�erential RSSI
(DRSSI) or RSSI ratio has rarely been used in sensor
networks [26-28] or GSM-based localization [29]. To
the best of our knowledge, DRSSI and its combination
with AOA have not been used in aerial localization
before.

Incorporating DRSSI observations with a low
resolution AOA sensor resolves the sign ambiguity
problem and decreases the dependency of DRSSI-based
approach to its waypoints pairing rule [30]. Also, the
fusion of these di�erent sensors has been proposed to
bene�t from both DRSSI and AOA methods using their
complementary performance in di�erent propagation
conditions. To bene�t from the fusion of DRSSI and
AOA, particle �lter is the �rst choice due to the
non-linearity of the estimation, non-Gaussian term in
AOA propagation, non-modeled nonlinear dynamics in
practical circumstances, and more robustness against
the uncertainties in the propagation parameters [3].

However, particle �ltering su�ers from high compu-
tational complexity which linearly corresponds to the
number of particles used. Consequently, in online lo-
calization of several RF-sources such as the mentioned
application, decreasing the computational complexity
becomes much important. That is why the multi-
step Gaussian �ltering has been proposed to reduce
the computational cost of localization by incorporating
Kalman �ltering in the process. It should be mentioned
that in the proposed multi-step �ltering, the non-
Gaussian component of AOA propagation is handled
by estimating the location of the target using DRSSI,
which has a Gaussian distribution. In the next step,
the estimated location is used to limit the non-Gaussian
term of AOA which allows the use of Kalman �ltering.

3. NLOS propagation

Non-Line-Of-Sight (NLOS) is a term often used in
radio communication to describe a radio channel or
a link where there is no direct visual line between
the transmitting and the receiving antennas. In this
section, the basic concept of RF signal propagation in
NLOS condition is explained. Propagation in NLOS
condition is done by penetration, di�raction, re
ection,
and scattering mechanisms which are the causes for
multipath and shadowing phenomena. Therefore, to
simulate AOA and RSSI correctly in NLOS condition,
it is important to use appropriate models for multipath
and shadowing modeling.

The General path loss model [31], which is the
most commonly used model for pass loss propagation in
NLOS condition, is used in this study. Then, the e�ect
of multipath and shadowing are added to model RSSI.
In Figure 2, the e�ects of multipath and shadowing
on the path loss are shown. Multipath is referred
to receiving the re
ection of transmitted signal from

Figure 2. Signal attenuation due to multipath and
shadowing (graph has been extracted from [31]).
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Figure 3. AOA propagation: (a) The local scatterers
(dashed lines) while LOS condition holds; and (b) the
strong scatterers when LOS blockage exists.

di�erent directions and at di�erent times that actually
come from di�erent paths. The e�ects of multipath on
localization can be neglected assuming the possibility
of averaging on the consecutive samples [29].

Signal attenuation due to shadowing has a log-
normal distribution, which is equivalent to a normal
distribution when it is expressed by dB (Figure 2). The
Standard Deviation (SD) of shadowing e�ect (�Sh) is
considered between 4.2 dB to 7.7 dB for suburb and
2.2 dB to 8.3 dB for urban [29].

To model AOA, the simplest and most appropri-
ate model is presented in [32]. The basic components of
this model are local scattering, probability of blockage,
and a method for merging these (Figure 3). In other
words, the e�ects of multipath and shadowing on the
AOA measurements are modeled by these components.

In this model, spatial spreading and scattering in
the vicinity of the source in LOS propagation scenarios
is characterized by zero-mean Gaussian noise (Eq. (1)).
Consequently, SD of local scattering (�LS) is modeled,
such that both spatial spreading and scattering are
included.

PLS(b�jXRF) =

8><>:1
n

1p
2��LS

e
� (̂���(XRF))2

2�2
LS : b�2 [��2;�2]

0 : else (1)

where XRF is the location of the RF source, �(XRF) is
its computed AOA, and �̂ is the observed AOA. AOAs
are de�ned in the local coordinate of the AOA sensor
mounted on the UAV in which x axis is along the left
wing of UAV and y is along the longitudinal axis toward
the nose of the UAV. n is a normalization constant
which is used to guarantee that the probability of the
observation in the given limited range, i.e. PLS (�jXRF)
in ��2 and �

2 is one. It is computed once and used
in all experiments. It should be mentioned that it is
assumed that the AOA sensor only detects the signals
in the ��2 and �

2 region of its coordinate system, and
any re
ection from out of this range is ignored.

In NLOS propagation scenario, LOS blockage
happens and AOA measurements are a�ected by strong
scatterers, such as large far building or mountains, and

are fairly uncorrelated. Consequently, AOA observa-
tions can be modeled using uniform distribution:

PBl(�̂jXRF) =

8<: 1
� : �̂ 2 [��2 ; �2 ]

0 : else
(2)

If the transmitter is narrowband and the receiver has
small number of antennas, then the receiver can spa-
tially resolve the AOA of the strongest arriving path.
In this situation, AOA measurements are modeled
based on a linear combination of Gaussian and blocked
models (Eqs. (1) and (2)) using the probability of
blockage, i.e. �Bl:

PNarrow(�̂jXRF) = �BlPBl(�̂jXRF) + (1� �Bl)
PLS(�̂jXRF): (3)

It should be mentioned that more complicated models
are available which use the concept of scattering region
as the locus of local scatterers [33]. However, the
above model supports the main components of these
complicated models and is su�cient in this study [32].

Finally, it is assumed that the RSSI and AOA
noises are independent and their variances are time
invariant. Furthermore, it is assumed that the RF
source is stationary and does not move.

4. Particle �lter

Due to the use of DRSSI+AOA approach, i.e. there is
no need to estimate the power of the transmitter, the
particles only represent the location of the RF source.
On the other hand, due to the assumption that the
navigation of the UAV is accurate considering its access
to a precise integrated GPS/INS/Altimeter system and
the relative accuracy needed for this problem, it can
be assumed that the UAV is 
ying at a known altitude
relative to the ground RF source. Consequently, the
altitude of the RF source would not be needed to be
estimated. Obviously, the approach can be extended
considering the uncertainty in the UAV's pose. In
other words, the state of each particle i at time t
is the location of the source which is represented by
X [i]

RF(t). The detailed description of the steps of this
�lter was presented in [3]. In the following, only the
PDF for updating particles' weights is presented for
easier discussion. The new weights would be calculated
by Eq. (4):

w[i](t) =p
�
�̂(t)jX [i]

RF(t)
� � p�< PRx(t� 1)

� PRx(t) > jX [i]
RF(t)

�
; (4)

in which p(�̂(t)jX [i]
RF(t)) is computed using Eq. (5):
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p
�
�̂(t)jX [i]

RF(t)
�

=
�Bl
�

+ (1� �Bl)

� 1
�LS
p

2�
e
�(�̂(t)��[i](t))2

2�2
LS ; (5)

and p(< PRx(t � 1) � PRx(t) > jX [i]
RF(t)) is computed

using Eq. (6) [3]:

p
�

DPLpwr(t)jDPL[i]
dist(t)

�
=

1
2
p
��sh

e
�(DPLpwr(t)�DPL[i]

dist(t))2

4�sh2 : (6)

In these equations, PRx(t) is the received power at time
t, DPLpwr(t) is the di�erential path loss according to
the received power at time t and t � 1, DPL[i]

dist(t)
is the di�erential path loss according to the distance
of particle i from the robot's pose at time t and its
distance at time t � 1, �̂(t) represents the measured
angle of the target by the UAV at time t, and �[i](t)
represents the computed angle of particle i with respect
to the UAV location.

5. Kalman �lter design

As mentioned before, shadowing and local scatter-
ing have Gaussian distribution which makes Gaussian
�ltering a suitable approach to handle their e�ects
on localization. However, blockage has non-Gaussian
characteristics and cannot be handled directly using
Gaussian �ltering. In other words, the localization
accuracy of the Kalman �lter which is a�ected by the
blockage in AOA observations is strongly in
uenced by
the probability of signal blockage.

5.1. The system equation
The location of the UAV (XUAV = [xu yu]T ) is known
and the location of the RF source (XRF = [x y]T ) is
unknown and should be estimated. The di�erential
RSSI is independent of the transmitted power, so state
vector s(t) only includes the location of the RF source:

s(t) =
�
x(t)
y(t)

�
: (7)

5.2. The motion model
The location of the RF source is �xed on the ground,
so the motion model of the UAV is used to predict
the next state. Assuming the UAV's accurate motion,
the motion model will be shown as in Eq. (8). In the
equation, t represents the current time frame and t� 1
represents the previous time frame:

s(t) =
�
x(t)
y(t)

�
=
�
1 0
0 1

� �
x(t� 1)
y(t� 1)

�
: (8)

5.3. Measurement update in the DRSSI
approach

Multi-step �ltering uses the di�erential RSSI in the �rst
step of the �ltering to provide initial estimation of the
state vector. So, a Gaussian �lter based on DRSSI
observation is developed in this section.

In this �lter, the measurements are the di�erence
of RSSI observations between two consecutive way-
points of the robot's path (Eq. (9)). In other words, the
received power in the current time frame is compared
or di�erentiated to/from the previous received power
by the UAV.

z = dPr(t) = Pr(t)� Pr(t� 1); (9)

Pr(t) = Pt� PL(t): (10)

Based on Eqs. (9) and (10), Eq. (11) can be extracted,
which means that the di�erence of RSSI observations
between two waypoints is equivalent to the di�erence
of path loss in those waypoints:

dPr(t) = �dPL(t): (11)

Using the general loss model [31] (Eq. (12)), the
observation equation, as a function of UAV's waypoint
and the location of RF source, is derived (Eq. (13))
in which PLd0 means the path loss at the reference
distance d0 in dB:

PL(t) = PLd0 + 10�PL log� jjX RF �XUAV(t)jj
d0

�
; (12)

z =hDRSSI(XRF; XUAV(t)) = �dPL(t) =

�10�PL log
p

(x�xu(t))2 + (y � yu(t))p
(x�xu(t� 1))2 + (y � yu(t))

:
(13)

5.3.1. Linearization of the observation function
Because of the nonlinearity of the observation function,
an extended or an unscented Kalman �lter should be
used to estimate the state vector. To develop an
extended Kalman �lter, a linearized model by Jacobin
is used:

H(t) =
@hDRSSI

@s
js=ŝ(t�1) =

�
H1;1 H1;2

�
; (14)

in which:

H1;1 =
@h
@x
jx=x̂(t�1) =

�5�PL
ln 10

� a(b2 + d2)� b(a2 + c2)
(b2 + d2)(a2 + c2)

; (15)
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H1;2 =
@h
@y
jy=ŷ(t�1) =

�5�PL
ln 10

� c(b2 + d2)� d(a2 + c2)
(b2 + d2)(a2 + c2)

: (16)

In Eqs. (15) and (16) we have:

a = x̂(t� 1)� xu(t); b = x̂(t� 1)� xu(t� 1);

c = ŷ(t� 1)� yu(t); d = ŷ(t� 1)� yu(t� 1):

5.3.2. The measurement noise
The DRSSI measurement's noise variance is calculated
based on the formula for calculating the di�erence
between the two normal distributions:

R = 2�2
sh: (17)

5.4. The measurement update in
DRSSI+AOA based approach

In this �lter, the observations are DRSSI and AOA
measurements:

Z =
�
DRSSI
AOA

�
=
�
hDRSSI(XRF; XUAV(t))
hAOA(XRF; XUAV(t))

�
+
�
�1
�2

�
: (18)

The DRSSI observation equation, i.e., hDRSSI(XRF;
XUAV(t)), was presented in Eq. (13). The AOA
observation equation, i.e. hAOA(XRF; XUAV(t)), is as
in Eq. (19):

hAOA(XRF; XUAV(t)) = tan�1
�
y � yu(t)
x� xu(t)

�
: (19)

5.4.1. The linearization of the observation function
Developing the extended Kalman �lter, the Jacobin is
used to linearize the observation function:

H(t) =
@Z
@s
js=ŝ(t�1) =

�
H1;1 H1;2
H2;1 H2;2

�
; (20)

in which H1;1 and H1;2 are computed using Eqs. (15)
and (16), respectively. The Jacobin of hAOA (XRF;
XUAV) is calculated using Eqs. (21) and (22):

H2;1 =
@hAOA

@x
jx=x̂(t�1)

= � (y � yu(t))
(x� xu(t))2 + (y � yu(t))2 jx=x̂(t�1); (21)

H2;2 =
@hAOA

@x
jy=ŷ(t�1)

=
(x� xu[n])

(x� xu(t))2 + (y � yu(t))2 jy=ŷ(t�1): (22)

5.4.2. The measurement noise
Due to AOA and DRSSI independent measurement
noise assumption, the covariance of the measurements'
noises is as in Eq. (23):

R =
�
2�2

sh 0
0 �2

LS

�
: (23)

5.5. The unscented Kalman �lter
Another approach to linearize a non-linear function is
the Unscented Kalman Filter (UKF) that is used in
the proposed hybrid DRSSI+AOA based localization
approach. Similar to the previous approach, in which
DRSSI is used to determine the predicted local scatter-
ing region and the linearization point, DRSSI is used
to calculate the initial mean and sigma points in this
approach. Sigma points, i.e. their values and weights,
are chosen such that the mean and covariance of the
distribution are modeled. Sigma points are passed
through nonlinear function to recover the predicted
mean and covariance. Based on the weighted average
of the points, the new estimation and covariance are
achieved. Finally, the observation, the predicted mean,
and the predicted covariance are used to update the
state estimation and its covariance.

One of the problems that occurs in the implemen-
tation of the UKF is that the covariance matrix should
remain positive de�nite. However, this may not happen
due to computational errors. Consequently, various
decomposition methods of covariance matrix are used
to overcome this problem. In this implementation,
Cholesky decomposition is used. In this approach, in-
stead of updating covariance matrix, the decomposition
matrix is updated to avoid the mentioned problem.

It should be mentioned that, similar to the EKF
approach, in this approach, a DRSSI-based UKF is
developed using Eq. (13) and a DRSSI+AOA based
UKF is developed using Eqs. (13) and (19). The
motion model, the covariance of process noise, and the
covariance of measurement noise are similar to EKF.

5.6. The Gaussian approximation of AOA
measurements

In EKF/UKF, the selection of the linearization point
is crucial to properly model or approximate a non-
Gaussian process such as the localization in NLOS.
Consequently, knowing the fact that the DRSSI ob-
servations always follow a Gaussian distribution, it can
be used to determine the linearization point. In other
words, DRSSI can provide the initial estimate of the
target location. Then, the AOA measurements are
included to improve the localization accuracy. This
is why this approach is called a multi-step Gaussian
�ltering approach.

It is also important to mention that the blockage
in NLOS propagation creates a uniform distribution in
AOA measurements, while the local scattering creates
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a Gaussian distribution, whose mean was estimated
in the �rst step of �ltering. To be able to use
Kalman �ltering in the second step of the �ltering,
it is necessary to assume Gaussian distribution for
the AOA observations. On the other hand, our
experiments show that this assumption is fairly valid in
the SD of local scattering and becomes invalid outside
this region. Consequently, our Gaussian model of
AOA measurements is only used in the SD of local
scattering region around the angle of the estimated
target position.

6. Results

Propagation simulation has been performed for a case
in which the UAV is cruising at a �xed altitude
above the terrains surrounding the RF source and a
few kilometers away from it. In all simulations, the
robot permanently cruises in circular path around the
RF source and attempts to localize the RF source.
The source can be anywhere within the circular path
of the robot. The RSSI and AOA measurements
can be performed at a distance less than a given
threshold to the RF source. In this simulation, the
maximum distance for measuring RSSI or AOA is
set to 20 km. Initially, it is assumed that a proper
estimation of the characteristics of NLOS propagation
and the environmental parameters, needed for path loss
modeling, are known. They are chosen according to
the characteristics of cell phones. This assumption is
removed in the last test.

To simulate AOA sensors, it is needed to consider
the available sensors in the market. Common Direc-
tion Finding (DF) sensors are simple energy detectors
(e.g., spinning antennas) or phase sensitive systems
(interferometer type) [34]. Small, commercial-o�-the
shelf (COTS) DF systems can provide a rough estimate
of an emitter's bearing within a 90� or 45� sector
[35]. In [36], a radio interferometric technique for
determining bearings with an accuracy of approxi-
mately 3 degrees is described. Antenna arrays o�er
the possibility of high resolution angle estimates, but
its price and weight limits the application. Particularly
on UAVs, with hard payload restrictions, only small
arrays can be used and array calibration techniques
play a key role [34]. Consequently, to simulate a typical
AOA sensor, a SD between six to ten degrees is used to
simulate local scattering [37]. In total, six to twenty �ve
degrees SD can cover the accuracy of all types of AOA
sensor accuracies and environmental local scattering.
It should be reminded that the SD value is used for
Gaussian distribution to simulate the joint e�ect of the
sensor accuracy and local scattering.

In the particle �lter simulation, the number of
particles is set to 400. The developed Monte-Carlo
simulations are based on the averages of 200 consec-

Figure 4. Comparison of �lters in di�erent blockage
probability.

utive runs. This number will be increased gradually if
the repeatability of the results mandates the increase
in the number of runs.

To compare the di�erent approaches, the Mean
Square Error (MSE), which is composed of the bias
and variance of the estimator (Eq. (24)), is used:

MSE(X̂) = Var(X̂) + Bias2(X̂): (24)

6.1. The e�ects of signal blockage
In this test, the e�ect of signal blockage on the
localization accuracy on developed �lters has been
compared to the particle �ltering based DRSSI+AOA.
The parameters are set as follows: the SD of local
scattering is 0.3 radian, the SD of shadowing is 7dB,
and the radius of the robot's path is 7.07 km. Figure 4
shows that the accuracy of multi-step Gaussian �ltering
is better than particle �ltering when there is blockage in
the environment. It is interesting that the particle �lter
approach su�ers more from blockage compared to the
multi-step Gaussian �lter when the number of particles
is not increased. The reason is that the particle �lter
uses all of the blocked AOA observations which increase
the error. In contrast, the multi-step Gaussian �ltering
focuses on the estimated location, which is estimated in
the �rst step of the �ltering using DRSSI observations,
and eliminates any AOA observation which is out of the
range. In other words, the accuracy of particle �ltering
can be increased by increasing the number of particles.
However, it would increase the computational cost,
while the multi-step Gaussian �ltering would not face
higher computational cost in such cases.

6.2. The advantage of the DRSSI+AOA
approach implemented using multi-step
Gaussian and particle �lters to the
DRSSI approach in di�erent blockage
probability

In the all studied �lters, the bene�t of using AOA
observations in the localization is reduced when the
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Figure 5. Comparison of the DRSSI and the
DRSSI+AOA approaches implemented using the
multi-step UKF and the particle �lter in di�erent blockage
probability.

blockage probability increases. Thus, the DRSSI+AOA
approach loses its advantage to the DRSSI in such
cases. Although, this dependence on the blockage
probability is less e�ective in the particle �lter than the
multi-step Gaussian �lter (Figure 5), however, the ben-
e�t of using AOA observations is lost when the blockage
probability passes 0.3 in the multi-step UKF approach
and 0.4 in the particle �lter approach. This means that
the fusion of AOA with DRSSI in both approaches can
increase the accuracy when the blockage probability
is less than a threshold. It should be noted that the
threshold for the particle �ltering approach is lower
than the threshold for the multi-step �ltering, meaning
that the particle �ltering su�ers more from blockage.
It may be mentioned again that the particle �ltering
approach can be improved using higher number of
particles that would increase the computational cost.
It should also be noted that the multi-step EKF has
similar performance to the multi-step UKF, and hence
has not been illustrated to ease the presentation.

6.3. Evaluation of the DRSSI+AOA approach
implemented by the multi-step UKF, the
multi-step EKF, and the particle �lter in
Radio Mobile propagation simulator

In this simulation, the performance of the DRSSI+
AOA localization approach implemented by the multi-

step UKF, the multi-step EKF, and the particle �lter
is evaluated using Radio Mobile propagation simulator.
Radio Mobile is a computer simulation program used
for predicting radio coverage of a base station, a
repeater, or other radio networks. The simulator has
been tested and the results have been validated with
real air to ground communication data [38].

The main di�erence between the simulator used in
Section 2 and the Radio Mobile simulator is that Radio
Mobile uses the Longley-Rice algorithm to calculate
the di�raction loss in addition to large scale fading.
In other words, it explicitly considers the e�ects of
obstacles in the simulation.

In this section, unlike the simulations imple-
mented in the previous sections, the curvature of the
earth is considered in the propagation simulation and
localization. Also, the propagation simulation in Radio
Mobile is done in the 3D space, i.e. the e�ect of
height di�erence of UAV and RF source is considered
in the amount of signal loss. Interestingly, the results
show that the 2D simulation is accurate enough with
negligible di�erence with the 3D simulation.

It should be mentioned that due to the lack
of simulation of AOA propagation in Radio Mobile
program, an integrated simulation including RSSI
propagation in Radio Mobile and AOA propagation
model described in Section 2 is used to evaluate the
AOA-based approaches.

In Radio Mobile, the network parameters are set
according to real values in GSM cellular network. The
search area is set in a region near Tehran. The center
of the region is at latitude of 34.81099 and longitude
of 51.03735 and its radius is seven km. The target
is placed in two di�erent locations, one on the center
of the search area and the other one at latitude of
34.80014 and longitude of 51.02382. Propagation data
are collected and then used o�-line as input to the
localization approaches.

The simulation consists of 16 waypoints with four
turns around the search area. Table 1 shows the RMS
of localization error in 500 consecutive runs for both
speci�ed points. In this simulation, location is chosen
such that the terrain variation is comparable to the
outcomes when the SD of shadowing is 9 dB. According
to the desired path, �ve out of 16 control points, are
completely in blockage condition. Thus, the probability

Table 1. The RMS of localization error using Radio Mobile propagation simulator.

Localization
approach

RMSE (km) of
localization by particle

�lter when the RF source is

RMSE (km) of
localization by multi-step

EKF when the RF source is

RMSE (km) of
localization by multi-step UKF

when the RF source is
at the
center

apart from
the center

at the
center

apart from
the center

at the
center

apart from
the center

DRSSI+AOA 1.6337 1.6764 1.2950 1.3437 1.4037 1.4598
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of blockage is set to 0.3 which is below the threshold
discussed to bene�t from AOA measurements. Also,
the SD of scattering is selected 0.3 radians which is
appropriate due to the selected terrain. The condition
of the propagation is almost identical to both positions
of the RF source. As it can be predicted, the multi-
step EKF and the multi-step UKF have more accuracy
than the particle �lter due the limited number of
particles. This result is compatible with the results
of the previous simulations.

It should be mentioned that the increase in the
terrain variation would reduce the accuracy of the
localization due to the introduction of more obstacles.
Consequently, the complete resolution of this problem
involves �nding a solution to estimate the presence of
the obstacles.

6.4. The e�ects of unknown propagation
parameters

As mentioned, the propagation model is based on sev-
eral parameters, i.e. the transmitter antenna's height,
the path loss exponent, the SD of shadowing, the
SD of local scattering, and the blockage probability,
which are assumed known in the previous simulations.
However, normally, there are uncertainties in the values
of these parameters. Therefore, the robustness to the
uncertainty of these parameters can be one of the cri-
teria to select the suitable �lter for the DRSSI+AOA-
based localization approaches. In this section, the
possible weakness of the proposed �lters, for managing
these uncertainties, is evaluated in comparison with the
particle �lter approach.

To study this robustness, the values of these
parameters in propagation simulation are selected ran-
domly in the possible ranges. The corresponding
parameter values used in the �lters are �xed based on
selecting the best value over all simulation results.

The parameter changes are compared to a refer-
ence environment in which all the parameters are set
at their mean. In each step of the simulation, only
one of the parameters is changed randomly and other
parameters have been kept �xed. In this reference
environment, parameters are set as follows: The SD
of local scattering is 0.3 radian, the SD of shadowing
is 3.5 dB, the probability of blockage is 0.3, the path
loss exponent is 3.5, and the radius of robot's path
is 7.07 km. This Monte-Carlo simulation is based on
the averages of 1000 consecutive runs. The RMSE
of localization in the reference environment is shown
in Table 2. In Table 3, the di�erent values used
to select the best SD value for the shadowing e�ect
parameter are presented. The mean and maximum
values of possible range of the SD of shadowing e�ect
are used in the �lters. Then, the RMSE of localization
error is calculated based on the given �xed parameter
values, used in the �lters, and the unknown values are

Table 2. The RMSE of di�erent �lters in the reference
propagation condition.

Filter RMSE ( dPRF)

Multi-step EKF 0.8326
Multi-step UKF 0.5044

PF 0.8274

Table 3. Selecting the best SD value for handling the
shadowing e�ect of uncertainty.

Filter
Variation

range
of �Sh

Selected
SD

for �lter

RMSE
( dXRF)

Multi-step EKF 0.1�7 dB 7 0.6566
0.1�7 dB 3.5 2.2568

Multi-step UKF 0.1�7 dB 7 0.6806
0.1�7 dB 3.5 1.6805

Particle �lter 0.1�7 dB 7 1.2487
0.1�7 dB 3.5 0.9227

Table 4. The RMSE of di�erent �lters in various
propagation conditions.

Filter Par. Range
Best
SD in
�lter

RMSE
(dXR)

Multi-step EKF

�LS 0.1�0.5 rad 0.5 rad 0.7977 km
�Sh 0.1�7 dB 7 dB 0.6622 km
�PL 3�4 3.5 0.7751 km
�Bl 0.1�0.5 - 0.8734 km

Multi-step UKF

�LS 0.1�0.5 rad 0.5 rad 0.4792 km
�Sh 0.1�7 dB 7 dB 0.6908 km
�PL 3�4 4 0.5191 km
�Bl 0.1�0.5 - 0.6392 km

Particle �lter

�LS 0.1�0.5 rad 0.5 rad 0.8709 km
�Sh 0.1�7 dB 3.5 dB 0.9072 km
�PL 3�4 3.5 0.7759 km
�Bl 0.1�0.5 0.3 0.6861 km

randomly generated representing the actual values in
the environment. The greater RMSE value represents
greater sensitivity to the uncertainty of the parameter.
Therefore, the best SD values, to be used in the �lters,
are selected based on the obtained smaller RMSE. As
shown in Table 4, the best SD values for the multi-
step Gaussian �ltering are the maximum values of the
possible range, but the best SD value for the particle
�lter is the mean of the possible range.

Unknown Parameters that are studied in this
test, their range of random variation, the selected
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value for use in the �lters, and the resulting RMSE
of localization are shown in Table 3. Table 4 shows
that the �lters are almost robust against the given
uncertainty in the propagation parameters. It should
be noticed that using DRSSI observations makes the lo-
calization method independent to inaccurate selection
of the path loss exponent and the SD of shadowing
values, which is due to DRRSI's di�erential nature.
This simulation shows that the robust advantage of
the particle �lter approach can also be provided by
the multi-step Gaussian approach. This result needs
more study in future researches to determine how much
this advantage is caused by multi-step Gaussian and
how much it is caused by the di�erential nature of the
DRSSI observation.

7. Conclusion

In this paper, the particle �lter-based DRSSI+AOA
method has been replaced by a multi-step Gaussian
�ltering DRSSI+AOA approach. The proposed �l-
ter can eliminate the e�ects of nonlinear and non-
Gaussian nature of NLOS localization. As a result,
the accuracy of DRSSI+AOA based localization using
extended Kalman �lter and unscented Kalman �lter
become comparable to the particle �lter with much less
computational load. This has been done using DRSSI
input in the �rst step of the �ltering to determine the
linearization point, and then using AOA and DRSSI
inputs together in the second step of the �ltering
to improve the localization accuracy. Finally, the
robustness of these approaches to the uncertainties in
the propagation parameters has been analyzed to show
that the robustness of the multi-step Gaussian �ltering
can be comparable to the particle �lter approach while
it has lower computational cost. Furthermore, despite
the comparable RMSE of localization by the proposed
�lters, i.e. EKF-based DRSSI+AOA and UKF-based
DRSSI+AOA, to the particle �lter, the maximum
of estimation error is more in multi-step Gaussian
�ltering.

It should be mentioned that the proposed multi-
step Gaussian �ltering approach can be used in any
application with similar nature to the discussed appli-
cation. In other words, if the fusion of two sources
of data is done in which one source can be modeled
using Gaussian distribution and the other one is non-
Gaussian, and then the �rst source can be used to
determine the linearization point. Then, the lineariza-
tion point is used to estimate the overall �ltering using
Gaussian assumption.

The future work can focus on the following areas.
First, the generalization of this approach to similar
problems can be investigated. Also, the restricted
Gaussian modeling of the distribution performed in
AOA propagation, which showed good results in multi-

step Gaussian �ltering, should be further investigated
and generalized. Furthermore, the proposed approach
would be tested in a real setup to con�rm the validity
of the simulation data. Finally, further analysis can be
performed on selecting the propagation parameters to
make the localization more robust and more accurate.
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