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Abstract. The purpose of this paper is to investigate the e�ects of magnetohydrodynamic
peristaltic ow of Walter's B uid in an inclined asymmetric channel under the inuence of
slip conditions. The e�ects of heat and mass transfer are also taken into account. Analytical
solutions of nonlinear coupled equations are obtained by regular perturbation method.
Graphs for di�erent ow parameters of interest are sketched and analyzed. It is observed
that the absolute value of shear stress and heat transfer coe�cient decreases by increasing
the magnetic parameter, whereas with the increase of magnetic parameter, concentration
decreases. Opposite behavior has been noted for temperature and heat transfer coe�cient
at upper and lower walls against various values of Prandtl number, Eckert number, slip
parameter, and material constant of Walter's B uid. Oscillatory behavior of heat transfer
coe�cient is observed, which is due to propagation of peristaltic waves along the walls of
the channel.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Peristaltic transport is a mechanism for mixing and
transporting uids, which is caused by a progressive
wave of contraction and expansion travelling on the
walls of the channel. The study of peristalsis has
gained a distinct status amongst several researchers
because of its various applications in physiological
processes [1]. Moreover, e�ects of heat transfer
have a signi�cant role in peristalsis processes, such
as oxygenation and hemodialysis. The properties
of tissue can be pigeonholed through heat transfer
analysis. Heat is either produced or locally inserted
to monitor the thermal clearance rate [2-5]. Likewise,
the e�ects of magnetohydrodynamics in peristalsis are
very much noteworthy in magnetic therapy, arterial
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ow, hyperthermia compressor, etc. Magnets could
heat inammations, ulceration, and several diseases of
intestine and uterus. Recently, several studies have
been made on the peristaltic motion of non-Newtonian
uids under di�erent assumptions.

Furthermore, Beard and Walter [6] have proposed
the constitutive equations for elastico-viscous uids,
which are formally known as Walters' B liquids. The
Walters' B uid model describes the performance of
several polymeric liquids that come across in bio-
science. It can tremendously predict the complex ow
behavior of various industrial polymer solutions such
as hydrocarbons, paints, etc. This model also incor-
porates the elastic properties of the uids that are ab-
solutely useful to understand certain extensional poly-
mers. A very careful review of the literature divulges
that amongst the viscoelastic uids, the Walter's B
model has gained very little attention so far. Few stud-
ies containing the relevant works on the topic can be
mentioned by the attempts [7-12] and several therein.
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With all the aforementioned points in mind, one
can clearly observe that no analysis for magnetohy-
drodynamic peristaltic ow of Walter's B uid in the
presence of heat and mass transfer under the inuence
of slip conditions is accorded in available literature yet.
The courtesy in exploring the said topic is a motivating
factor for this study. In fact, we intend to strengthen
our e�orts to understand the problems having more
complicated nature. This is particularly in modeling of
peristaltic ow of non-Newtonian uids in an inclined
asymmetric channel. The constitutive relationship of
Walter's B uid is used in the mathematical formula-
tion of the problem. The resulting nonlinear governing
equations are computed for the series solutions valid
for small wave numbers and low Reynolds numbers.
Graphs for magnetic parameter, slip parameter, heat
transfer coe�cient, Walter's B uid parameter, Prandtl
number, Eckert's number, Schmidt number, and Soret
number are sketched and analyzed.

2. Mathematical formulation of the problem

Consider the Walter's B uid through an inclined
asymmetric channel of peristaltic transport having
width d1 + d2 such that the upper and lower walls are
respectively at distances of d1 and d2 from the center
line of the channel. The sinusoidal waves of di�erent
amplitudes and phases are moving along the channel
walls with constant speed c. The upper and lower walls
are maintained at temperatures T0 and T1, respectively.
The upper and lower walls have di�erent amplitudes
ai(i = 1; 2) with phase di�erence �(0 � � � �). The
ow is considered in the direction of �X-axis, whereas
�Y -axis is taken normal to it. In the laboratory frame,
we seek the velocity �eld of the form:

�V = [ �U( �X; �Y ; �t) �V ( �X; �Y ; �t)0]; (1)

in which �U and �V are the velocity components in the
longitudinal and transverse directions correspondingly.
The geometry of the channel walls �H1 and �H2 is de�ned
as:

�H1( �X; �t) = d1 + a1 sin
�

2�
�
� �X � c�t�� ; (2)

�H2( �X; �t) = �d2 � a2 sin
�

2�
�
� �X � c�t�+ �

�
: (3)

Here, � is the wavelength and �t is time.
The channel walls and magnetic �eld are inclined

at angles ! and , respectively. A uniform magnetic
�eld B0 is applied in the transverse direction to
the ow. The magnetic Reynolds number is taken
small so that the induced magnetic �eld is neglected.
Henceforth, the governing equations in the form of
components are obtained as:
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The extra-stress tensor for Walter's B uid is de�ned
as [13]:
�
S = 2�0e� 2k0

�e

�
�
t
; (9)

in which:
�e

�
�
t

=
@e

@
�
t

= V:re� erV � (rV)T e; (10)

e = rV + (rV)T : (11)

The moving and �xed frames are related by the
expressions:

�x=
�
X � c�t ; �y=

�
Y ; �u=

�
U � c; �v=

�
V ; �p=

�
P :
(12)

The ow becomes steady in the wave frame (�x; �y) by
opting a wave frame moving with velocity c as that of
travelling wave away from the laboratory frame ( �X: �Y ).

Velocity components u and v in terms of stream
function and dimensionless variables are de�ned by:

u =
@ 
@y

; v = �� @ 
@x

; x =
�x
�

; y =
�y
d1
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�u
c
;
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h2

d1
;
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�
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The Eq. (4) is identically satis�ed and Eqs. (5) to (8)
in terms of stream function can be expressed as follows:
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The resulting heat and thermos-di�usion equations
become:
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Here, bars have been omitted for simplicity.
Solving Eqs. (15) and (16), simultaneously, we get

the following vorticity transport equation:
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where:

r2 = �2 @2

@x2 +
@2

@y2 : (19)

The components of the extra-stress tensor are:
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(23)

3. Boundary conditions

In wave frame, the equations of boundary conditions
for dimensionless stream function are:

 =
F
2
;
@ 
@y

+�Sxy=�1; �=0; v=0 at y=h1(x);
(24)

 =�F
2
;
@ 
@y
��Sxy=�1; �=1; �=1 at y=h2(x):

(25)

The dimensionless ux F is de�ned by the following
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relation [14]:

F =
Z h1(x)

h2(x)

@ 
@y

dy: (26)

In the laboratory frame, dimensionless average ux is
obtained as:

� = F + 1 + d: (27)

4. Methodology

The perturbation method for small wave number
�(� << 1), which is appropriate in the study of
peristalic ow in tubes or channels, is used for solving
the problem. Thus, we expand the ow quantities as:

 =  0 + � 1 +O(�2)

� = �0 + ��1 +O(�2)

� = �0 + ��1 +O(�2)

S = S0 + �S1 +O(�2

Z = Z0 + �Z1 +O(�2)

9>>>>>>>=>>>>>>>;
(28)

Substituting Eq. (28) into Eqs. (17) to (19) along
with boundary conditions given in Eqs. (24) and (25),
and collecting the like terms of we obtain the following
zeroth- and �rst-order problems.

4.1. Zeroth-order system
Collecting the coe�cients of like terms of O(�), we
obtain:

@2S0xy

@y2 = M2 cos2 
@2 0

@y2 ; (29)

1
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1
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S0yy = 4�
�
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; �0 = 2
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The corresponding boundary conditions are:

 0 =
F0

2
;

@ 0

@y
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�0 = 0 at y = h1(x); (34)

 0 = �F0

2
;
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@y
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The heat coe�cient at upper and lower walls can be
calculated by the relations:

Z0h1 =
@h1

@x
@�0
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; Z0h2 =
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. (36)

4.2. First-order system
The coe�cients of � yield the following problems:
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The corresponding boundary conditions are:

 1 =
F1

2
;

@ 1

@y
+�S1xy=0; �1 =0;

�1 =0; at y=h1(x); (44)

 1=�F1

2
;

@ 1

@y
� �S1xy=0; �1=0;

�1 = 0 at y=h2(x): (45)
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The heat coe�cients at upper and lower walls are
de�ned by the relations:

Z1h1 =
@h1

@x
@�1

@y
; Z1h2 =

@h2

@x
@�1

@y
: (46)

5. Solution of the problem

5.1. Zeroth-order solution
The solutions of Eqs. (29) to (36) along with the heat
coe�cient at upper and lower walls are given by:

 0 = A1y +A2 +A3 cosh�y +A4 sinh�y; (47)

S0xy = 2�2(A3 cosh�y +A4 sinh�y); (48)

�0 = A5 +A6y +A7y2 +A8 cosh 2�y +A9 sinh 2�y;
(49)

�0 =A10+A11y+A12y2+A13 cosh 2�y+A14sinh2�y;
(50)

Z0h1 = a cosx(A6 + 2A7y + 2�A8 sinh�y

+ 2�A9cosh 2�y); (51)

Z0h2 =� b cos(x+ �)(A6 + 2A7y + 2�A8 sinh 2�y

+ 2�A9 cosh 2�y): (52)

5.2. First-order solution
Upon making use of zeroth-order solution in the �rst-
order system and then solving the resulting problems,
one arrives at:

 1 =B1 +B2y + cosh�y(B4 +B5y +B6y2)

+B3y2 + sinh�y(B7 +B8y +B9y2); (53)

S1xy =D10 + cosh�y(B11 +B12y +B13y2)

+B17 cosh 2�y+sinh�y(B14+B15y+B16y2)

+B18 sinh 2�y: (54)

�1 =B19 +B20y +B22y3 sinh�y(B24 +B25y

+B26y2) + cosh�y(B27 +B28y +B29y2)

+B36 sinh 3�y + sinh 2�y(B30 +B31y

+B32y2) +B23y4 +B21y2 + cosh 2�y(B33

+B34y +B35y2) +B37 cosh 3�y; (55)

�1 =B38 +B39y +B40y2 + sinh�y(B43 +B44y

+B45y2) +B41y3 +B42y4 + cosh�y(B46

+B47y +B48y2) + sinh 2�y(B49 +B50y

+B51y2) +B55 sinh 3�y + cosh 2�y(B52

+B53y +B54y2) +B56 cosh 3�y: (56)

Heat transfer coe�cient is:

Z1h1 =a cosx(cosh�y(B28 + �B24 + (�B25

+ 2B29)y + �B26y2) + sinh�y(B25

+ �B27 + (�B28 + 2B26)y + 2�B29y2)

+ 2B21y + cosh 2�y(B34 + 2�B30 + (2�B31

+ 2B35)y + 2�B32y2) +B20 + sinh2�y(B31

+ 2�L33 + (2�B34 + 2B32)y + 2�B35y2)

+ 3�B36 sinh 3�y + 3�B37 cosh 3�y

+ 3B22y2 + 4B23y3); (57)

Z1h2 =� b cos(x+ �)(cosh�y(B28 + �B24 + (�B25

+ 2B29)y + �B26y2) + sinh�y(B25 + �B27

+ (�B28 + 2B26)y + 2�B29y2) + 3B22y2

+ cosh 2�y(B34 + 2�B30 + (2�B31 + 2B35)y

+ 2�B32y2) + 4B23y3 + sinh 2�y(B31

+ 2�L33 + (2�B34 + 2B32)y + 2�B35y2)

+B20 + 2B21y + 3�B36 sinh 3�y

+ 3�B37 cosh 3�y): (58)

The values appearing in Eqs. (47) to (58) are given in
the Appendix.

6. Results and discussion

In this section, the e�ects of physical parameters such
as viscoelastic parameter, �; MHD parameter, M ; slip
parameter, �; Eckert number, ER; Prandtl number, Pr;
Schmidt number, Sc; and Soret number, Sr, have been
displayed in Figures 1 to 11.

Figures 1 to 3 are prepared to discuss the vari-
ations of �, M , and � on shear stress Sxy . Figure
1 depicts that, by increasing K, the absolute value of
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Figure 1. Variations of � on (a) Sxy(h1) and (b) Sxy(h2).

Figure 2. Variations of M on (a) Sxy(h1) and (b) Sxy(h2).

Figure 3. Variations of � on (a) Sxy(h1) and (b) Sxy(h2).

Figure 4. Variations of (a) Pr and (b) Er on �.

shear stress at the upper wall Sxy(h1) and lower wall
Sxy(h2 ), respectively, decreases and increases in the �rst
half of the wave and then increases and decreases in the
second half of the wave as increasing �. Figure 2 shows
that there is decrease in the absolute value of shear
stress when M increases. From Figure 3, it is found
that with increasing the value of �, the absolute value
of shear stress decreases.

Figure 5. Variations of (a) � and (b)  on �.

Figure 6. Variations of (a) Sc and (b) Sr on �.

Figure 7. Variation of (a) M and (b) on �.

Figure 8. Variations of Er on heat transfer coe�cients:
(a) Zh1 at upper wall; and (b) Zh2 at lower wall.

Figures 4 and 5 show the variations of Prandtl
number, Pr, Eckert number, Er, and slip parameter,
�, at inclination of magnetic �eld  on temperature �
From Figure 4, it is clear that by increasing Pr and Er,
temperature � increases. Figure 5 (a) illustrates the
decrease in temperature � with increase in �, whereas
from Figure 5 (b), it is observed that temperature �
increases by increasing .
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Figure 9. Variations of Pr on heat transfer coe�cients:
(a) Zh1 ; and (b) Zh2 .

Figure 10. Variations of � on heat transfer coe�cients:
(a) Zh1 at upper wall; and (b) Zh2 at lower wall.

Figure 11. Variations of M on heat transfer coe�cients:
(a) Zh1 at upper wall; and (b) Zh2 at lower wall.

These are not unexpected results as, based on
the de�nition, the Prandtl number is a ratio of mo-
mentum di�usion to thermal di�usion; consequently,
with increase in Pr, thermal di�usion decreases and,
thus, thermal boundary layer becomes thinner. In
other words, one can say that large values of Prandtl
number result in thinning of thermal boundary layer.
As a matter of fact, the increase of Prandtl number
slows the rate of thermal di�usion. However, in the
presence of viscous dissipation, the e�ect of increasing
the values of Prandtl number is to increase temper-
ature distribution, whereas in the absence of viscous
dissipation, the e�ect of increasing Prandtl number,
Pr, is to increase the heat transfer rate, signi�cantly,
which are absolutely in accordance with the physical
expectation. In addition, the presented work is in
contrast to the e�ects of other parameters that show

the same tendency as that already reported in existing
literature [15,16].

Figures 6 and 7 indicate the behavior of pa-
rameters on �. The e�ects of SC and Sr on � are
indicated through Figure 6. In this �gure, � decreases
by increasing Sc and Sr. Figure 7(a) illustrates the
e�ect of M on V . It is clearly observed that � increases
by increasing M . Figure 7(b) represents the inuence
of  on �. It is seen that � decreases by increasing the
value of .

Figures 8 to 11 are plotted to study the e�ects
of heat transfer coe�cients Zh1 and Zh2 for di�erent
values of Er, Pr, �, and M . Heat transfer coe�-
cient, Z, has oscillatory behavior, which is due to the
propagation of peristaltic waves along the walls of the
channel. Figures 8 and 9 represent that the absolute
value of heat transfer coe�cient increases by increasing
the values of Er and Pr. Figure 10 depicts that the
absolute value of heat transfer coe�cient decreases at
the upper wall, but increases at the lower wall of the
channel by increasing �. Figure 11 indicates that the
absolute value of heat transfer coe�cient Z decreases
when M increases.

7. Conclusion

In this study, the combined e�ect of slip condition,
heat transfer, and chemical reactions on the peristaltic
ow of Walter's B uid in an inclined asymmetric
channel has been investigated. The system of partial
di�erential equations is �rst written in terms of ordi-
nary di�erential equations by using adequate similarity
transformations and then solved analytically through
perturbation method. In particular, analytic solutions
have been developed for shear stress Sx;y, temperature
�, concentration �, and heat transfer coe�cient Z.
The results are discussed through graphs. The main
observations in this study are:

� The absolute value of shear stress, Sxy, decreases as
M increases at the upper and lower walls;

� The temperature � decreases with an increase in �,
while with increase in Pr, Er, and , the temperature
� increases;

� The absolute value of heat transfer coe�cient, Z,
decreases by increasing M and �, but the reverse
behavior is noted by increasing the values of Pr, Er,
and  at the upper wall of the channel;

� The absolute value of heat transfer coe�cient, Z,
decreases by increasing M at the lower wall, whereas
its behavior is quite opposite for increasing values of
Pr, Er, �, and ;

� The concentration � increases with the increase of
M ; however, with increase in Sr, Sc, and , the
concentration � decreases.
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Nomenclature

�0 Limiting viscosity at small shear rate
k0 Short memory coe�cient
k Thermal conductivity
� Speci�c heat
� Slip parameter
� Wave number
� Viscoelastic parameter
p Pressure
I Identity tensor
S Extra-stress tensor
T Fluid temperature
c Concentration
M MHD parameter
Tm Temperature of the medium
D Coe�cient of mass di�usivity
KT Thermal di�usion
e Rate of strain tensor
Re Reynolds number
Er Eckert number
Pr Prandtl number
Sc Schmidt number
Sr Soret number
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Appendix

A1 =
F0

h1 � h2
� (F0 + h1 � h2)(C6C1 � C2C5)

(h1 � h2)C5
;

A2 = �F0(h1 + h2)
2(h1 � h2)

� (F0 + h1 � h2)C9

(h1 � h2)C7
;

A3 =
(F0 + h1 � h2)C6

C5
;

A4 = � (F0 + h1 � h2)
(h1 � h2)C7

;

A5 =
1

(h2 � h1)
[�h1 +A7h2h1(h2 � h1)

+A8(h1 cosh 2�h2 � h2 cosh 2�h1)

+A9(h1 sinh 2�h2 � h2 sinh 2�h1)];
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A6 =
1

(h2 � h1)
[1�A7(h2

2 � h2
1)

�A8(cosh 2�h2 � cosh 2�h1)

�A9(sinh 2�h2 � sinh 2�h1)];

A7 =
Er Pr�4(A2

4 �A2
3)

2
;

A8 =
�Er Pr�2(A2

4 +A2
3)

4
;

A9 =
�Er Pr�2A4A3

2
;

A10 =
A50 �A50(1 + h2 � h1)� 1

h2 � h1
;

A11 =
1�A50 +A12

h2 � h1
; A12 = �SrScA7;

A13 = �SrScA8; A14 = �SrScA9;

A15 = M2(sin  cos  + cos2 ); A16 = A01A14;

A17 =Re(A1A03�2 �A02A4�3) + �(�8A01A3�4

� 2A02A4�5 + 2A1A03�4) + �A04A5;

A18 =Re(A1A04�2 �A02A3�3) + �(�8A01A4�4

� 2A02A3�5 + 2A1A04�4) + �A03A5;

A19 = �ReA3A01�3 � 2�A01A3�5;

A20 = ReA4A01�3 � 2�A01A4�5;

A21 =
A49

A48
;

A22 =
F1

2
� A49h1

A48
� A47 cosh�h1

A48

�A45 sinh�h1

A46
�A34;

A23 =
A47

A48
; A24 =

A45

A46
;

A25 =
A17(h2 sinh�h2 � h1 sinh�h1)

4�3

+
A18(h2 cosh�h2�h1 cosh�h1)

4�3 �A16(h2
2�h2

1)
4�2

+
(�2h2

2+5�h2�4)(A19 cosh�h2+A20 sinh�h2)
8�5

�(�2h2
1�5�h1�4)(A19 cosh�h1+A20 sinh�h1)

8�5 ;

A26 = 4A01A3�2 � 2A03A1�2 + 2A4A02�3;

A27 = 2A4A01�3;

A28 = 4A01A4�2 + 2A02A3�3 � 2A1A04�2;

A29 = 2A3A01�3;

A30 =
1
2

(A3A03�3 +A4A04�3);

A31 =
1
2

(A4A03�3 +A3A04�3);

A32 =� A16h1

2�2 + sinh�h1

�
A17

4�3 +
A18h1

4�2

+
A19h2

1
8�2 � 3A20h1

8�3 � 9A19

8�4

�
+cosh�h1

�
A18

4�3

+
A17h1

4�2 +
A20h2

1
8�2 � 3A19h1

8�3 � 9A20

8�4

�
;

A33 = sinh�h2

�
A17

4�3 +
A18h2

4�2 +
A19h2

2
8�2

� 3A20h2

8�3 � 9A19

8�4

�
� A16h2

2�2 + cosh�h2�
A18

4�3 +
A17h2

4�2 +
A20h2

2
8�2 � 3A19h2

8�3 � 9A20

8�4

�
;

A34 =� A16h2
1

4�2 + sinh�h1

�
A17h1

4�3 � A20h2
1

8�3

� 5A19h1

8�4 � A20

2�5

�
+ cosh�h1

�
A18h1

4�3

+
A19h2

1
8�3 � 3A20h1

8�4 � A19

2�5

�
;

A35 =� A16h2
4�2 + sinh�h2

�
A17h2

4�3 � A20h2
2

8�3

� 5A19h2

8�4 � A20

2�5

�
+ cosh�h2

�
A18h2

4�3

+
A19h2

2
8�3 � 3A20h2

8�4 � A19

2�5

�
;

A36 =�(sinh�h2 � sinh�h1)

� 2�2�(cosh�h2 + cosh�h1);

A37 =�(cosh�h2 � cosh�h1)

� 2�2�(sinh�h2 + sinh�h1);
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A38 = A33 �A32 � �(A31 +A28);

A39 = � sinh�h1 + 2�2� cosh�h1;

A40 = � cosh�h1 + 2�2� sinh�h1;

A41 = A32 + �A28;

A42 = � sinh�h2 � 2�2� cosh�h2;

A43 = � cosh�h2 � 2�2� sinh�h2;

A44 = A33 � �A31;

A45 =� F1 �A25 � (h2 � h1)
�
A39A38

A36
�A41

�
+
A38

A36
(cosh�h2 � cosh�h1);

A46 =(h2 � h1)(
A39A37

A36
�A40)� A37

A36

(cosh�h2 � cosh�h1)� (sinh�h2 � sinh�h1);

A47 = �A45A37 �A38A46; A48 = A36A46;

A49 = A39A47 �A36(A45A40 +A41);

B1 = A22; B2 = A21;

B3 = �A16

2
; B4 = A23 � A19

2�5 ;

B5 =
A18

4�3 � 5A19

8�4 ; B6 =
A19

8�3 ; B7 = A24 � A20

2�5 ;

B8 =
A17

4�3 � 5A19

8�4 ; B9 =
A20

8�3 ;

B10 = �A16

�2 +
��3

2
(A3A04 �A03A4);

B11 =
A17

�2 � 3A19

�3 + �A26;

B12 =
A18

2�
� A20

4�2 + �A27; B13 =
A19

4�
;

B14 =
A18

�2 � 3A20

�3 + �A28;

B15 =
A17

2�
� A19

4�2 + �A29; B16 =
A20

4�
;

B17 = �A30; B18 = �A31;

B19 =
h1B21 � h2B20

h2 � h1
; B20 =

B20 �B21

h2 � h1
;

B21 = Pr
�

ReB78

2
� Er(B63 �B65)

4

�
;

B22 = Pr
�

ReB79

6
� Er(B72 �B74)

12

�
;

B23 = Pr
�

ReB80

12
� Er(B73 �B75)

24

�
;

B24 = Pr
�
Re
�

2B85 �B93 +B94

2�2 � 2B89

�3

+
6B87

�4

�
� Er

�
4B16 � 3B18 +B21

4�2

��
;

B25 = Pr Re
�
B86

�2 � 4B90

�3

�
;

B26 = Pr Re
B87

�2 ;

B27 = Pr Re
�
B89

�2 � 4B87

�3 ; B37

= Pr
�

2Re(B90 +B91)� Er(B69 +B70)
36�2

�
;

B28 = Pr
�
Re
�

2B88 �B91 +B92

2�2 � 2B86

�3

+
6B90

�4

�
� Er

�
4B67 + 3B69 �B70

4�2

��
;

B29 = Pr Re
B90

�2 ;

B30 = Pr
�
Re
�
B83

4�2 � B82

4�3

�
� Er

�
B64

8�2

� (B72 +B74)
8�3 +

3B77

16�4

��
;

B31 = Pr
�
Re
R84

4�2 � Er
�
B76

8�2

� (B73 +B75)
4�3

��
;

B32 = �Pr Er
B77

8�2 ;

B33 = Pr
�
Re
�
B81

4�2 � R34

4�3 )� Er(
R13 +R15

8�2

� R26

8�3 +
3R25 + 2R23

16�4

��
;

B34 = Pr
�
Re
B82

4�2 � Er
�
B72 +B74

8�2 � B77

4�3

��
;

B35 = �Pr Er
(B73 +B75)

8�2 ;
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B36 = Sc
�
Re
A57

4�2 � SrB31

�
;

B37 = Pr
�

2Re(B93 +B94)� Er(B68 +B71)
36�2

�
;

B38 =B23h4
1 + sinh�h1(B24 +B25h1

+B26h2
1) + cosh�h1(B27 +B28h1

+B29h2
1) + sinh 2�h1(B36 +B37h1

+B38h2
1) + cosh 2�h1(B39 +B40h1

+B41h2
1) +B21h2

1 +B22h3
1

+B36 sinh 3�h1 +B37 cosh 3�h1;

B39 =
h1B92 � h2B91

h2 � h1
; B40 =

B56 �B55

h2 � h1
;

B41 = �SrScB21 + ReSc
A51

2
;

B42 = �SrScB22 + ReSc
B53

6
;

B43 = �SrScB23 + ReSc
A54

12
;

B44 =Sc
�
Re
�

6A60

�4 � 2A62

�3 +
A58

�2

+
(A65 �A64)

2�2

�
� SrA67

�
;

B45 = Sc[Re(
B34

�2 � B37

�3 )� SrB25];

B46 = Sc[Re
A60

�2 � SrB26];

B47 =Sc
�
Re
�

6A63

�4 � 2A59

�3 +
A61

�2

+
(A65 �A64)

2�2 � A57

4�3

�
� SrB27

�
;

B48 = Sc
�
Re
��4A60

�3 +
A62

�2

�
� SrB8

�
;

B49 = Sc
�
Re
A63

�2 � SrB27

�
;

B50 = Sc
�
Re
�
A56

4�2 � A55

4�3

�
� SrB30

�
;

B51 = �SrScB32; B52 = Sc[Re
A52

4�2 � SrB33];

B53 = �SrScB35;

B54 = Sc[Re
A55

4�2 � SrB34];

B55 = Sc[Re
(A63 +A67)

18�2 � SrB36];

B56 = Sc
�
Re

(A64 +A65)
18�2 � SrB37

�
;

B57 = �3A19

2�3 +
A17

2�2 +A23�2;

B58 = �A20

8�2 +
A18

4�
; B59 =

A19

8�
;

B60 = �3A20

2�3 +
A18

2�2 +A24�2;

B61 = �A19

8�2 +
A17

4�
; B62 =

A20

8�
; B63 = �A16

2�2 ;

B64 =4A3�2A15 + �(�2A1A3A03�4

+ 2A02A3A4�5 + 6A01A2
3�

4 � 6A3A04�3);

B65 =4A3�2B59 + 4A4�B56 + �(�2A1A3A04�4

� 2A03A1A4�4 + 2A02A03�5 + 2A2
4A
0
2�

5);

B66 =4A4�2B59 + �(�2A1A4A04�4

+ 2A02A3A4�5 + 6A01A2
4�

4 � 6A4A03�3);

B67 = 4A4�2B62 � 6�A01A4�2;

B68 = 4A4�2B62 � 6�A01A3�2;

B69 = 6�A03A2
4�

5; B70 = 6�A04A2
3�

5;

B71 = 12�A3A03A4�5 + 6�A04A2
4�

5;

B72 = 12�A3A04A4�5 + 6�A03A2
3�

5;

B73 = 4A3�2R7 + 2�A01A3A4�5;

B74 = 4A3�2B58; B75 = 4A4�2B60 + 2�A01A3A4�5;

B76 = 4A4�2B61;

B77 = 4A3�2B60 + 4A4�5B57

+ 2�A01A2
3�

5 + 2�A01A2
4�

5;

B78 = 4A3�2R11 + 4A4�5B58;

B79 = A1A05 �A02A6;



A.A. Khan et al./Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 2650{2662 2661

B80 = A1A06 �A01A6 � 2A02A7;

B81 = �2A01A7 +A1A07;

B82 = A1A08 � 2A02A9�;

B83 = �2A01A9�; B84 = A1A08 � 2A02A9�;

B85 = �2A01A8�; B86 = A3A05��A04A6;

B87 = A3A06�� 2A04A7; B88 = A3A07�;

B89 = A4A01��A03A6; B90 = A4A06�� 2A03A7;

B91 = A4A08�; B92 = A3A09�� 2A04A8�;

B93 = A4A08�� 2A03A9�;

B94 = A3A08�� 2A04A9�;

B95 = A4A09�� 2A03A8�;

where prime denotes the derivative with respect to x:

� =
M cos p

2
;

C1 = cosh�h1 � cosh�h2;

C2 = sinh�h1 � sinh�h2;

C3 = cosh�h1 + cosh�h2;

C4 = sinh�h1 + sinh�h2;

C5 = A2 + 2��A3; C6 = A1 + 2��A4;

C7 =
C6C1 � C2C5

(h2 � h1)C5

� C6(� sinh�h1 + 2�2� cosh�h1)
C5

+ � cosh�h1 + 2�2� sinh�h1;

C8 =
C6 cosh�h1

C5
� sinh�h1 � h1(C6C1 � C2C5)

(h2 � h1)C5
;

C9 =
C6 cosh�h2

C5
� sinh�h2 � h2(C6C1 � C2C5)

(h2 � h1)C5
;
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