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Abstract. This paper deals with permutation 
ow shop scheduling to minimize makespan.
Some novel, useful de�nitions and properties are established. Then, the paper proposes
novel solution methods. Particular attention is paid to algorithms based on the orderings of
pairs of jobs. The �rst algorithm is for three-machine problems; it gives an optimal solution
in a certain strict sense in the case of the ordering of two jobs. Moreover, the paper extends
the three-machine Johnson's rule to the general case of m-machine problems.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In scheduling, there is a set of n jobs that need
to be processed by a set of m machines [1]. The
problem is how to schedule jobs on machines so that
certain objectives, which are mainly time-oriented, are
achieved. A Flow-shop Scheduling Problem (FSP) is a
certain type in which all of the n jobs follow essentially
the same progression from one machine to the next.
The machines are numbered in accordance with their
appearance in this progression [2].

In FPS, a schedule S is the sequence of n jobs on
m machines. A schedule of FPS in which the sequences
of all the jobs are the same on all the machines is called
a permutation schedule, �. The name \permutation
schedule" is derived from the fact that, with the n jobs
serially labeled, the set of n! permutation of the �rst
n positive integers corresponds to the set of possible
permutation schedules.

The completion time of job j, denoted by Cj ,
is the time at which the process of job j on the last
machine is accomplished. The notation Cj(S) or Cj(�)
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is used to denote the completion of job j for a given
schedule, S, or permutation schedule, �. Objective
functions are often the functions of the Cj(S) or
Cj(�). This paper is concerned with such a particular
objective function, namely, makespan:

Cmax(S) = max
j
Cj(S):

An optimal schedule, S�, is one such that:

Cmax(S�) = max
S

Cmax(S):

An optimal permutation schedule, ��, is one such that:

Cmax(��) = max
�

Cmax(�):

It is shown by Conway [3] that when the number of
machines is 2 or 3, then S� and ��, the optimal schedule
and optimal permutation schedule, respectively, are
such that:

Cmax(S�) = Cmax(��):

In other words, in the case of m = 2 or 3,
an optimal permutation schedule is also an optimal
general schedule. In view of this, one may restrict
attention to the permutation schedules when m = 2
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or 3. In fact, very often, the studies are restricted
to permutation schedules also in m > 3. This is
because the problem of �nding S� is unwieldy. Unless
otherwise speci�ed, the term \schedule" is hereinafter
used for both a general schedule S and a permutation
schedule �.

In recognition of the prototype of such an ordering
algorithm proposed by Johnson [4], this paper pays
particular attention to the algorithms based on the or-
dering of pairs of jobs in a permutation PFS. This paper
calls such ordering algorithms \pairwise J-ordering".

First, motivated by Johnson' work, the two ab-
stract properties of \transitivity" and \job-adjunction-
robustness" are de�ned as su�cient for a pairwise J-
ordering algorithm to lead to an optimum permutation
schedule. Since transitivity are not often realized in
practice, result on partial optimality is discussed, when
pairwise J-ordering algorithms fail to be transitive.
Next, a pairwise J-ordering algorithm for 3-machine
permutation FSP is proposed. It is shown that
the algorithm coincides with the standard 3-machine
adaptation of Johnson' ordering [4,5]. Finally, this
paper extends the 3-machine adaptation of Johnson's
ordering to the general case of m-machine permutation
FSP and determines m situations in which the algo-
rithm reaches the optimal permutation schedule.

The rest of the paper is organized as follows.
Section 2 is devoted to literature review. Section 3
introduces some de�nitions and properties. Section 4
proposes pairwise J-ordering algorithms. Section 5
concludes the paper and gives some interesting future
research directions.

2. Literature review

For decades, scheduling has been an active research
�eld. Consequently, one can dare to say that the
�eld of scheduling theory is a very large one. Even
though it has seen tremendous research e�orts, a great
many problems still remain unsolved. Johnson's well-
known work [4] is one of the pioneering contributions
of the �eld, and is concerned with scheduling n jobs
in a 2-machine 
ow shops. He also introduces a
related algorithm covering special cases in 3-machine

ow shops.

From initial papers, one might refer readers to
the following papers. Giglio and Wagner [6] analyze
the 3-machine scheduling problem empirically by inte-
ger programming, linear programming, Monte Carlo,
and Johnson's approach. None of the techniques
tested prove to be superior to the others. Dudek
and Teuten [7] attempt a general algorithm for the
m-machine 
owshop for which Karush [8] exhibits
a counter example. Smith and Dudek [9] try to
correct the algorithm, but the resulting algorithm is
ine�cient [10]. A comparative study of 
ow shop

algorithms, reminiscent of the earlier empirical study
of Giglio and Wagner [6], is made by Baker [11].
Using a set of test problems, Baker [11] investigates
various branch-and-bound and elimination strategies,
and combines these in a new e�cient algorithm.
Dannenbring [12] continues in the tradition set by
Giglio and Wagner [6] and Baker [11], and presents
a computational experience with eleven heuristics 
ow
shop algorithms.

Smith et al. [13] propose a simple and e�cient
algorithm for certain special cases of the m-machine

ow shop problem. Three special cases of 
ow shop
problems are solved by Szwarc [14] based on the critical
path concept [3]. Burns and Rooker [5] relax the
condition given by Johnson [4] for solving 3-machine
problems and also provide a further condition under
which Johnson's 2-machine 
ow shop algorithm can be
adapted to deriving an optimum permutation schedule
for the 3-machine 
ow shop.

Another research direction is the presentation of
approximation algorithms, where they mainly focus
on general m-machine cases. Palmer [15] presents a
heuristic which assigns an index to every job, and then
produces a sequence after sorting the jobs according
to the calculated index. Campbell et al. [16] develop
another heuristic which is basically an extension of
Johnson's algorithm to the m-machine case. The
heuristic constructs m-1 schedules by grouping the m
original machines into two virtual machines and solving
the resulting two-machine problems by repeatedly us-
ing Johnson's rule. Nawaz et al. [17] introduce another
heuristic, namely NEH, which is still claimed to be
superior to any other available heuristics [18]. The
NEH, �rst, sorts jobs according to their total processing
times. Then, it inserts jobs one by one into all possible
positions among the previously scheduled jobs. The
list of heuristics seems almost endless.

More recent papers have mainly focused on
metaheuristics. Among the di�erent algorithms, one
can cite the hybrid backtracking search algorithm by
Lin et al. [19], the hybrid arti�cial bee colony algorithm
by Li and Pan [20], the variable neighborhood search
By Moslehi and Khorasanian [21], the discrete
arti�cial bee colony algorithm by Ribas et al. [22], the
improved cuckoo search algorithm by Marichelvam et
al. [23], the genetic algorithm by Ruiz et al. [24], the
ant colony by Lin et al. [25], the simulated annealing
by Naderi et al. [26], the tabu search by Ek�sio�glu et
al. [27], the particle swarm optimization by Jarboui
et al. [28], the iterated greedy algorithm by Ruiz and
St�utzle [29], and so on.

3. Some novel de�nitions and properties

It is said that job i precedes job j in a permutation
schedule, �, if job i appears before job j in the
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sequence. This is denoted by i � j. Also, the
processing time, including the setup time, of job i on
machine 1 is denoted by Ai; similarly, the processing
time, including the setup time, of job I on machines 2
and 3 are denoted by Bi and Ci, respectively, and so
on for subsequent machines.

This paper is concerned with techniques to deter-
mine optimum permutation schedules, ��. An alterna-
tive method is to utilize an algorithm which tells how
to order the jobs as s function of the parameters Ai, Bi,
Ci, and so on. A subclass of such algorithms, of which
Johnson's algorithm [4] is the outstanding example,
consists of algorithms centered on the ordering of pairs
of jobs as a function only of their own parameters.
Such algorithms are called pairwise J-orderings. Often
the simplicity of these algorithms depends on their
assumptions on parameters Ai, Bi, and so on.

De�nition 1. Pairwise J-ordering: Any ordering
of two jobs can be thought of as based on a function
f(A1; B1; � � � ; A2; B2; � � � ) such that:

f(A1; B1; � � � ; A2; B2; � � � )
� f(A2; B2; � � � ; A1; B1; � � � ), 1� 2:

In a given parametric problem, for which all parameters
of all n jobs are speci�ed, the function f can be replaced
by a simpler function g:

g(1; 2) = f(A1; B1; � � � ; A2; B2; � � � ):
The following example shows that it is not, in general,
possible to get an optimal ordering of n jobs by means
of optimal pairwise J-ordering.

Example 1. Consider an FSP with n = 3 and m = 3.
Table 1 shows the processing time.

If we only consider the problem of �nding the
optimal ordering of jobs 2 and 3, it is observed that
the permutation schedule �0 : (2; 3) is better than the
permutation schedule �00 : (3; 2), because Cmax(�0) =
44, and Cmax(�00) = 45. On the other hand, we have:

�1 : (1; 2; 3) where Cmax(�1) = 59;

�2 : (1; 3; 2) where Cmax(�2) = 56;

�3 : (2; 1; 3) where Cmax(�3) = 59;

Table 1. The processing time of Example 1.

Job i Ai Bi Ci
1 5 15 11
2 5 14 10
3 9 12 13

�4 : (2; 3; 1) where Cmax(�4) = 57;

�5 : (3; 1; 2) where Cmax(�5) = 60;

�6 : (3; 2; 1) where Cmax(�6) = 61;

therefore, �2 = ��. It is clear that the ordering of jobs
2 and 3 in the optimal permutation schedule �2 violates
their ordering in �0.

De�nition 2. Schematic tables: Any pairwise J-
ordering of n jobs can be portrayed by a \Schematic
table" where the symbol� or� appears in the (i; j)th
entry of the table in accordance with whether i� j or
j � i.

Figure 1 shows a general schematic table for a
pairwise J-ordering.

Schematic tables of this type are also useful
for displaying pairwise order relationships among the
members of subsets of jobs. Revising Johnson's algo-
rithm, it could be considered as a pairwise J-ordering
with the following function:

g(i; j) = min(Ai +Bi; Bj + Cj):

The schematic table of Example 1, using the above
pairwise J-ordering, is shown in Figure 2.

De�nition 3. Transitivity: A pairwise J-ordering
is said to be transitive if i1 � i2 and i2 � i3 imply
i1 � i3.

Figure 1. A general schematic table for a pairwise
J-ordering.

Figure 2. The schematic table of Example 1.
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Figure 3. Rearranged schematic table under transivity.

Under transitivity, it is always possible to arrange
jobs in such a way that only the sign � appears in
the schematic table. Rearrangement of the previous
schematic table under transitivity, is shown in Figure 3.

De�nition 4. Job-Adjunction-Robustness:
A pairwise J-ordering is said to be JAR (Job-
Adjunction-Robustness) if the following is true: Let
� be any ordering of n jobs such that at least one
neighboring pair of jobs is ordered in violation of this
pairwise J-ordering. Let �0 be an ordering obtained
from � by interchanging the positions of the jobs
composing this violating neighboring pair. Then,
Cmax(�0) � Cmax(�).

The JAR property and transitivity of a pairwise
J-ordering are su�cient to insure that the algorithm
which orders jobs in accordance with the pairwise J-
ordering furnishes an optimal ordering ��. This is
veri�ed in the following theorem.

Theorem 1. Let a pairwise J-ordering be both JAR
and transitive, then an ordering, ��, consistent with
this pairwise J-ordering is optimal.

Proof. Suppose not. Without loss of generality, let
�� be (1; 2; � � � ; n) and let �0 : (i1; i2; � � � ; in) be any
optimal ordering where il is the job in lth position
in optimal ordering. Let k be the �rst job in �� for
which we have ik 6= k. Therefore, there is an il,
where l > k, such that k = il. Clearly, il and il�1
are not ordered as in �� (i.e., il precedes il�1), and
are neighbors. Interchanging il and il�1, we get a
new ordering �1 which has, using JAR property, the
following relationship with �0:

Cmax(�1) � Cmax(�0):

We can continue the procedure of interchange of il with
its left neighbors until it replaces ik, and ik moves
one position to the right in the ordering �l�k, and
repeatedly. Moreover, using JAR property, �l�k has
the following relationship with �0:

Cmax(�l�k) � Cmax(�0):

If �l�k is the same as ��, then we are done. If not, let
k0 be the next job in �� for which ik0 6= k0. We can

treat �l�k as we treated �0 to get a further ordering in
�l0�k0 such that:

Cmax(�l0�k0) � Cmax(�l�k) � Cmax(�0):

Continuing in this way for all the subsequent jobs, we
�nally reach �� and �nd:

Cmax(��) � � � � � Cmax(�l�k) � Cmax(�0);

which shows that �� is optimal, thus a contradiction. �

De�nition 5. Transitive skeins: If a pairwise J-
ordering is given for ordering n jobs, then a subset
of jobs for which the corresponding schematic table
exhibits transitivity (i.e., a subset uniquely ordered by
the pairwise J-ordering) is called a transitive skein for
that pairwise J-ordering.

If the set of all n jobs involved in the problem
forms a transitive skein for the pairwise J-ordering,
then the pairwise J-ordering is, of course, transitive. In
order to establish a relationship between optimal order-
ings and transitive skeins under a JAR-type property,
it is natural to strengthen the latter and to state the
following de�nition.

De�nition 6. A Restricted JAR property: A
pairwise J-ordering is said to have the strong JAR
property if the following is held: In a given ordering, �,
if we interchange the order of any Teo jobs which are
ordered in accordance with the schematic table of the
pairwise J-ordering to get a new ordering �0, then we
have:

Cmax(�0) � Cmax(�):

The following theorem deduces properties of optimal
orderings under the strong JAR property, when tran-
sitivity does not necessarily obtain.

Theorem 2. When a pairwise J-ordering has the
strong JAR property, then all transitive skeins appear
as transitively ordered subsets in at least one of the
optimal orderings ��.

Proof. Suppose not. Without loss of generality, sup-
pose the naturally ordered skein of jobs 1; 2; � � � ; k
appears as a transitively ordered subset in no optimal
ordering. Let �0 be any optimal ordering, for which
the jobs 1; 2; � � � ; k would not appear in the natural
order. Clearly, at most, k pairwise interchanges (not
necessarily of neighbors) would alter �0 into a new
ordering �� in which the k jobs appear in their natural
order. By the strong JAR property, it will be true
that Cmax(��) � Cmax(�0), so that �� is optimal and
a contradiction is reached. �
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A well-known example of an algorithm based on
a pairwise J-ordering, which is transitive and JAR, is
Johnson's algorithm form = 2. This algorithm is based
on the pairwise J-ordering for which:

g(i; j) = min(Ai; Bj); i 6= j:

As de�ned earlier, Ai is the processing time, including
the setup time, of job i on machine 1. Bj is the
processing time, including the setup time, of job j on
machine 2. We order job i before job j, i.e. i � j if
g(i; j) � g(j; i).

For m > 2, it is di�cult to �nd pairwise J-
orderings that are transitive and JAR. However, it is
sometimes possible to identify a pairwise J-ordering
that is both JAR and transitive under suitable condi-
tions on the parameters Ai, Bi, Ci, and so on. An
example of this [5], for m = 3, is the pairwise J-
ordering for which (i; j) = min(Ai + Bi; Bj + Cj).
Conditions under which this pairwise J-ordering is
both JAR and transitive are:

i) Bi � Cj for all i 6= j;

ii) Bi � Aj for all i 6= j;

iii) Bi � min(Ai; Ci) for all i: (1)

De�nition 7. Uniqueness: If, for some pairs (i; j),
we have g(i; j) = g(j; i), pairwise J-ordering algorithms
that are both transitive and JAR will lead to several
optimal orderings and to a single optimal ordering,
when no such pairs exist.

This does not mean, of course, that the latter
case is an indication of the uniqueness of the optimal
ordering. An example of this in the context of
Johnson's algorithm is as follows.

Example 2. Consider a FSP with n = 3 and m = 2.
Table 2 shows the processing time.

Using Johnson's algorithm, we obtain the follow-
ing ordering: �� : (2; 1; 3), where we have Cmax(��) =
61, while another ordering �0 : (2; 3; 1) has Cmax(�0) =
61, which is another optimal ordering.

4. Solution methods

This section provides two solution methods centered on
the idea of pairwise J-ordering. The �rst one is for 3-
machine PFS and the second is for general m-machine

Table 2. The processing time of Example 2.

Job i Ai Bi
1 14 19
2 10 20
3 16 12

PFS. For both algorithms, it will be shown that the
cases are both JAR and transitive.

4.1. A pairwise J-ordering for the case of
m = 3

This section introduces a pairwise J-ordering, called
J3-ordering whose primary motivation is the ordering
of two jobs in a 3-machine PFS. Indeed, the J3-ordering
is shown in Theorem 3 to be JAR for the case of
n = 2, i.e. it is shown to provide optimal ordering
for that special case. Moreover, it is discussed that J3-
ordering has also certain further properties in the case
of arbitrary n.

As earlier mentioned, in any pairwise J-ordering
algorithm, jobs are sequenced in pairs by a function
called function g. The function used in J3-ordering
algorithm is:

g(i; j) = f(Ai; Bi; Bj ; Cj) = min(Ai; Bj)

+ I(Ai �Bj)I(Cj �Bi) min(Ai +Bi �Bj ; Cj)
+ [1� I(Ai �Bj)I(Cj �Bi)] min(Bi; Cj); (2)

where:

I(x) =

(
1; if x � 0
0; if x < 0

Theorem 3. J3-ordering algorithm gives the optimal
ordering for the case of 2-job and 3-machine 
ow shop
scheduling.

Proof. This theorem means job 1 proceeds job 2 if
g(1; 2) � g(2; 1). Let (A1; B1; C1) and (A2; B2; C2) be
the parameters of the problem. Further abbreviating
notations to be used are as follows:

1:� 2 : Schedule job 1 before job 2,

not job 2 before job 1; (3)

2:� 1 : Schedule job 2 before job 1,

not job 1 before job 2; (4)

1k2 : Schedule either job �rst. (5)

We identify twenty exhaustive parametric cases involv-
ing the six constants A1; � � � ; C2, for which the resolu-
tion of the question of optimal precedence between jobs
1 and 2 is made clear. Because of the equalities in the
parametric characterization of these twenty cases, the
latter are not mutually exclusive. However, it is clear
that when the same parametric condition appears more
than once, the same ordering conclusion exists.
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- Case 1. If A1 � B2, C2 � B1, A2 � B1, and
C1 � B2, then 1: � 2, 2: � 1, or 1k2, according to
whether A1 +C2 � A2 +C1, A1 +C2 > A2 +C1, or
A1 + C2 = A2 + C1, where the relationship between
A1 +C2 and A2 +C1 is called the \key relationship"
for case 1. To avoid uninformative repetition in
the remaining nineteen cases, this last assertion is
condensed to:

A1 � B2; C2 � B1; A2 � B1; C1 � B2 :

1 : 2 :: (A1 + C2) : (A2 + C1):

- Case 2. A1 � B2, B1 � C2, A2 � B1, C1 � B2:

1 : 2 :: (A1 +B1) : (A2 + C1):

- Case 3. B2 � A1, C2 � B1, A2 � B1, C1 � B2:

1 : 2 :: (B2 + C2) : (A2 + C1):

- Case 4. A1 � B2, C2 � B1, A2 � B1, B2 � C1:

1 : 2 :: (A1 + C2) : (A2 +B2):

- Case 5. A1 � B2, B1 � C2, A2 � B1, B2 � C1:

1 : 2 :: (A1 +B1) : (A2 +B2):

- Case 6. B2 � A1, C2 � B1, A2 � B1, B2 � C1:

1 : 2 :: (C2) : (A2):

- Case 7. A1 � B2, C2 � B1, B1 � A2, C1 � B2:

1 : 2 :: (A1 + C2) : (B1 + C1):

- Case 8. A1 � B2, B1 � C2, B1 � A2, C1 � B2:

1 : 2 :: (A1) : (C1):

- Case 9. B2 � A1, C2 � B1, B1 � A2, C1 � B2:

1 : 2 :: (B2 + C2) : (B1 + C1):

- Case 10. B2 � A1, B1 � C2, B1 � A2, C1 � B2,
B1 +A1 �B2 � C2:

1 : 2 :: (A1) : (C1):

- Case 11. A1 � B2, C2 � B1, B1 � A2, B2 � C1,
B2 +A2 �B1 � C1:

1 : 2 :: (A1 + C2) : (A2 +B2):

- Case 12. A1 � B2, B1 � C2, B1 � A2, B2 � C1,
B2 +A2 �B1 � C1:

1 : 2 :: (A1 +B1) : (A2 +B2):

- Case 13. B2 � A1, C2 � B1, B1 � A2, B2 � C1,
B2 +A2 �B1 � C1:

1 : 2 :: (C2) : (A2):

- Case 14. B2 � A1, B1 � C2, B1 �A2, B2 � C1,
B1 +A1 �B2 � C1, B2 +A2 �B1 � C1:

1 : 2 :: (A1 +B1) : (A2 +B2):

- Case 15. B2 � A1, B1 � C2, B1 � A2, B2 � C1,
C2� B1 +A1 �B2, B2 +A2 �B1 � C1:

1 : 2 :: (C2) : (A2):

- Case 16. A1 � B2, C2 � B1, B1 � A2, B2 � C1,
C1� B2 +A2 �B1:

1 : 2 :: (A1 + C2) : (B1 + C1):

- Case 17. A1 � B2, B1 � C2, B1 � A2, B2 � C1,
C1�B2 +A2 �B1:

1 : 2 :: (A1) : (C1):

- Case 18. B2 � A1, C2 � B1, B1 � A2, B2 � C1,
C1�B2 +A2 �B1:

1 : 2 :: (B2 + C2) : (B1 + C1):

- Case 19. B2 � A1, B1 � C2, B1 � A2, B2 � C1,
C1� B2 +A2 �B1, A1 +B1 �B2 � C2:

1 : 2 :: (A1) : (C1):

- Case 20. B2 � A1, B1 � C2, B1 � A2, B2 � C1,
C2� B1 +A1 �B2, C1 � B2 +A2 �B1:

1 : 2 :: (B2 + C2) : (B1 + C1):

We intend to prove the assertion of the theorem in the
following steps:

(a) We consider the condition g(1; 2) < g(2; 1) in
the context of each of the twenty exhaustive
parametric cases, and �nd that, in every case, it
leads to the inequality in the key relationship that
corresponds to 1:� 2;

(b) We consider the condition g(1; 2) > g(2; 1) in
the context of each of the twenty exhaustive
parametric cases, and �nd that, in every case, it
leads to the inequality in the key relationship that
corresponds to 2:� 1;

(c) We consider the condition g(1; 2) = g(2; 1) in
the context of each of the twenty exhaustive
parametric cases, and �nd that, in every case, it
leads to the inequality in the key relationship that
corresponds to 1k2.
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Due to the similar procedure to prove, we do not
examine parts (a), (b), and (c) for all twenty cases
in details, yet only part (a) for cases 1, 6, 7, and 10.
The discussion would employ the following notations:
�1 : (1; 2) and �2 : (2; 1).

- Examining Part (a) for Case 1. Suppose that
Relation (3) is held using Relation (2). We get A1 +
C2 < A2 + C1. By adding B1 + B2 to both sides,
we have: A1 + B1 + B2 + C2 < A2 + B1 + B2 +
C1. Using the Gannt chart in Figures 4 and 5, we
observe that the A1 +B1 +B2 +C2 = Cmax(�1) and
A2 + B1 + B2 + C1 = Cmax(�2). Hence, it implies
that Cmax(�1) < Cmax(�2).

Therefore, we have examined part (a). Sim-
ilarly, we could easily prove parts (b) and (c) by
considering A1 + C2 > A2 + C1 and A1 + C2 =
A2 + C1, respectively.

- Examining Part (a) for Case 6. Consider that
Relation (3) is held using Relation (2). Then, we get
B2+C2 < A2+B2. Adding A1+B1+C1�C2 to both
sides, we have: A1+B1+C1+C2 < A2+A1+B1+C1.
Figures 6 and 7 specify that Cmax(�1) < Cmax(�2).

- Examining Part (a) for Case 7. Assume that
Relation (3) is held using Relation (2), then we reach
A1 + C2 < B1 + C1. By adding A2 + B2 to both
sides, the inequality becomes A1 + A2 + B2 + C2 <
A2+B2+B1+C1. As it is shown by Figures 8 and 9,
we know that Cmax(�1) = A1 + A2 + B2 + C2 and
Cmax(�2) = A2 + B2 + B1 + C1 where Cmax(�1) �
Cmax(�2).

- Examining Part (a) for Case 10. Considering
Relation (2), assume that A1 < C1. Then, we can
rewrite the inequality by adding A2+B2+C2 to both
of its sides: A1+A2+B2+C2 < A2+B2+C2+C1. As
it is implied by Figures 10 and 11, we can conclude
Cmax(�1) � Cmax(�2).

The same procedure could be applied to all the other
cases, and this completes the proof. �

In the next section, we show that J3-ordering is

Figure 4. The Gantt chart of �1 for Case 1.

Figure 5. The Gantt chart of �2 for Case 1.

Figure 6. The Gantt chart of �1 for Case 6.

Figure 7. The Gantt chart of �2 for Case 6.

Figure 8. The Gantt chart of �1 for Case 7.

Figure 9. The Gantt chart of �2 for Case 7.

Figure 10. The Gantt chart of �1 for Case 10.

Figure 11. The Gantt chart of �2 for Case 10.

equivalent to the well-known 3-machine adaptation of
Johnson's pairwise J-ordering under the three para-
metric conditions in Relations (1) of Section 3 that
have been advanced by Burns and Rooker [5]. In
other words, under the three parametric conditions in
Relations (1) of Section 3, J3-ordering is conditionally
JAR and transitive, so that J3-ordering provides an
optimal ordering under these conditions.

Theorem 4. If, in a 3-machine 
ow shop, the param-
eters Ai, Bi, and Ci satisfy any of the conditions in
Relations (1), then function g in Relation(2) becomes
the following function:
g(i; j) = min(Ai +Bi; Bj + Cj):
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Proof. Suppose that the �rst condition holds. Func-
tion g ln Relations (1) becomes:

g(i; j) =Bj + I(Ci �Bj) min(Ai +Bi �Bj ; Cj)
+ [1� I(Cj �Bj)] min(Bi; Cj)

=

8>>>>>><>>>>>>:
Bj + Cj ; if (Cj � Bi) or (Cj < Bi

and Cj � Ai +Bi �Bj)

Ai +Bi if (Cj � Bi
and Ai � Bi �Bj < Cj

= min(Ai +Bi; Bj + Cj):

Suppose that the second condition holds. Function g
in Relations (1) becomes:

g(i; j) = min(Ai; Bj)

+ I(Ai �Bj) min(Ai +Bi �Bj ; Cj)
+ [1� I(Ai �Bj)] min(Bi; Cj)

=

8>>>>>><>>>>>>:
Ai +Bi; if (Ai � Bj) or (Bj < Ai

and Ai +Bi �Bj < Cj)

Bj + Cj if (Bj � Ai
and Cj � Ai +Bi �Bj)

= min(Ai +Bi; Bj + Cj):

Suppose that the third condition holds. Function g in
Relations (1) becomes:

g(i; j) =

8>>><>>>:
Ai +Bi; if (Ai � Bj) or (Bj < Ai

and Ai +Bi �Bj � Cj)

Bj + Cj if (Bj � Ai and Cj < Bi)

= min(Ai +Bi; Bj + Cj):

Note that the above function g cannot be Ai + Cj ,
because if g(i; j) = Ai + Cj , then we have:

Bj > Ai; Ai � Bi; and Bi > Cj ;

which imply that Bj > Cj , a contradiction to the third
condition.�
4.2. Generalization of Johnson's algorithm to

the case of m > 3
This section extends the Johnson's algorithm to the
case of m > 3, which generalizes the results obtained
by Burns and Rooker [5] for the case of m = 3. First,

the paper studies the subject through a theorem for
m = 4 and provides an example. Then, the paper
extends the analysis to the case of m > 4.

For the case of m = 4, we de�ne the function g
used in pairwise J-ordering as follows:

g(i; j) = min(Ai +Bi + Ci; Bj + Cj +Dj): (6)

In the following, we investigate the conditions under
which an optimal ordering can be found by the pairwise
J-ordering algorithm.

Theorem 5. In a 4-machine permutation 
ow shop
with n > 2, the pairwise J-ordering based on the
function in Eq. (6) achieves the optimal ordering under
any of the following four conditions:

(i) Ci � Bj ; Bi � Aj for all i 6= j;

(ii) Bi � Cj ; Ci � Dj for all i 6= j;

(iii) Bi � Aj ; Ci � Dj for all i 6= j;

(iv) Bi + Ci � min(Ai; Di) for all i.

Proof. Let � be any permutation schedule. Let us
denote the idle time on machines 2, 3, and 4 by Xi, Yi,
and Zi, respectively, just before the processing of ith
job processed. The dependence of the Xi, Yi, and Zi on
� will be made explicit by adopting the notation Xi(�),
Yi(�), and Zi(�). Moreover, an analogous notation
adopted for the processing times, with Ai(�) as an
example, denotes the processing time of ith job in � on
machine 1. Figure 12 illustrates permutation schedule
� and Xi(�), Yi(�), Zi(�), Ai(�), Bi(�), Ci(�), and
Di(�).

It is readily veri�ed by Figure 12 that we have
Cmax(�) =

Pn
i=1Di(�)+

Pn
i=1 Zi(�), so that minimiz-

ing Cmax(�) is equivalent to minimizing
Pn
i=1 Zi(�).

It is the latter that is now shown to be minimized
under conditions (i), (ii), (iii) or (iv) by the pairwise
J-ordering based on function g presented in Eq. (6).
The proof of the theorem proceeds in several steps:

- Step 1. We have:

Figure 12. An illustration of typical �.
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Z1(�) = Y1(�) + C1(�) = X1(�) +B1(�) + C1(�)

= A1(�) +B1(�) + C1(�);

Z2(�) = max(C1(�) + C2(�) + Y1(�) + Y2(�)

�D1(�)� Z1(�); 0);

...

Zn(�) = max

 
nX
i=1

Ci(�) +
nX
i=1

Yi(�)�
n�1X
i=1

Di(�)

�
n�1X
i=1

Zi(�); 0

!
; (7)

where:

Y1(�) = X1(�) +B1(�) = A1(�) +B1(�);

Y2(�) = max(B1(�) +B2(�) +X1(�) +X2(�)

� C1(�)� Y1(�); 0);

...

Yn(�) = max

 
nX
i=1

Bi(�) +
nX
i=1

Xi(�)�
n�1X
i=1

Ci(�)

�
n�1X
i=1

Yi(�); 0

!
; (8)

with:

X1(�) = A1(�);

X2(�) = max(A1(�)+A2(�)�B1(�)�X1(�); 0);

...

Xn(�) = max

 
nX
i=1

Ai(�)

�
n�1X
i=1

Bi(�)�
n�1X
i=1

Xi(�); 0

!
: (9)

From Eq. (7), we know:

nX
i=1

Zi(�) = max

 
nX
i=1

Ci(�)�
n�1X
i=1

Di(�)

+
nX
i=1

Yi(�);
n�1X
i=1

Zi(�)

!
=max

 
nX
i=1

Ci(�)

�
n�1X
i=1

Di(�) +
nX
i=1

Yi(�);
n�1X
i=1

Ci(�)

+
n�2X
i=1

Di(�)+
n�1X
i=1

Yi(�); � � � ; C1(�)+C2(�)

�D1(�)+Y1(�)+Y2(�); C1(�)+Y1(�)

!
:

But, from Eqs. (8) and (9), we have:

nX
i=1

Yi(�) = max

" 
nX
i=1

Ai(�)�
n�1X
i=1

Bi(�)

!
+

 
nX
i=1

Bi(�)�
n�1X
i=1

Ci(�)

!
;

 
n�1X
i=1

Ai(�)�
n�2X
i=1

Bi(�)

!
+

 
n�1X
i=1

Bi(�)�
n�2X
i=1

Ci(�)

!
;� � �;

 
2X
i=1

Ai(�)�B1(�)

!
+

 
2X
i=1

Bi(�)� C1(�)

!
; (A1(�)) + (B1(�))

#
;

and:

nX
i=1

Xi(�) = max

" 
nX
i=1

Ai(�)�
n�1X
i=1

Bi(�)

!
;

 
n�1X
i=1

Ai(�)�
n�2X
i=1

Bi(�)

!
; � � � ;

 
2X
i=1

Ai(�)�B1(�)

!
; (A1(�))

#
:

Simpli�cation of
Pn
i=1 Zi(�) based on the last two

equalities now yields:

nX
i=1

Zi(�) = max

" 
nX
i=1

Ci(�)�
n�1X
i=1

Di(�)

!
+

 
nX
i=1

Ai(�)�
n�1X
i=1

Bi(�)

!
+

 
nX
i=1

Bi(�)�
n�1X
i=1

Ci(�)

!
;

 
n�1X
i=1

Ci(�)�
n�2X
i=1

Di(�)

!
+

 
n�1X
i=1

Ai(�)�
n�2X
i=1

Bi(�)

!
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+

 
n�1X
i=1

Bi(�)�
n�2X
i=1

Ci(�)

!
;� � �;

 
2X
i=1

Ci(�)�D1(�)

!
+

 
2X
i=1

Ai(�)�B1(�)

!
+

 
2X
i=1

Bi(�)�C1(�)

!
;

(C1(�)) + (A1(�)) + (B1(�))

#
:

(10)

Let:

H1(�) = A1(�);

K1(�) = B1(�);

L1(�) = C1(�);

Hu(�) =
uX
i=1

Ai(�)�
u�1X
i=1

Bi(�);

u = 2; 3; � � � ; n;

Kv(�) =
vX
i=1

Bi(�)�
v�1X
i=1

Ci(�);

v = 2; 3; � � � ; n;

Lw(�) =
wX
i=1

Ci(�)�
w�1X
i=1

Di(�);

w = 2; 3; � � � ; n: (11)

Substituting Eq. (11) in Eq. (10), we have:

nX
i=1

Zi(�) = max[(Hn(�) +Kn(�) + Ln(�));

(Hn�1(�) +Kn�1(�) + Ln�1(�)); � � � ;
(H2(�) +K2(�) + L2(�));

(H1(�) +K1(�) + L1(�))];

which may be condensed to:

nX
i=1

Zi(�)= max
1�u�v�w�n[Hu(�) +Kv(�) + Lw(�)]:

(12)

- Step 2. The next step is to examine the square-
bracketed quantity on the R.H.S. of Eq. (12) and
to derive certain algebraic conditions (conditions
(*), (**), and (***) below) that insure this square-
bracketed quantity may be bounded by certain more

elementary expressions. To this end, consider any
given ordering � and any integer u, v, and w, such
that 1 � u � v � w � n. Then:

Hu(�) +Kv(�) + Lw(�) � max(Hu(�) +Ku(�)

+ Lu(�);Hv(�) +Kv(�) + Lv(�);Hw(�)

+Kw(�) + Lw(�)), fKu(�) + Lw(�)

� Ku(�) + Lu(�)g;
or:

fHu(�) + Lw(�) � Hv(�) + Lv(�)g;
or:

fKu(�) + Lw(�) � Ku(�) + Lu(�)g

,
(

vX
i=u+1

Bi(�)�
wX
i=v

Ci(�)�Cu(�)�
w�1X
i=u

Di(�)

)
;

or:(
v�1X
i=u

Bi(�)�
wX

i=v+1

Ci(�)�
vX

i=u+1

Ai(�)+
w�1X
i=v

Di(�)

)
;

or:(
vX
i=u

Bi(�)�
w�1X
i=v

Ci(�) �
wX

i=u+1

Ai(�) +Bw(�)

)
, f(*) or (**) or (***)g;

where (*), (**), and (***) are as follows:

(�)
vX

i=u+1

Bi(�)�
wX
i=v

Ci(�)�Cu(�)�
w�1X
i=u

Di(�):

(��)
v�1X
i=u

Bi(�)�
wX

i=v+1

Ci(�)�
vX

i=u+1

Ai(�)+
w�1X
i=v

Di(�):

(� � �)
vX
i=u

Bi(�)�
w�1X
i=v

Ci(�)�
wX

i=u+1

Ai(�)+Bw(�):

- Step 3. In this further step, we verify that (*),
(**), and (***) follow any of the four conditions of
Theorem 5. It is easily veri�ed that if condition (i) is
true, then (***) holds; if condition (ii) is true, then
(*) holds; and if condition (iii) is true, then (**)
holds. As for condition (iv), (*) and (***) cannot
both fail to hold. Therefore, suppose that iv) holds,
but (*) and (***) do not. Since (*) is not true, we
have:
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vX
i=u+1

Bi(�) +
wX
i=v

Ci(�) > Cu(�) +
w�1X
i=u

Di(�):
(13)

And, using condition (iv), the R.H.S. of Rela-
tion (13) is such that:

Cu(�)+
w�1X
i=u

Di(�)�Cu(�)+
w�1X
i=u

Bi(�)+
w�1X
i=u

Ci(�):
(14)

Combining Relations (13) and (14), then simplifying,
we have:

Cw(�)>Cu(�)+Bu(�)+
w�1X
i=v+1

Bi(�)+
v�1X
i=u

Ci(�):
(15)

Furthermore, since (***) is not true, we have:

vX
i=u

Bi(�) +
w�1X
i=v

Ci(�) >
wX

i=u+1

Ai(�) +Bw(�):
(16)

Using condition (iv), the R.H.S. of Relation (16) is
such that:

wX
i=u+1

Ai(�)+Bw(�)�
wX

i=u+1

Bi(�)+
wX

i=u+1

Ci(�)+Bw(�):
(17)

Combining (16) and (17), then simplifying, we have:

Bu(�)>
wX

i=v+1

Bi(�)+
v�1X
i=u+1

Ci(�)+Cw(�)+Bw(�):
(18)

Now, adding Relation (15) to Relation (18), we have:

0>2

"
Cu(�)+Bw(�)+

w�1X
i=v+1

Bi(�)+
v�1X
i=u+1

Ci(�)

#
;

which is a contradiction.

- Step 4. As the next-to-last step, in view of
Condition III in Theorem 6, we now recognize that
any of the four conditions of Theorem 5 implies at
least one of the conditions of (*), (**), and (***).
And, in view of III, any of the two latter implies
that

Pn
i=1 Zi(�) may be minimizing:

max
i�u�nfHu(�) +Ku(�) + Lu(�)g:

The last step utilizes this observation to verify that
the pairwise J-ordering based on Theorem 4 is
conditionally JAR. Since it is clearly transitive, this
last step establishes the theorem.

- Step 5. Let �0 be the permutation schedule formed
by interchanging the jobs in positions j and j + 1 in
�. Then,

nX
i=1

Zi(�0) = max
1�u�nfHu(�0) +Ku(�0) + Lu(�0)g;

with:

H1(�0) = A1(�0);

K1(�0) = B1(�0);

L1(�0) = C1(�0);

Hu(�0) =
uX
i=1

Ai(�0)�
u�1X
i=1

Bi(�0);

u = 2; 3; � � � ; n;

Kv(�0) =
uX
i=1

Bi(�0)�
u�1X
i=1

Ci(�0);

u = 2; 3; � � � ; n;

Lw(�0) =
uX
i=1

Ci(�0)�
n�1X
i=1

Di(�0);

u = 2; 3; � � � ; n;
and:8>>><>>>:

Ai(�0) = Ai(�)
Bi(�0) = Bi(�)
Ci(�0) = Ci(�)
Di(�0) = Di(�)

if i 6= j; j + 1;

8>>><>>>:
Aj(�0) = Aj+1(�); Aj+1(�0) = Aj(�)
Bj(�0) = Bj+1(�); Bj+1(�0) = Bj(�)
Cj(�0) = Cj+1(�); Cj+1(�0) = Cj(�)
Dj(�0) = Dj+1(�); Dj+1(�0) = Dj(�)

Thus:
nX
i=1

Zi(�0) =
nX
i=1

Zi(�);

unless, possibly:

max[ (Hj(�0) +Kj(�0) + Lj(�0)) ;

(Hj+1(�0) +Kj+1(�0) + Lj+1(�0))]

6= max[(Hj(�) +Kj(�) + Lj(�));

(Hj+1(�) +Kj+1(�) + Lj+1(�))]:
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Let:
max[(Hj(�) +Kj(�) + Lj(�));

(Hj+1(�) +Kj+1(�) + Lj+1(�))]

< max[(Hj(�0) +Kj(�0) + Lj(�0));

(Hj+1(�0) +Kj+1(�0) + Lj+1(�0))]: (19)

If we subtract:" j+1X
i=1

Ai(�)�
j�1X
i=1

Bi(�)

!
+

 j+1X
i=1

Bi(�)�
j�1X
i=1

Ci(�)

!

+

 j+1X
i=1

Ci(�)�
j�1X
i=1

Di(�)

!#
;

from both sides of Relation (19), we have:

max[�Bj � Cj �Dj ;�Aj+1 �Bj+1 � Cj+1]

< max[�Bj+1�Cj+1�Dj+1;�Aj�Bj�Cj ];
or:

min[Aj +Bj + Cj ; Bj+1 + Cj+1 +Dj+1]

<min[Aj+1+Bj+1+Cj+1; Bj+Cj+Dj ]: (20)

Substituting g from Theorem 4 in Relation (20), we
have:
g(j; j + 1) < g(j + 1; j);

which says that the pairwise J-ordering of Theo-
rem 4 is conditionally JAR. �

The above optimal ordering is further illustrated by
applying it to an example with n = 7 and m = 4.
Table 3 shows the processing times. Notice that
condition of Theorem 4 is satis�ed here. Table 4 shows
the parameters (Ai + Bi + Ci) and (Bi + Ci + Di).
Using the rule, we obtain �� : (1; 2; 5; 7; 4; 3; 6), with
Fmax(��) = 102.

In the following, Theorem 5 is generalized to
the case of m-machine permutation 
ow shops. The
parameter is also de�ned as follows:

pij : the processing time, including the setup time, of
job i on machine j, i = 1; � � � ; n; j = 1; � � � ;m.

Table 3. The processing times of the example with n = 7
and m = 4.

Machines Jobs
1 2 3 4 5 6 7

A 12 10 11 10 18 15 9
B 6 7 9 9 7 8 10
C 7 5 6 5 5 6 4
D 18 9 4 5 8 3 5

Table 4. The processing times of the example with n = 7
and m = 4.

Jobs
1 2 3 4 5 6 7

Ai +Bi + Ci 25 22 26 24 30 29 23
Bi + Ci +Di 31 21 19 19 20 17 19

Theorem 6. In an m-machine where n > 2 permu-
tation 
owshops if we have:

g(i; j) = min

 
m�1X
k=1

pik;
mX
k=2

pjk

!
;

then, under any of the following m conditions, the
above pairwise J-ordering yields an optimal ordering
of n jobs:

1) pi;1 � pj;2; pi;2 � pj;3; � � � ; pi;m�2

� pj;m�1 for all i 6= j;

2) pi;1 � pj;2; pi;2 � pj;3; � � � ; pi;m�3

� pj;m�2; pi;m�1 � pj;m for all i 6= j;

...

k) pi;1 � pj;2; pi;2 � pj;3; � � � ; pi;m�k�1

� pj;m�k; pi;m�k+1 � pi;m�k+2; � � � ; pi;m�1

� pj;m for all i 6= j;

...

m� 2) pi;1�pj;2; pi;3�pj;4; pi;4�pj;5; � � � ; pi;m�1

� pj;m for all i 6= j;

m� 1) pi;2 � pj;3; pi;3 � pj;4; � � � ; pi;m�1

� p(j;m) for all i 6= j;

m)
m�1X
j=2

pi;j � min(pi;1; pi;m) for all i:

Proof. Let � be any permutation schedule. De�ne
xi;j(�) to be the idle time under � on machine j,
for j = 2; 3; � � � ;m, just before the beginning of the
processing of the ith job processed, i = 1; 2; � � � ; n.
Also, let pi;j(�) denote the processing time, including
setup time, on machine j under � of the ith job
processed, for all j = 1; 2; � � � ;m and i = 1; 2; � � � ; n.
The permutation schedule �, xi;j(�), and pi;j(�) are
illustrated in Figure 13. It is readily veri�ed, with the
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Figure 13. An illustration of a permutation schedule �.

help of Figure 13, that:

Cmax(�) =
nX
i=1

pi;m +
nX
i=1

xi;m(�):

So that minimizing Fmax(�) is equivalent to minimizingPn
i=1 xi;m(�). It is the latter that is now shown to

be minimized under 1); 2); � � � ;m), by the pairwise J-
ordering based on Theorem 6. The proof is analogous
to the proof of Theorem 5, with the same steps. Now,
we brie
y explain each step.

I. Analogously to Step 1 of the proof of Theorem 5,

nX
i=1

xi;m(�)= max
1�u1�u2�����um�1�n

24m�1X
j=1

Huj ;j(�)

35 ;
where:

H1;j(�) = p1;j(�);

and:

Huj ;j(�) =
ujX
i=1

pi;j(�)�
uj�1X
i=1

pi;j+1(�);

for all j = 1; 2; � � � ;m� 1, and uj = 2; 3; � � � ; n.

II. In this step, analogously to Step 2 of the proof of
Theorem 5, we can easily see that for all 1 � u1 �
u2 � � � � � um�1 � n,

m�1X
j=1

Huj ;j(�) � max

 
m�1X
j=1

Hu1;j(�);

m�1X
j=1

Hu2;j(�); � � � ;
m�1X
j=1

Hum�1;j(�)

!
f(a1) or (a2) or (a3) or � � � or (am�1)g

where:

(a1) :
u2X

i=u1+1

pi;2(�) +
u3X
i=u2

pi;3(�) +
u4X
i=u3

pi;4(�)

+ � � �+
um�1X
i=um�2

pi;m�1(�)

� pu1;3(�) + pu1;4(�) + � � �

+ pu1;m�1(�) +
um�1�1X
i=u1

pi;m(�);

(a2) :
u2�1X
i=u1

pi;2(�) +
u3X

i=u2+1

pi;3(�) +
u4X
i=u3

pi;4(�)

+ � � �+
um�1X
i=um�2

pi;m�1(�)

�
u2X

i=u1+1

pi;1(�) + pu2;4(�) + � � �

+ pu2;m�1(�) +
um�1�1X
i=u2

pi;m(�);

(a3) :
u2X
i=u1

pi;2(�) +
u3�1X
i=u2

pi;3(�) +
u4X

i=u3+1

pi;4(�)

+
u5X
i=u4

pi;5(�)+ � � �+
um�1X
i=um�2

pi;m�1(�)

�
u3X

i=u1+1

pi;1(�) + pu3;2(�)

+ pu3;5(�) + � � �+ pu3;m�1(�)
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+
um�1�1X
i=u3

pi;m(�);

...

(am�1) :
u2X
i=u1

pi;2(�) +
u3X
i=u2

pi;3(�)

+ � � �+
um�1�1X
i=um�2

pi;m�1(�)

�
um�1X
i=u1+1

pi;1(�) + pum�1;2(�)

+ � � �+ pum�1;m�2(�):

III. It may be veri�ed in a manner analogous to corre-
sponding step in Theorem 5 that (a1); (a2); � � � ,
or (am�1) follow any of the m conditions of
Theorem 6.

IV. As the next-to-last step, we now recognize that,
in view of step III, any of the m conditions
of Theorem 6 implies at least one of conditions
(a1); (a2); � � � , or (am�1). And, in view of step II,
any of the latter implies that

Pn
i=1 xi;m(�) may

be minimized by minimizing:

max
1�u�n

8<:m�1X
j=1

Hu;j(�)

9=; :

The last step utilizes this observation to verify
that the pairwise J-ordering based on Theorem 6
is conditionally JAR. Since it is clearly transitive,
this last step establishes the theorem.

V. Let �0 be the permutation schedule formed by
interchanging the jobs in position i and i+ 1 in �.
Then:

nX
i=1

xi;m(�0) = max
1�u�n

8<:m�1X
j=1

Uu;j(�0)

9=; :

We may use an argument similar to the corre-
sponding one in Theorem 4.2.1, to see that the
comparison of:

min(
m�1X
j=1

pi;j ;
mX
j=1

pi+1; j);

and:

min(
m�1X
j=1

pi+1; j;
mX
j=1

pi;j);

which is equivalent to the comparison of g(i; i+1)
and g(i+ 1; i), determines the relative worth of �
and �0 in a manner analogous to the case m = 4,
which shows that the pairwise J-ordering based
on Theorem 6 is conditionally JAR.�
The above generalization does involve generaliz-

ing the parametric restrictions of Burns and Rooker [5],
which become increasingly restrictive with increas-
ing m.

5. Conclusion and future research

A subclass of algorithms for ordering n jobs in a

ow shop, of which Johnson's algorithm [4] is the
outstanding example, consists of algorithms based on
the ordering of pairs of jobs as a function only of the
parameters of the pair. Such an ordering is called
a \pairwise J-ordering" in this paper. A \schematic
table" for a pairwise J-ordering is an n� n table with
(i; j)th entry that shows whether job i precedes or
follows job j in the ordering. If, for a pairwise J-
ordering, we can �nd a schematic table with the same
entries, then that pairwise J-ordering is said to be
transitive. The concept of Job-Adjunction-Robustness
(JAR) of a pairwise J-ordering is also introduced. We
may note that this concept is implicitly used, but not
identi�ed in [4]. If a pairwise J-ordering is both JAR
and transitive, then it leads to an optimal ordering.
In the absence of transitivity of a pairwise J-ordering,
the concept of \transitive skein", along with certain
restricted JAR property, serves to partially identify an
optimal ordering.

A certain pairwise J-ordering, the J3-ordering,
has the following properties. It provides an optimal
permutation schedule in the case n = 2. Under the
conditions of Burns and Rooker [5], it is equivalent
to Johnson's adaptation of his algorithm to the 3-
machine 
ow shop. Finally, the extension of Johnson's
3-machine adaptation [5] is generalized to the case of
m machines. This generalization involves generalizing
the parametric restrictions of Burns and Rooker [5],
which becomes increasingly restrictive with increasing
m. To counter this problem, the author suggests that it
may be possible, in given practical situations, to \ag-
gregate" neighboring machines with a single machine
to meet at least one of the conditions of Theorem 6,
creating an m � k machine problem. Typically, the
resulting permutation schedule will call for left-shift
machine when machines are \disaggregated" under the
m� k optimal permutation schedule.

A di�erent possibility for coping with the sever-
ity of the parametric restrictions is contained in the
following conjecture: if a k partitioning of n jobs
(k � n) exists, such that each of the k partition
elements satis�es one of the m conditions of Theorem 6,
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then the pairwise J-ordering given by Theorem 6 may
conditionally be JAR and transitive.
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