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Abstract. The article presents an approach to multivariate linear calibration based on
the best linear predictor. The bias and mean squared error for the suggested predictor
are derived in order to examine its properties. It has been examined that Bias=�2 and
MSE=�2 are functions of �ve invariant quantities. A simulation study is made for di�erent
values of response variables and sample sizes assuming di�erent distributions for the
explanatory variable. It is observed that the proposed estimator performs quite well. Some
approximations to mean squared error have been suggested and the pivotal functions based
on these approximations have been de�ned. Lower and upper tail probabilities have been
calculated and it is examined that they are quite reasonable. These probabilities suggest
that the relevant intervals have sensible con�dence coe�cient. Moreover, it is also shown
that the multivariate classical and inverse estimators are special cases of the proposed
estimator.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Multivariate calibration is a two-step procedure and
has many applications in science and industry. In the
�rst step, we have data from a multivariate regression
experiment (Xi; Ti), i = 1; 2; � � � ; N ; Xi is q� 1 and Ti
is p � 1 vector. Usually, the T values are precise and
expansive and the X values are cheap and easily made
on the same objects. In the second step, called current
situation, a q�1 vector " is observed and p�1 vector T
is to be predicted using data of multivariate regression
experiment (p � q) available from the �rst step.

Consider multivariate linear regression model as
follows:
X = T�# + "; (1)

where X is an N � q matrix of q response variables for
each of the N individuals. T is N�(p+1) matrix whose
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�rst column consists of 1's and the other vector columns
list p explanatory variables measured on N individuals.
�# is a (p+ 1)� q matrix of regression parameters and
" is a matrix of N�q random errors whose rows "Ti are
independent and normally distributed with E("i) = 0
and E("i"Ti ) = �. The maximum likelihood estimators
of �# and � for the regression experiment are:

�̂# =
�
TTT

��1 TTX;

�̂ =
n
XT

�
I � T �TTT ��1 TT

�
X
o
=N; (2)

but the unbiased estimate of � is:

�̂ =
n
XT

�
I � T �TTT ��1 TT

�
X
o
=(N � p� 1):

(3)

If �# in Eq. (1) is partitioned as
�
�T
�T

�
, � is q � p.

Two commonly used estimators to predict T are
the classical and the inverse estimators. The classical



1356 F. Muhammad and M. Riaz/Scientia Iranica, Transactions E: Industrial Engineering 23 (2016) 1355{1369

or maximum likelihood estimator for p� 1 vector T is:

�T = �T +
�
�̂T �̂�1�̂

��1
�̂T �̂�1 �X � �X

�
: (4)

and the inverse estimator is:

~T = �T + STXS�1
XX

�
X � �X

�
: (5)

STX is p � q matrix of sums of products corrected
for the mean and SXX is q � q matrix of sums of
corrected squares and products. These estimators
have been studied by Brown [1], Brown [2] along
with the extension to the Lwin and Maritz [3] ap-
proach, Fujikoshi and Nishii [4], Naes [5], Rinco and
Chuiv [6], Spezzaferri [7], Osborne [8], Kubokawa and
Robert [9], Sundberg [10,11], Mathew and Sharma [12],
Olivieri [13], Jose and Isaac [14], and Gabrielsson
and Trygg [15]. Some recent literature on the topic
may be seen in Dinc et al. [16], Tan et al. [17],
Ebadi and Amiri [18], Xuemei et al. [19], Forbes and
Minh [20], Jensen and Ramirez [21], and John [22] and
the references therein.

Sundberg [23] and Brown and Sundberg [24]
discussed con�dence and con
ict of these estimators.
Sundberg and Brown [25] suggested considering one
explanatory variable at a time, forgetting the existence
of the other (p � 1) variables. Very often, (p =
1) is of interest in practical situations, as has been
discussed by Wood [26] and Oman and Wax [27],
where they estimated only one variable age using
more response variables of di�erent body measure-
ments. Srivastava [28], Oman and Srivastava [29], and
Takeuchi [30] also discuss general (q) and (p = 1). In
such situations, one may think of the current situation
(X;T ) with p(x; t), where T is to be predicted based
on the observed q-vector X in (X;T ) and available
data of multivariate regression experiment, i.e. (Xi; Ti);
i = 1; 2; � � � ; N , from the �rst step. We believe that
some of the con
icts may be avoided by separating the
issue of regression parameter estimation in the �rst step
from that of choosing the best linear function in the
second step and proposing an estimator, i.e. the best
linear predictor approach. We concentrate on p = 1
and general q, i.e. the most practical situation. Bias
and mean squared error are derived. Also, interval
estimates are suggested based on the approximated
mean squared error.

2. Derivation of the best linear predictor

The multivariate normal linear regression model
(Eq. (1)) with q-vector X and an explanatory variable
T can be written as Xi = �q�1 + Ti�q�1 + "i, i =
1; 2; � � � ; N ; Xi and "i are (q�1) vectors with E("i) = 0
and E("i"Ti ) = �, but "i's are independent for i =
1; 2; 3; � � �N .

In the current situation (X;T ), the joint distribu-
tion p(x; t) is such that p(XjT = t) is N(� + T�;�).
The best linear T̂ is derived by minimizing:

E[T � (C +DTX)]2: (6)

Eq. (6) is minimized by:

C = E(T )�DTE(X) = ��DT (�+ ��);

and:

D = �2[� + �2��T ]�1�;

so the best linear predictor will be:

T̂ = C +DTX = E(T )�DT [X � E(X)]

= �(1�DT�) +DT (X � �)

= �(1� p2) + (X � �)T�2 �� + �2��T
	�1 �; (7)

where:

�2 = DT� = �2�T f� + �2��T g�1�: (8)

The current situation with p = 1 and general q is �q�1,
�q�1, �q�q, all described by the parameters �, �2.
These parameters de�ne all the �rst- and second-order
moments of current p(x; t). According to the proposed
approach, the regression experiment provides estimates
of �, �, and �, because the joint distribution p(x; t) is
such that p(XjT = t) is the same in both regression
and future situations, i.e. N(� + T�;�) and the �rst
two moments � = E(T ) and �2 = VAR(T ) of p(t) are
assumed to be known. The parameters � and �2 are
not known exactly, but may be assessed as follows:

i. An assumption implicit in any calibration tech-
nique is t� � T � t�, Otherwise the experimental
regression has to be extrapolated. Bounds for �
and �2 can be deduced;

ii. Sometimes a random sample of T 's (or more com-
monly of X's [31]) is available. Natural estimates
�̂ and �̂2 result in:

E(X) = EE(XjT ) = �+ ��;

VAR(X) = VAR(E(XjT )) + E(VAR(XjT ))

= �2�2 + �2
xjt:

iii. In the absence of (ii), � and �2 may be the
parameters of a subjective probability distribution.

It is interesting to note that the proposed best
linear predictor in Eq. (7) gives classical estimator
Eq. (4) for �2 =1., as:

�2 = DT� = �2�T f� + �2��T g�1� = 1:
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The inverse estimator (Eq. (5)) is obtained when � = �t
and �2 = STT =N � 2 is inserted in Eq. (7).

For p = q = 1, the model Eq. (1) becomes the
simple linear regression model and the whole calibra-
tion situation becomes univariate [32]. Kubokawa and
Robert [9] obtained inverse estimator using Bayesian
approach by inserting the estimated mean and variance
of T .

3. Bias and mean squared error

There are two situations: (i) �, �, and � known; it is
just of theoretical nature; and (ii) �, �, and � known
unknown; it is the most practical situation:

i. �, �, and � known:

Bias = E(T � (C +DTX) = 0;

MSE = E[T�(C +DTX)]2�2�DTCOV(T;X)

= �2[1� �2�T (� + �2��T )�1�]

= �2(1� �2);

by de�nition of �2 as in Eq. (8);
ii. �, �, and � unknown:

Bias =E
h
T��Ĉ + D̂TX

�i
= �hE �Ĉ��Ci

� hE �D̂��DiT f�+ ��g 6= 0; (9)

so estimator biased.

MSE = E
�
T � Ĉ � D̂TX

�2

= EE
��
T � Ĉ � D̂TX

�2 ���Ĉ; D̂� :
The expression E[(T � Ĉ � D̂TX)2jĈ; D̂] is quadratic
in Ĉ and D̂, and is minimized by Ĉ = C and D̂ = D
and its minimum is �2(1� �2). Thus:

E
��
T�Ĉ�D̂TX

�2 ���Ĉ; D̂�=
�

Ĉ�C
D̂�D

�
M
�

Ĉ�C
D̂�D

�
+ �2(1� �2):

Here, M is a (q + 1)� (q + 1) symmetric matrix, i.e.:

M =

266664
1 EX1 : : EXq

Ex2
1 : : EX1Xq

: : :
: :

EX2
q

377775 :

Now, MSE = �2(1� �2) + E trace MN , here:

N =
�

Ĉ�C
D̂�D

��
Ĉ�C D̂T �DT

�
:

Finally:

MSE =E
�
Ĉ�C�2

+2(EX1)E
�
Ĉ�C��D̂1�D1

�
+ � � �+ 2(EXq)E

�
Ĉ � C��D̂q �Dq

�
+ E(X2

1 )E
�
D̂1 �D1

�2
+ � � �

+ 2(EX1Xq)E
�
D̂1 �D1

��
D̂q �Dq

�
+ � � �+ � � �+ (EX2

q )E
�
D̂q �Dq

�2

+ �2(1� �2): (10a)

For q = p = 1, it decreases to simple linear calibra-
tion [15] and MSE = (1� �2)�2(1 +Qs). Therefore:

MSE=�2 = (1� �2)(1 +Qs): (10b)

Using Taylors series, Gabrielsson and Trygg [15] ap-
proximated the value of Qs and denoted it by QA.

QA=
�2

N
+

1
N�2

[2�2(1��2)+(1�2�2)CN+�2BN ]:
(11)

Eq. (11) depends only on four invariants, i.e. N ,
BN , CN and �2. Here, N is size of the experiment;
CN = (N � 2)�2=STT is the relative concentration
of the experiment; BN = (N � 2)(t � �)2=STT is
the relative bias of the experiment; and �2 is squared
correlation coe�cient.

Eq. (10a) includes uncertainty due to estimation
of parameters in addition to the intrinsic uncertainty
due to multivariate situation. We show in Theorem 1
that MSE=�2 in Eq. (10a) depends only upon N , BN ,
CN , �, and q.

Theorem 1. MSE=�2 depends only upon N , BN ,
CN , �, and q. It would be proved in �ve steps:

- Step 1: MSE=�2 depends upon: (i) the uncondi-
tional moments �, �2, EX, COV(X) and ��2 and
(ii) the parameters of the distribution of (Ĉ, D̂).

Proof: Note that �2 is merely a function of (i), so
MSE=�2 depends only on: (i) �, �2, �, �, and �, and
(ii) the distribution of �̂, �̂, and �̂, ([33], Theorem
8.2.2), so MSE=�2 depends only on �, �2, �, �, �; t,
STT , and N ;
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- Step 2: MSE=�2 is not changed by:
(i) Changes of origin/scale of T ;

(ii) Changes of origin of X;
(iii) X ! HX, where H is non-singular.

These will be proved in Step 2 of Theorem 2;
- Step 3: MSE=�2 depends only on q, N , �,p

(�t� �)2=(STT q=(N � 2)), (N�2)�2=STT ; �t, STT ,
�, � and �.

Proof: This follows at once from Step 1. Note
that q, N , �,

p
(�t� �)2=(STT q=(N � 2)) and (N �

2)�2=STT are invariants for transformations (i), (ii),
and (iii) of Step 2;

- Step 4: Consider two calibration situations or
systems A and B which have the same values of q,
N , �,

p
BN , and CN . By transformation of T and X

(of types mentioned in Step 2), system A becomes
system A0 with:

�t = 0; STT = N � 2; � = 0; � = 1;

� =

"
�p

(N � 2)�2=STT (1� �2)
0; 0; � � � ; 0

#
: (12)

Possibility of this transformation is shown in Step 5.
By a transformation of similar type, system B

becomes system B0 with �t = 0, STT = N � 2, � = 0
and � = 1, and � is same as the above in Eq. (12).

By Step 3, A0 and B0 agree in all quan-
tities on which MSE=�2 depends. By Step 2,
(MSE=�2)A = (MSE=�2)A0 and (MSE=�2)B =
(MSE=�2)B0 , thus (MSE=�2)A = (MSE=�2)B . In
other words, MSE=�2 depends only on q, N , �, BN
and CN ;

- Step 5: To show the possibility of A ! A0, by
(i), (ii), and/or (iii) of Step 2, where A0 has �t = 0,
STT = N�2, � = 0 and � = 1 and � is as in Eq. (12)
in Step 4, we have the following reasoning.

First, �t = 0 and STT = N � 2 are ensured by
choice of origin/scale of T . These values will not be
disturbed by transformation of X, which are about
to be described.

After a linear transformation, X ! HX has
simultaneously achieved � = 1 and the required �;
a change of origin in X will ensure � = 0 without
disturbing � or �.

The transformation X = HX can be done in
the following stages:
(a) Linearly independent combinations Y2; Y3; � � � ;

Yq are chosen with zero regression on T , i.e.
Yj = mT

j X, where mT
j � = 0 (j = 2; 3; � � � ; q);

(b) Y1 = mT
1 X is chosen to be uncorrelated

(conditional on T ) with Y2; Y3; � � � ; Yq), thus
mT

1 �mj = 0 (j = 2; 3; :::; q);

(c) Write Y = (Y2; Y3; � � � ; Yq)T and COV(Y jT ) =
GGT whereG is (q�1)�(q�1) and non-singular.

Now, COV(G�1Y jT ) = COV(G�1GGT
(G�1)T ) = I. The components of Z = G�1Y
are uncorrelated (conditional on T ) with Y1, by
(b). Change of scale of Y1 is all that is needed
to achieve � = 1. Z has zero regression on T by
(a);

(d) Consider:

HX =

24Scaled version of Y1
. . . . . . . . . . . .

Z

35
If its regression vector is (��; 0; 0; � � � ; 0)T and
its conditional covariance matrix is I, then the
identity �2 = �2�T (� + �2��T )�1� shows that:

�2 =�2(��; 0; 0; � � � ; 0)8<:I +

24�2��2 0 � � � 0
0 0 0
0 0 0

359=;
�1 24��0

0

35
=

�2��2
1 + �2��2 ; (13)

thus:

��2 =
�2

�2(1� �2)
: (14)

Since system A0 has STT = N � 2, we replace
�2 by (N � 2)�2=STT . Thus:

��2 =
�2

[(N � 2)�2=STT ](1� �2)

=
�2

CN (1� �2)
: (15)

These steps complete the proof that MSE=�2

depends only on q, N , �, BN , and CN .

Theorem 2: ��1 Bias depends only on q, N , �, BN ,
and CN .

Proof: From Eq. (9)

Bias=� =� hE �Ĉ�� Ci
� hE �D̂��DiT f�+ ��g=�: (16)

The steps in this proof are very similar to the proof for
MSE=�2 in Theorem 1, except Step 2 which is slightly
di�erent:
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- Step 1: Same as above in Theorem 1;
- Step 2: Bias=� is not changed by:

(i) Changes of origin/scale in T ;
(ii) Changes of origin in X;
(iii) X ! HX, where H is non-singular.

Proof: D = �2f� + �2��T g�1�; C = ��DT (�+
��)
(i) Change of origin/scale in T .

Consider T 0, where T = f + gT 0 and
� + �T = �0 + �0T 0, so � + �f + �gT 0 =
�0 + �0T 0, thus �0 = �g and �0 = � + �f ;
also �0 = E(T 0) = E[(T � f)=g] = (� � f)=g;
�02 = VAR(T 0) = VAR[(T � f)=g] = �2=g; so,
� is unchanged, i.e. � = �0.

The results given above show that ��
is unchanged, therefore f� + �2��T g is un-
changed and D0 = �02f�0 + �02�0�0T g�1 =
�0D=� = D=g. Similarly, E(D̂0) = E(D̂0)=g;
therefore, E(D̂0 �D0) = E(D̂0 �D)=g.

Now, �0+�0�0 = �+�f+�g[(��f)=g] =
�+ ��. Therefore, the second term in Bias=�,
i.e. Bias=� = �[E(D̂) � D]T f� + ��g=�, is
invariant.

Now, C 0 = �0 � D0(�0 + �0�0) = [(� �
f)=g]� [DT =g][�+��] = (C� f)=g. Similarly,
Ĉ 0 = (Ĉ � f)=g and E(Ĉ 0) = [E(Ĉ) �
f ]=g; therefore, the �rst term in Bias=�, i.e.
�[E(Ĉ)�C]=�, is also invariant. Thus, Bias=�
is invariant for changes of origin or scale in T ,
as required for (i).

(ii) X 0 = m+X.
�, �, unchanged; �0 + �0T = E(X 0jT ) =

m+�+�T . Therefore, �0 = m+� and �0 = �;
�0 = �; D0 = D; D̂0 = D̂; and C 0 = � �
DT (�0 + ��0) = C � DTm. Similarly, Ĉ 0 =
Ĉ � D̂Tm and EĈ 0 = EĈ � E(D̂T )m. Thus:

Bias =� hEĈ � E �D̂T
�
m� (C �DTm)

i
�E hED̂�DiTfm+�+��ghEĈ�Ci
� hED̂ �DiT f�+ ��g;

that is not changed. So Bias=� is also invariant.
Note that EĈ � C is not invariant.

(iii) X 0 = HX, where, H is q � q non-singular.
�, �, unchanged, �0 + �0T = E[X 0jT ] =

H(� + �T ), therefore, �0 = H� and �0 =
H�; and �0 = COV[X 0jT ] = COV[HXjT ] =
H�HT ; thus:�

�0 + �02�0T
	

=
�
HT ��1 �� + �2��T

	
H�1;

and:

D0 =
�
HT ��1D:

Similarly, D̂0 = (HT )�1D̂, ED̂0 = (HT )�1ED̂
and E[D̂0 � D] = (HT )�1E[D̂ � D], there-
fore, the second term in Bias becomes E[D̂0 �
D]H�1Hf�+ ��g, i.e. not changed.

C = � �DT f� + ��g is also unchanged;
therefore, C 0, EC 0, (EC 0 � C) and the �rst
term in Bias=� are seen successively to be
unchanged.

Thus, Bias=� is invariant for non-singular
transformations H 0 = HX, as required for (iii).

Steps 3, 4, and 5 are same as those in Theorem 1.
These steps complete the proof.

4. Simulations

MSE=�2 in Eq (10b) depends only on the four invari-
ants N , �2, BN , and CN and on q for any value of q
and also it is invariant under changes of origin/scale
of T and X. Therefore, it is enough to simulate the
canonical system with: �t = 0, STT = N � 2, � = 0,
� = 1; and:

� = (��; 0; 0; � � � ; 0)T ;

where �� = �=
p

[CN (1� �2)], � =
p
BN , and �2 =

CN .
In the canonical form, we have:

EX1 = ���; EX2 = EX3 = � � � = EXq = 0:

EX2
1 = ��2�2 + (��2�)2 + 1 = ��2(�2 + �2) + 1;

EX2
2 = EX2

3 = � � � = EX2
q = 1;

EX1X2 = EX1X3 = � � � = EXq�1Xq = 0:

Substituting these values in Eq. (10a), we get:

MSE =�2(1� �2) + E
�
Ĉ � C�2

+ 2���E
�
Ĉ � C��D̂1 �D1

�
+ [��2(�2 + �2) + 1gE �D̂1 �D1

�2

+ (q � 1)E
�
D̂2 �D2

�2
: (17)

The last term in Eq. (17) is in symmetry with
X2; X3; � � � ; Xq.

D =
�

�2��
1 + �2��2 ; 0; � � � ; 0

�T
;
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i.e. D2; D3; � � � ; Dq = 0;

C = ��DT f�+ ��g =
�

1 + �2��2 :

Therefore, the best linear predictor is:

C+DTX=C+D1X1 =f�+��g=
�+ �2��2X1

1 + �2��2 :
(18)

To evaluate Eq. (17), we require simulating Ĉ and D̂,
and thus estimates of VAR(Ĉ), VAR(D̂1), VAR(D̂2),
COV(Ĉ; D̂1), E(Ĉ) � C, E(D̂1) �D1, E(D̂2), E(Ĉ �
C)2 = VAR(Ĉ) + (Bias C)2, etc.

These can be estimated by simulating �̂; �̂, and
�̂ from their distributions. Anderson ([33], Theorem
8.2.2) states that if Xa(q�1) is N(�(q0�P 0); ta(p0�1);
�q�q), a = 1; 2; � � � ; N , let p0 = p + 1, where p is
the number of explanatory variables, ta = (1; t1a; � � � ;
tpa)T . Then:

�̂q � p0 is N(�; � � � );
and:

COV (ith and jth rows of �̂) is 
ijA�1; (19)

where Ap0�p0 =
P
tatTa and � = f
ijg and N �̂MLE is

W (�; N � p0), independent of �̂.
In linear calibration, when p = 1, Xa(q�1) is:

N
�
[�1�1; �2�2; � � � ; �q�q]T

�
1
ta

�
;�q�q

�
;

a = 1; 2; � � � ; N;
and in the Xa canonical form, Xa is N [(��ta; 0; 0;� � � ; 0)T ; I], a = 1; 2; � � � ; N ; thus, � = 1 and:

A =
X
a

�
1 ta
ta t2a

�
=
�
N 0
0 STT

�
;

because �t = 0, �̂i; �̂i(i = 1; 2; � � � ; q) are independent
by Eq. (19); also by Eq. (19), covariance matrix of
(�̂i; �̂i) is:

A�1 =
�
N�1 0

0 S�1
TT

�
:

�̂i is N(0; 1=N), i = 1; 2; � � � ; q; �̂1 is N(��; 1=(N � 2))
and �̂i is N(0; 1=(N � 2)), i = 1; 2; � � � ; q. Also,
independent N �̂MLE is W (I;N � 2) and unbiased �̂
is (N � 2)�1W (I;N � 2). Bartlett's decomposition
of Wishart matrix ([33], Corollary 7.2.1) was used to
simulate �̂.

10000 values of Ĉ and D̂ are obtained by the
follows equation:

D̂ = �2
n

�̂ + �2�̂�̂T
o�1

�̂;

Ĉ = �� D̂T
�
�̂+ ��̂

�
;

by simulating �̂, �̂, �̂ from their distributions men-
tioned above with � =

p
BN and �2 = CN . Ultimately,

natural estimates of VAR(Ĉ), VAR(D̂1), VAR(D̂2),
COV(Ĉ; D̂1), E(Ĉ) � C, E(D̂1) �D1, and E(D̂2) are
obtained from these simulations.

MSE=�2 = (1� �2)(1 +Qs);

so:
Qs = MSE=[�2(1� �2)]� 1: (20)

MSE=�2 is invariant, so it would be Qs.
Qs is calculated by Eq. (20) for the 81 = (3 �

3 � 3 � 3) combinations of 4 invariants by choosing
their most plausible values, i.e. N = 10; 30; 50; BN =
0:0; 1:0; 4:0; CN = 0:25; 1:0; 4:0 and �2 = 0:7; 0:8; 0:9,
and for q = 1; 2; 3; 4; 8 by the procedure described
above. The results are given in Table 1(a) and the
following messages are obtained.

(i) QS is an increasing function of q when �2, BN ,
CN , and N are �xed;

(ii) QS for small values of N is greater than that for
large values of N , i.e. QS is greater for N = 10
than for N = 30 and 50 (�2; BN ; CN ; and q are
�xed).

For q = 1, these values quite agreed with the simulated
values of Muhammad and McLaren [32]. It should be
noted that inverse estimator corresponds to BN = 0
and CN = 1, as also discussed by Srivastava [28], Oman
and Srivastava [29], and Takeuchi [30].

5. Approximations and interval estimates

Approximation to QS(N�2) when q > 1 and p = 1 can
be obtained using simulated values and this can be used
to de�ne an interval estimate for T . The procedure
to obtain approximations to QS(N � 2) is based on
regressing simulated values and is described as follows.

For any particular value of q, QS is a function of
N , �2, BN , CN , i.e. QS(N; �2; BN ; CN ). Muhammad
and McLaren [32] made an extensive study for simple
linear calibration problem (p = q = 1) by considering
simulated values QS and an approximated value QA
was obtained with the help of Taylor's series. Using
Taylor's series, they got a mathematical expression for
QA when q = 1.

QA=
�2

N
+

1
N�2

[2�2(1��2)+(1�2�2)CN+�2BN ]:
(21)
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Table 1(a). 81 values of Q̂S for q = 1; 2; 3, and 4.

q = 1 q = 2 q = 3 q = 4
CN 0.25 1.0 4.0 0.25 1.0 4.0 0.25 1.0 4.0 0.25 1.0 4.0
BN �2 = 0:7, N = 10
0 0.134 0.163 0.344 0.308 0.377 0.711 0.560 0.662 1.108 1.015 1.110 1.562
1 0.232 0.258 0.415 0.426 0.487 0.802 0.709 0.800 1.239 1.212 1.298 1.746
4 0.521 0.258 0.623 0.773 0.809 1.069 1.158 1.221 1.635 1.804 1.862 2.294

�2 = 0:7, N = 30
0 0.040 0.045 0.061 0.072 0.086 0.142 0.110 0.131 0.224 0.152 0.181 0.304
1 0.066 0.071 0.085 0.099 0.112 0.165 0.138 0.159 0.250 0.183 0.212 0.335
4 0.142 0.147 0.156 0.179 0.190 0.235 0.222 0.242 0.327 0.276 0.304 0.426

�2 = 0:7, N = 50
0 0.024 0.027 0.0366?? 0.042 0.049 0.081 0.060 0.072 0.124 0.082 0.099 0.170
1 0.038 0.041 0.050 0.057 0.065 0.095 0.077 0.088 0.139 0.098 0.115 0.186
4 0.082 0.085 0.092 0.104 0.110 0.137 0.125 0.136 0.183 0.148 0.165 0.235

�2 = 0:8, N = 10
0 0.136 0.186 0.376 0.313 0.397 0.714 0.567 0.683 1.140 1.012 1.131 1.652
1 0.245 0.306 0.483 0.443 0.525 0.826 0.725 0.836 1.277 1.216 1.328 1.841
4 0.568 0.644 0.803 0.824 0.902 1.150 1.203 1.304 1.694 1.829 1.918 2.401

�2 = 0:8, N = 30
0 0.041 0.052 0.091 0.075 0.092 0.157 0.116 0.138 0.227 0.159 0.188 0.300
1 0.071 0.082 0.122 0.106 0.122 0.186 0.147 0.169 0.257 0.194 0.222 0.334
4 0.158 0.170 0.214 0.196 0.212 0.271 0.242 0.263 0.345 0.296 0.324 0.433

�2 = 0:8, N = 50
0 0.025 0.031 0.053 0.044 0.054 0.091 0.064 0.077 0.127?? 0.087 0.103 0.167
1 0.041 0.047 0.071 0.062 0.071 0.108 0.082 0.095 0.144 0.105 0.121 0.185
4 0.091 0.097 0.122 0.115 0.124 0.159 0.137 0.149 0.197 0.161 0.177 0.239

�2 = 0:9, N = 10
0 0.135 0.209 0.554 0.317 0.416 0.805 0.572 0.698 1.195 1.006 1.153 1.712
1 0.255 0.335 0.711 0.458 0.559 0.951 0.739 0.864 1.355 1.219 1.359 1.909
4 0.069 0.712 1.178 0.869 0.978 1.383 1.243 1.370 1.848 1.854 1.978 2.502

�2 = 0:9, N = 30
0 0.042 0.060 0.135 0.078 0.100 0.185 0.121 0.146 0.244 0.166 0.195 0.309
1 0.075 0.093 0.170 0.112 0.134 0.219 0.155 0.180 0.278 0.204 0.233 0.347
4 0.172 0.192 0.276 0.213 0.234 0.320 0.260 0.287 0.382 0.316 0.346 0.458

�2 = 0:9, N = 50
0 0.025 0.035 0.077 0.046 0.059 0.109 0.067 0.081 0.137 0.092 0.108 0.172
1 0.044 0.054 0.097 0.066 0.078 0.128 0.088 0.102 0.158 0.112 0.128 0.192
4 0.099 0.110 0.155 0.125 0.138 0.188 0.149 0.162 0.218 0.174 0.190 0.253

This expression suggests the following linear model for
q � 1:

QA1 =
1

N�2
�
bo+b1�2+b2�4+(b3+b4�2+b5�4)CN

+ (b6 + b7�2 + b8�4)BN
�
: (22)

Simulated values QS corresponding to any set of values
of the invariants for any q�1 can be generated and QA1
in Eq. (22) can be replaced by those simulated values
QS for maximum q = 8. Thus, the following quadratic

multiple regression model can be �tted.

Qs(N�2) =
�
bo+b1�2+b2�4+(b3+b4�2+b5�4)CN

+ (b6 + b7�2 + b8�4)BN
�

+ error; (23)

coe�cients bi's (i = 0; 1; � � � ; 8) may depend on N and
q. QR will represent �tted values of Eq. (23).

Here, to increase the scope of study, sample space
for the invariants �2, BN , and CN with �ve values for
each, i.e. �2 = 0:3, 0.5, 0.7, 0.8, 0.9; BN = 0:0, 1.0, 2.0,
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Table 1(b). Partial regression estimates and S.E.'s for di�erent values of q and N .

N q = 1 q = 2 q = 3 q = 4 q = 8

bo

10 -0.5422(0.3915) 1.2306(0.2769) 3.8386(0.3229) 8.9605(0.4232) |

30 -0.4081(0.1578) -0.1111(0.1246) 0.3101(0.1894) 0.9699(0.3221) 6.9410(1.3190)

50 -0.2441(0.0978) 0.1838(0.0952) -0.0243(0.1244) 0.3425(0.2283) 3.2410(1.0360)

b1

10 5.4520(1.4400) 3.0150(1.0180) 0.9560(1.1870) -2.3600(1.5560) |

30 4.6982(0.5804) 4.9255(0.4581) 5.2021(0.6964) 5.4810(1.1840) 1.5610(4.8490)

50 4.0942(0.3597) 4.9598(0.3501) 5.6386(0.4574) 6.1038(0.8395) 5.0630(3.8100)

b2

10 -4.5930(1.1950) -2.0116(0.8452) -0.4754(0.9856) 1.1730(1.2920) |

30 -3.5677(0.4818) -2.8512(0.3802) -2.2225(0.5781) -1.8138(0.9831) 2.7340(4.0250)

50 -3.0357(0.2986) 2.8091(0.2906) -2.4855(0.3797) -2.0672(0.6968) 1.4990(3.1620)

b3

10 1.6681(0.1386) 0.9969(0.0980) 0.1286(0.1143) -1.4228(0.1498) |

30 1.6608(0.0559) 2.1445(0.0441) 2.6063(0.0670) 2.9120(0.1140) 2.0545(0.4667)

50 1.4414(0.0346) 2.3670(0.0337) 3.0648(0.0440) 3.5284(0.0808) 4.4555(0.3667)

b4

10 -5.4357(0.5096) -1.4705(0.3604) 1.6764(0.4202) 5.0521(0.5509) |

30 -5.9741(0.2054) -5.2029(0.1621) -4.5158(0.2465) -3.8032(0.4192) 3.4460(1.7160)

50 -5.3675(0.1273) -5.9353(0.1239) -5.9277(0.1619) -5.3840(0.2971) -1.2680(1.3480)

b5

10 5.1623(0.4230) 1.6352(0.2992) -0.4441(0.3488) -2.0651(0.4573) |

30 5.4846(0.1705) 4.0896(0.1346) 2.8833(0.2046) 1.8909(0.3480) -4.3480(1.4250)

50 5.0425(0.1057) 4.6463(0.1028) 3.8767(0.1344) 2.8491(0.2466) -2.2510(1.1190)

b6

10 0.2302(0.1336) 0.6018(0.0945) 1.0525(0.1102) 1.6213(0.1445) |

30 -0.0064(0.0539) 0.2276(0.0425) 0.4776(0.0646) 0.7367(0.1099) 2.1522(0.4501)

50 -0.0337(0.0334) 0.1329(0.0325) 0.3067(0.0425) 0.5147(0.0779) 1.5559(0.3536)

b7

10 -0.1597(0.4915) -0.5000(0.3476) -0.6582(0.4053) -0.7725(0.5313) |

30 0.8041(0.1981) 0.3100(0.1563) -0.1125(0.2377) -0.4330(0.4043) -1.4080(1.6550)

50 0.9501(0.1228) 0.5582(0.1195) -0.2529(0.1561) -0.0652(0.2865) -1.0510(1.3000)

b8

10 1.2038(0.4080) 1.2048(0.2885) 1.0786(0.3364) 0.8851(0.4410) |

30 0.2833(0.1645) 0.5443(0.1298) 0.7398(0.1973) 0.8692(0.3356) 0.5670(1.3740)

50 0.1124(0.1019) 0.3982(0.0992) 0.5442(0.1296) 0.6540(0.2379) 0.6640(1.0790)

S and R2 (in parenthesis) for di�erent N

10 0.2320( 98.0%) 0.1641(99.2%) 0.1913(99.2%) 0.2508( 99.2%) |

30 0.0935( 99.6%) 0.0738( 99.8%) 0.1122 ( 99.7%) 0.1908 (99.4%) 0.7814 (96.3%)

50 0.0580( 99.8%) 0.0564 ( 99.9%) 0.0737( 99.9% ) 0.1353(99.7%) 0.6139(98.0%)

3.0, 4.0; and CN = 0:25, 0.50, 1.0, 2.0, 4.0, is considered
and the values of N are N = 10, 30, 50. QS(N � 2)
corresponding to 125 = (5� 5� 5) combinations of �2,
BN , CN is calculated for each N = 10, 30, 50, making
a total of 375.

Linear model Eq. (23) is �tted by ordinary least
squares for q = 1, 2, 3, 4, and 8, using 125 values
of QS for N = 10, 30, 50, respectively. Estimates of
partial regression coe�cients along with other relevant
statistics are given in Table 1(b). R2 is coe�cient of

determination and S is such that (125�9)S2 = residual
sum of squares. Table 1(c) summarizes QS(N � 2),
QA(N � 2), and QR(N � 2).

5.1. Results (q = 1)
Table 1(b) indicates that the values of R2 are greater
than 98% and S decreases with the increase in N . This,
along with the summary in Table 1(c), shows that the
model �ts the situation very well. 95% of the interval
estimates constructed for regression parameters bi's
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Table 1(c). Summary statistics of 125 values of QS(N � 2), QR(N � 2) and QA(N � 2) for N and q.

q Minimum Median Maximum
N 10 30 50 10 30 50 10 30 50

1
QS(N � 2) 0.865 0.745 0.795 2.819 2.514 2.449 9.427 7.717 7.749
QR(N � 2) 0.806 0.768 0.782 2.782 2.489 2.461 8.720 7.616 7.411
QA(N � 2) 0.700 0.740 0.748 2.400 2.467 2.480 7.060 7.180 7.204

2 QS(N � 2) 2.104 1.415 1.361 4.972 4.029 3.971 11.064 8.953 9.040
QR(N � 2) 2.130 1.348 1.303 4.917 3.965 3.920 10.817 8.900 8.990

3 QS(N � 2) 4.025 2.167 1.958 7.935 5.557 5.348 14.784 10.688 10.468
QR(N � 2) 4.231 2.048 1.852 7.907 5.576 5.361 14.760 10.604 12.882

4 QS(N � 2) 7.845 3.070 2.677 12.496 7.173 6.626 20.015 13.204 13.158
QR(N � 2) 7.986 2.936 2.530 12.394 7.130 6.703 20.164 12.956 12.882

8 QS(N � 2) | 8.325 6.099 | 15.100 12.816 | 26.557 26.310
QR(N � 2) | 8.330 5.863 | 15.743 12.719 | 25.579 25.587

(i = 0; 1; � � � ; 8) of Eq. (23) overlapped for N = 30,
50, and also for N = 10, most of the time. The
approximation Eq. (23) suggests that bi would depend
slightly on N .

To compare the mathematical (Eq. (22)) and
multiple linear regression model (Eq. (23)), de�ne two
quantities SA and SR as:

SA = E[QS(N � 2)�QA1(N � 2)]2

=
1

125

125X
i=1

1[QS(N � 2)�QA1(N � 2)]2;

and:

SR = E[QS(N � 2)�QR(N � 2)]2

=
1

125�9

125X
i=1

1[QS(N�2)�QR(N�2)]2 = �̂2:

QA, as in Eq. (21), is obtained by Taylor's series and
QR is from regression model, where coe�cients of �2,
�4, etc. in QR are functions of Q1; Q2; � � � ; Q125. The
values of SA and SR for each N are given in Table 2.

These results indicate that the approximations get
better for high values of N . It looks reasonable to pool
these three regressions for N = 10, 30, 50, because
there is a reason to think that three functions are the
same (mathematical approximation).

Table 2. SR and SA for di�erent values of N .

N 10 30 50

SR 0.054 0.009 0.0034
SA 0.445 0.045 0.0150
SA=SR 8.2 5.0 4.0

5.2. Combination of estimates
Let the linear model (Eq. (23)) be represented by
E(X) = A�, where A125�9 is a matrix of �2, BN , CN
and �9�1 is a parameter vector; also, COV(X) = �2I;
then, �̂ = ((ATA)�1ATX and COV(�̂) = �2(ATA)�1.

If we assume XM (M = 1; 2; � � � ; 125) is N(A�,
�2I), then:

Loglik = Const� 25 log � � 1
2�2 [X�A�]T [X�A�]

= Const� 125 log �

� 1
2�2

��
� � �̂�T ATA�� � �̂�+ RSS

�
:

For three independent sets of data with N = 10, 30,
50, and 125 observations in each, let �̂10, �̂30, �̂50 be
the estimates for N = 10, 30, 50 with error variances
�2

10, �2
30 and �2

50, respectively; then:

Combined Loglik = Const� 125
X

log �i

� 1
2

X 1
�2N

�
�� ^thetaN

�T
ATA

�
���̂N

�
:

ATA is the same each time, because values of A
are determined by �2, BN and CN and it is not a
diagonal matrix; RSSN is absorbed in Constant. This
arrangement is equal to:

Const� 125
X

log �i

� 1
2

�
���̂�T� 1

�2
10

+
1
�2

30
+

1
�2

50

�
(ATA)

�
���̂� ;

for an appropriate choice of �̂ and constant. By
comparing linear terms in �:
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�2�̂TK� =� 2

"
1
�2

10
�̂T10(ATA)� +

1
�2

30
�̂T30(ATA)�

+
1
�2

50
�̂T50(ATA)�

#
;

where:

K =
�

1
�2

10
+

1
�2

30
+

1
�2

50

�
(ATA);

coe�cient vector:

K�̂ =
X 1

�2
N

(ATA)�̂N ; �̂ =
X

WN �̂N ;

and COV(�̂) =
P
W 2
NCOV(�̂N ), and WN = a

b , with

a = 1
�2
N

, b = 1
�2

10
+ 1

�2
30

+ 1
�2

50
and

3P
1
wi = 1. Using the

above theory, we combined estimates for N = 10, 30,
50, which are represented in Table 3.

Table 3 shows that only some of bi's corresponding
to QA(N � 2), i.e. coe�cients for Eq. (21), lie in the
pooled interval from regression. Presumably, QR is a
better approximation than QA.

5.3. Results (q = 2, 3, 4, 8)
Linear model (Eq. (23)) is �tted to 125 values, each
of QS(N � 2), for q = 2, 3, 4, 8 and N = 10, 30, 50
and the results are shown in Tables 1(b) and 1(c). It is
clear from tables that R2 is always very high, i.e. for
q = 2, it is 99.2% for N = 10, and 99.9% for N = 50.
S is very small, i.e. for q = 2, it is 0.1641 for N = 10;
and 0.0564 for N = 50. Similarly, for q = 3, 4. For
q = 8, R2 is still high but S has increased. Results for
q = 8 and N = 10 are not reported because of high
estimation error in multivariate regression experiments
as N � p + q + 1 is required to avoid singularity of
the error covariance matrix � [25]. Table 1(c) suggests
that the linear model Eq. (23) �ts very well.

Table 3. Combined bi's for di�erent values of N .

Coef. W.S.D Interval estimate (bi) in QA
-0.300 0.081 -0.46 -0.14 0
4.310 0.299 3.72 4.90 2.80�

-3.244 0.24 -3.73 -2.76 -2.00
1.509 0.029 1.45 1.57 1.00
-5.531 0.106 -5.74 -5.32 -4.00
5.165 0.088 4.99 5.34 4.00
-0.015 0.028 -0.07 0.04 0.00
0.863 0.102 0.66 1.06 1.00
0.205 0.085 0.04 0.37 0.00

�: This value is for N = 10 and the values for any other N
can be calculated by the relation 2 + (N � 2)=N .

5.4. Interval estimates
An approximate interval estimate of the form is pro-
posed: T̂ � 1:96

p
^MSE. The unknown parameters

can be estimated; then, the unconditional interval for
T would re
ect uncertainty about �, �, and �. To
study the error probabilities using simulation, we de�ne
pivotal function F1 as follows:

F1 =
T��Ĉ+D̂X

�p
^MSE

=
Bias of Tp

^MSE
=

Bias of T=�q
^MSE=�2

:
(24)

Here:

^MSE = (1� �2)�2(1 +QR);

E(F1) � E
0@T � �Ĉ + D̂X

�p
^MSE

1A
=
�[
�
EĈ � C�� �ED̂ �D�T f�+ ��gq

^MSEreg

;

E(F1) � E
0@T��Ĉ + D̂X

�q
^MSEreg

1A=
MSE=Eq

^MSEreg

� 1:

It follows from Theorems (1) and (2) that at least
approximately both E(F1) and VAR(F1) depend only
on the invariants q, N , �, BN and CN , because both
numerator and denominator in (Eq. (24)) depend on
these invariants.

To simulate the upper tail probability P (F1 >
1:96) and lower tail probability P (F1 < �1:96) for F1
with q = 1, 2, 3, 4, it is required to obtain pivotal
function F1. F1 is simulated for �2 = 0:7 and 27 =
(3 � 3 � 3) combinations of the invariants (N = 10,
30, 50; BN = 0:0, 1.0, 4.0; CN = 0:25, 1.0, 4.0). QR
is used instead of QA in the calculations of F1; then,

^MSE = (1 � �2)�2(1 + Q̂R). Q̂R is from Eq. (22);
substitute �2 = �̂2, so �̂2 = �̂T D̂. To this end, the
followings are simulated as in Section 4:

(i) Ti's and Xi's are simulated using canonical form;

(ii) �̂, �̂, and �̂ are generated from the distribution
theory to get the estimates Ĉ, D̂, and �2.

Two cases are studied for T :

(a) T is generated from N(�; �2);

(b) T is generated from exponential distribution with
� and �2 as location and scale parameters which
are calculated from the values of BN and CN .
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�� is calculated by the relation:

�� =
�p

CN (1� �2)
;

and X 0s are generated from the standardized normal
distribution.

Q̂R comes from the linear model (Eq. (22)) with
regression coe�cients bi's (i = 0; 1; � � � ; 8) as are
given in Table 1(b) for di�erent values of N . The
corresponding bi's of Table 1(b) were used at �rst.
Then, the cases N = 30, 50 were repeated with
bi's corresponding to N = 10, and slightly lower tail
probabilities were usually found. So, these latter bi's
were �nally chosen for q = 2, 3, and 4. The coe�cients
used for q = 1 are the weighted coe�cients previously
given under the \Combination of Estimates".

Some extreme cases are picked to see the distri-
bution of F1. The summary statistics are provided
in Table 4(a) for 1000 values of F1 with normal and
exponential distribution of T for q = 1, 2, 3, 4 and
combinations of the invariants with N = 10. It
is clear that the mean is approximately zero. We
have also veri�ed the approximate normality (using
normal probability plots). The upper tail probability
P (F1 > 1:96) and lower tail probability P (F1 < �1:96)
for P (t) to be normal and exponential are given in
Table 4(b), for N = 10, 30, 50 and q = 1, 2, 3,
and 4. These indicate that for N = 10, the error
probabilities are high and have increasing trend with
the increasing q. For q = 1, the sum of lower and
upper tail probabilities is around 0.085 for P (t) to

be normal and 0.080 for P(t) to be exponential. For
N = 30 and 50, the sums of error probabilities are very
close and are always between 0.05 and 0.06. It is also
observed that the lower and upper tail probabilities
are near each other for BN = 0:0 and get apart for
higher values of BN . For q = 1, the approximated value
QA obtained using Taylor's series, as in Eq. (21), was
also used to obtain error probabilities instead of QR in
expression Eq. (24). For N = 10, the point estimates
of lower tail probability, P (F1 < �1:96) = P̂L, and
upper tail probability, P (F1 > 1:96) = P̂U , range in
0.042-0.057 and 0.026-0.046, respectively for normal
p(t). For N = 30, 50 they are between 0.021-0.030
and 0.029-0.035, respectively. The sums of P̂L + P̂U
are nearly 0.08, 0.06, 0:055 � 0:05 for N = 10, 30, 50,
respectively.

For exponential p(t), P̂L and P̂U range in 0.030-
0.056 and 0.032-0.050, respectively, and the sum P̂L +
P̂U is between 0.079-0.086 for N = 10. For N = 30,
50, they have tendency toward near 0.018 and 0.032,
respectively, and the sum P̂L + P̂U is nearly 0:050 �
0:05. It can be concluded here that Error probabilities
depend on q, N , BN , CN and to some extent on �2.

Using the procedure of canonical from, the upper
and lower tail probabilities were the same for BN = 0
or �t = �, but when �t 6= �, the values of the upper
and lower tail probabilities exchanged. This happened
because always � � �t; whereas here it is opposite, i.e.
�t � �. The change of sign of T exchanges the numerical
values of the lower and upper tail probabilities, i.e.:

Lower error prob. = P (F1 < �1:96);

Table 4(a). Summary statistics of 1000 values of F1, n=10, di�erent values of q, p(t), and invariants.

p(t)
q=1 q=2 q=3 q=4

BN=4
CN=0:25

BN=4
CN=4

BN=0
CN=4

BN=4:0
CN=0:25

BN=4
CN=4

BN=0
CN=4

BN=4
CN=0:25

BN=4
CN=4

BN=0
CN=4

BN=4
CN=0:25

BN=4
CN=4

BN=0
CN=4

Mean

Normal 0.070 0.133 0.049 -0.008 0.191 -0.097 0.217 0.501 0.044 1.710 0.622 -0.013
Exponential 0.006 0.085 0.008 0.053 0.284 -0.014 0.234 0.553 0.077 1.443 0.670 0.028

S.D

Normal 1.170 1.138 1.137 1.185 1.227 1.328 1.298 1.412 1.483 0.710 1.763 1.765
Exponential 1.129 1.133 1.140 1.249 1.231 1.239 1.399 1.669 1.713 1.443 1.801 1.902

Median

Normal 0.039 0.031 0.018 -0.057 0.059 -0.054 0.138 0.324 0.029 0.106 0.429 -0.063
Exponential -0.014 -0.014 -0.093 0.032 0.130 -0.055 0.178 0.315 -0.046 0.162 0.463 -0.089

Minimum

Normal -5.323 -3.284 -5.995 -5.270 -5.822 -9.490 -4.324 -4.041 -8.282 -9.785 -7.056 -7.598
Exponential -5.744 -6.060 -5.474 -5.136 -2.521 -3.655 -5.829 -3.920 -5.534 -10.456 -7.071 -10.231

Maximum

Normal 4.480 5.921 4.894 5.091 6.299 5.145 6.145 6.504 6.171 9.862 10.692 7.809
Exponential 4.064 8.381 7.003 5.690 6.533 5.989 10.002 20.134 19.230 6.376 17.914 17.323
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Table 4(b). Lower (L) and Upper(U), 103� error probabilities of F1 for di�erent values of q, p(t) and N .

(i): p(t) normal

CN BN
q = 1 q = 2 q = 3 q = 4

0.0 1.0 4.0 0.0 1.0 4.0 0.0 1.0 4.0 0.0 1.0 4.0
N = 10

0.25 L 40 38 37 50 44 39 60 51 44 80 68 57
U 42 47 49 46 54 57 62 70 76 76 91 103

1.00 L 39 36 32 53 40 31 63 46 34 84 61 41
U 44 50 53 49 61 67 65 81 92 80 106 126

4.00 L 40 31 22 58 40 22 80 49 27 103 65 36
U 46 52 56 55 71 83 78 104 124 100 141 170

N = 30

0.25 L 29 27 26 32 30 27 29 26 24 30 26 23
U 29 29 32 30 32 33 29 32 31 29 32 33

1.00 L 30 27 24 34 29 24 28 25 20 31 24 19
U 39 31 33 31 34 36 31 34 37 31 36 39

4.00 L 31 27 23 34 28 23 34 25 18 39 27 18
U 30 34 36 33 38 42 34 42 48 38 47 55

N = 50

0.25 L 29 27 27 26 24 22 26 24 22 29 27 23
U 29 29 29 27 28 29 28 28 29 22 24 24

1.00 L 29 27 25 24 23 21 27 24 20 31 26 21
U 29 30 31 27 30 32 29 31 32 23 27 29

4.00 L 31 27 26 25 23 20 29 24 18 33 27 19
U 29 32 34 28 33 36 32 36 39 28 33 38

(ii): P (t) exponential
N = 10

0.25 L 34 31 33 45 38 37 54 47 42 74 61 54
U 44 47 47 49 52 56 60 69 76 76 87 98

1.0 L 35 28 27 45 33 27 31 39 28 76 53 39
U 45 48 49 51 58 63 64 80 93 82 102 121

4.00 L 31 21 17 41 25 15 57 30 15 88 49 24
U 47 50 51 56 69 78 76 97 114 97 126 152

N = 30

0.25 L 26 24 24 26 24 22 26 23 20 23 19 18
U 37 36 35 38 38 38 38 37 37 32 33 34

1.00 L 25 23 22 24 23 19 25 22 17 22 17 14
U 37 36 38 38 40 41 39 41 41 34 38 39

4.00 L 24 21 18 23 18 13 25 17 12 27 16 10
U 36 39 42 40 43 47 43 51 54 43 52 57

N = 50

0.25 L 23 23 22 23 22 21 22 18 15 20 18 16
U 37 37 38 36 37 37 36 37 36 33 34 31

1.0 L 23 21 21 21 21 19 22 18 15 19 17 14
U 36 38 39 36 38 38 36 38 40 34 36 37

4.0 L 23 20 18 22 19 17 21 17 12 19 15 11
U 38 39 41 38 41 42 39 43 46 39 44 47
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and:
Upper error prob. = P (F1 > 1:96):

Let:
T 0 = �T; �T 0 = � �T ; ST 0T 0 = STT ;

E(XjT ) = �+ �T 0 = �0 + �0T;
so �0 = �, �0 = ��, �2

XjT 0 = �2
XjT , �0 = ��, �02 = �02

and N , �2, BN , CN are unchanged so MSE unchanged.

C 0 +D0X = T̂ 0 = �T̂ = C �DX;
C 0 = �C; D0 = �D:
Lower error prob0 = P (F 01 < �1:96)

= P

0@T � �Ĉ + D̂X
�p

^MSE
< �1:96

1A
= P

0@�T � �Ĉ + D̂X
�p

^MSE
> �1:96

1A
= P

0@T � �Ĉ + D̂X
�p

^MSE
> �1:96

1A
= P (F1 > �1:96) = Upper error prob.

5.5. Example: Wheat quality data

In this section, we provide an application example using
the wheat quality data analyzed by Brown [2]. The
data set consists of 21 samples of response variables,
the 4-vector X, and the 2-vector T of explanatory
variables. X1, X2, X3, and X4 are the infrared
re
ectance measurements and T1, and T2 denote the
percentages of water and protein contents, respectively.
The set of the �rst 16 observations on X1, X2, X3,
X4 and T are treated as regression experiment and the
next set of 5 observations are used to test the predicted
values. We have taken only one explanatory variable,
namely the protein percentage.

To predict T , we con�ned ourselves to these
subsets of response variables: (a) X2 only; (b) X1
and X2; (c) X1, X2, and X3; and (d) X1, X2, X3,
and X4. The values of Ĉ and D̂ are calculated for
the above subsets by obtaining �, � and � from the
�rst 16 observations. � and �2 may be taken as
� = �t and �2 = STT =15 approximately BN =0.0 and
CN = 1:0, because the mean and standard deviation
of 21 values of the variable T are 11.26 and 1.45,
respectively, whereas the mean and standard deviation
of 16 observations are 11.39 and 1.35, respectively.
The point and interval estimates for protein percentage
values T17, T18, T19, T20, and T21 are calculated and
reported in Table 4(c) along with the data. It is clear
that the values to be predicted are always in the 95%

Table 4(c). Point and interval estimates of wheat quality data for subsets of response variables.

Point estimate Interval estimates MSE

(i) X2

9.4704 8.7515 10.1894

0.1345
10.0894 9.3705 10.8083
9.2641 8.5452 9.9830
12.9780 12.2591 13.6969
12.7717 12.0527 13.4906

(ii) X1, X2

9.1669 8.7369 9.5969

0.0481
10.0420 9.6120 10.4720
9.2325 8.8025 9.6625
12.5773 12.1473 13.0073
12.8811 12.4511 13.3112

(iii) X1, X2, X3

9.1295 8.7509 9.5080

0.0373
10.1736 9.7951 10.5522
9.1149 8.7364 9.4935
12.6602 12.2816 13.0387
12.7719 12.3934 13.1505

(iv) X1, X2, X3, X4

9.2490 8.8729 9.6265

0.0368
10.1817 9.8055 10.5579
9.1522 8.7760 9.5284
12.7134 12.3372 13.0895
12.7666 12.3904 13.1428
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interval for all the four subsets of response variables
(cf. Table 4). The interval estimate gets shorter with
the increase in q until q = 3 and it is almost the same
for q = 3 and q = 4.

6. Conclusions and recommendations

This study has suggested the classical and inverse
estimators as special cases of the proposed multivariate
linear calibration approach based on the best linear
predictor. The bias and mean squared error are
derived for the proposed predictor. The study has
revealed that the ratios Bias=�2 and MSE=�2 are
functions of �ve invariant quantities. The probabilities
for the interval estimates have shown that they have
reasonable con�dence coe�cient; thereby, we conclude
that this estimator can be safely used. The scope of the
study may be extended to be carried out in an extensive
investigation on the same lines by including more
explanatory variables, T 's, instead of one variable T .
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