
Scientia Iranica D (2016) 23(3), 1228{1238

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

Separating bichromatic point sets by two disjoint
isothetic rectangles

Z. Moslehi and A. Bagheri�

Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran.

Received 7 April 2015; received in revised form 12 October 2015; accepted 21 November 2015

KEYWORDS
Algorithm;
Computational
geometry;
Separability;
Bichromatic point
sets;
Isothetic rectangles.

Abstract. Given a set P of red points and a set Q of blue points in a plane
with total size n, we investigate the problem of �nding two disjoint isothetic rectangles
containing all the points of Q, avoiding any points of P . Such rectangles are called
two separating disjoint isothetic rectangles. We �rst compute two separating disjoint axis-
aligned rectangles in O(n logn) time. Then, we relax the axis-aligned constraint and report
all combinatorially di�erent two separating disjoint isothetic rectangles. To compute these
rectangles, we introduce some events by rotating the coordinate system and processing these
events. Computing and processing all of the events are done in O(n2 log n) time. Thus,
our algorithm reports all combinatorially di�erent separating rectangles in O(n2 logn)
time.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

In the basic separability problem, we are given two
colored point sets P and Q in the plane, classi�ed as red
and blue points of total size n, and a geometric shape
C, as a separator. The goal is to locate C such that all
the blue points lie inside C and all the red points lie
outside it.

Geometric separability has many applications,
such as image analysis, statistics, and other �elds
in which classi�cation is required [1]. Fundamental
classi�cation problems have been extensively studied
in machine learning. Also, in many data analysis
problems, two (usually disjoint) sets of points P and
Q are given and one would like to �nd patterns which
exactly intersect one of them. A systematic study of
criteria for selecting the most useful patterns of data
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has been presented and it has been shown that one of
the useful patterns is a rectangle.

There has been a fair amount of work on using dif-
ferent kinds of separators, such as rectangles, squares,
circles, etc. The complete separability by a rectangle
in any orientation (not only an axis-aligned rectangle)
was investigated by van Kreveld et al. [2]. In some
cases, complete separability is not possible. Eckstein et
al. [3] worked on the problem of �nding an axis-aligned
rectangle B such that B\P = � and the cardinality of
B \Q is maximized. Finding an axis-aligned rectangle
B that maximizes the di�erence between the numbers
of points of Q and P inside B, i.e. jjB \Qj � jB \ P jj,
has been studied by Liu and Nediak [4].

Finding the largest subset S � P [ Q enclosed
by the union of two, not necessarily disjoint, isothetic
rectangles BP and BQ such that BQ [ P = � and
BP \ Q = � has been considered by Corts et al. [5,6].
Finding two axis-aligned unit squares, SP and SQ, with
disjoint interiors, such that the number of red points
covered by SP plus the number of blue points covered
by SQ is maximized, has been considered in [7,8].
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Sheikhi et al. [9,10] studied the separability problem
by an L-shape separator.

Other variants of the problem, when we have
monochromatic point set, have been studied in [11-15].

In this paper, we are given two sets P and Q
of red and blue points, respectively, and we �nd two
disjoint isothetic rectangles containing all the points
of Q, avoiding any points of P , and report them in
O(n2 log n) time, if they exist.

The remainder of the paper is organized as fol-
lows: Some de�nitions are given in Section 2. The
separating algorithm for �nding two disjoint axis-
aligned rectangles is introduced in Section 3. Then,
in Section 4, the algorithm is extended to relax the
axis-aligned constraint. Finally, the conclusion is given
in the last section.

2. De�nitions

The rectilinear axis-aligned convex hull of Q, RCH(Q),
is de�ned as follows: A quadrant is the intersection
of two half-planes whose supporting lines are axis-
aligned. We call a quadrant free of Q if its interior
does not contain any point of Q. RCH(Q) is de�ned
as follows [16]:

RCH(Q) = <2 � [
qu is a quadrant free of Q

qu (1)

Figure 1 shows a rectilinear convex hull. For a
�xed orientation, the rectilinear convex hull can be
constructed in O(n log n) time [17].

De�nition 1. We call a point p 2 Q an extremal
point, if there is no point q 2 Q such that qx > px and
qy > py, where px and py are the x- and y-coordinates
of p in a speci�c coordinate system, respectively.

Let X(Q) denote the set of all extremal points
of Q. For example, in Figure 2, all the cross points
are extremal points. We de�ne a total order <, on the
extremal points, i.e. q < p if (qx < px) or (qx = px and
qy > py). For each pair qi, qi+1 2 X(Q), 1 � i < k,

Figure 1. The rectilinear convex hull of Q, RCH(Q).

Figure 2. The extremal points of a point set and a
staircase S(Q).

where the indices are given in the order <, we draw
two axis parallel rays, one downward from qi and the
other leftward from qi+1. Then, we get a step between
qi and qi+1, 1 < i < k, and we denote such a sequence
of steps by the staircase S(Q) of Q. Considering
Figure 2, such a staircase can be de�ned by a sequence
of free quadrants supporting two consecutive extremal
points. The rectilinear convex hull RCH(Q) can be
described by four staircases, S0(Q), S�=2(Q), S�(Q),
and S3�=2(Q) [16], see Figure 3.

Let R(Q) denote the minimum axis-aligned
bounding rectangle of the blue point set Q. Consider
the red points lying inside R(Q) and outside RCH(Q).
Let R0 denote the minimum bounding rectangle of
red points which are within the restricted boundary of
S0(Q) and R(Q). Now, R0(P ) denotes the smallest
rectangle that contains R0 and shares its top-right
corner with R(Q); see Figure 3. Similarly, we de�ne
R�=2(P ), R�(P ), and R3�=2(P ) by using S�=2(Q),
S�(Q), and S3�=2(Q), respectively.

If we rotate the coordinate system by �,
then R(Q), S0(Q), S�=2(Q), S�(Q), S3�=2(Q) and

Figure 3. Representation of R(Q), RCH(Q),
R0(P ); :::; R3�=2(P ).
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R0(P ); :::; R3�=2(P ) are computed as before. We com-
pute them according to the previous de�nition, but
their sides would be parallel to the new coordinate
system.

We call two staircases S�(Q) and S�0(Q) opposite
staircases if � and �0 di�er by � and adjacent staircases
if � and �0 di�er by �=2 [16]. R�(P ) and R�0(P ) are
called adjacent rectangles if � and �0 di�er by �=2
and they are called opposite rectangles if � and �0
di�er by �. For example, R0(P ) and R�=2(P ) are
adjacent rectangles and R0(P ) and R�(P ) are opposite
rectangles.

Let CH(Q) denote the convex hull of Q. The
convex hull of red points inside R0(P ) is denoted by
CH0(P ).

3. Separating bichromatic point sets by two
disjoint axis-aligned rectangles

In this section, we introduce an algorithm for separat-
ing bichromatic point sets by two disjoint axis-aligned
rectangles. Assume that the coordinate system is at
a �xed orientation, �. To avoid many special cases,
we assume that no two points (red or blue) have the
same x-coordinate or y-coordinate. For example, we
ignore the cases in which a red point is on the border of
RCH(Q) or on the border of R(Q). These special cases
can be handled easily, but make our text complicated;
thus, we ignore them. First, we show the necessary
and su�cient conditions for separability and then we
introduce our algorithm.

3.1. Necessary and su�cient conditions
The separability of bichromatic point set is based on
the position of red and blue points. For example,
in Figure 4, the two point sets are separable by two
disjoint axis-aligned rectangles when the rectilinear
convex hull of Q, RCH(Q), is bichromatic. Never-
theless, the red points inside RCH(Q) could not exist
freely anywhere inside it. We de�ne Sv (respectively

Figure 4. Two disjoint axis-aligned rectangles that
separate P (red points) and Q (blue points) even if
RCH(Q) is bichromatic.

Sh) as the narrowest vertical (respectively horizontal)
strip containing all red points in the interior RCH(Q),
which is inside R(Q). Some of the necessary conditions
for separability are introduced in Lemma 1.

Lemma 1. The following conditions are necessary
for separability by two disjoint axis-aligned rectangles:

1. At least one of Sv and Sh should be monochromatic;

2. None of the corners of red rectangles R0(P ); :::;
R3�=2(P ) should be inside RCH(Q);

3. At least two of the four red rectangles R0(P ); :::;
R3�=2(P ) should be empty.

Proof. First, assume that condition 1 does not hold.
If there exist some blue points in the interior of both
Sh and Sv, then the two point sets are not separable
because we should cover all of the blue points on one
side of Sh (respectively Sv) by one rectangle and all
of the points on the other side of Sh (respectively Sv)
by another rectangle. Thus, the blue points lying in
the interior of Sh (respectively Sv ) are not covered
by any rectangle. This means that we cannot extend
the rectangle lying on one side of Sh (respectively
Sv) to cover the blue points lying in the interior of
Sh (respectively Sv), because Sh (respectively Sv) is
de�ned by red points inside RCH(Q).

Now, assume that both Sh and Sv are empty. This
means that RCH(Q) is monochromatic. Also, assume
that condition 1 holds, but condition 2 does not hold.
So, at least one of the extremal points is inside at least
one of the red rectangles R0(P ); :::; R3�=2(P ). If we
cover all of the blue points in that red rectangle with
one rectangle, the other blue points outside the red
rectangle cannot be covered with another rectangle.
So, we do not have two disjoint axis-aligned separating
rectangles. As a result, condition 2 is a necessary
condition, no matter if Sh and Sv are not empty, which
is more general, or even both are empty.

Now, assume that condition 3 does not hold and
we have three or four red rectangles. Assume that we
have R0(P ), R�=2(P ), and R�(P ). Then, at least three
disjoint rectangles are necessary to cover all of the blue
points. The �rst rectangle covers the topmost blue
point, the second rectangle covers the leftmost blue
point, and the third rectangle covers the rightmost and
the bottommost blue points. These rectangles cannot
be merged with each other because of the existence of
the red rectangles. Thus, condition 3 is also a necessary
condition.�

The three conditions of Lemma 1 are necessary
but not su�cient for separability. We describe other
necessary conditions for separating point sets by two
disjoint axis-aligned rectangles in two di�erent cases,
as follows:
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Figure 5. MinB1 and MinB2 when two adjacent red
rectangles are empty.

Case A. When two adjacent red rectangles are
empty.

First, assume that the �rst three conditions hold.
Thus, we consider one of the monochromatic vertical
or horizontal strips Sh or Sv. In Figure 5, Sh is
monochromatic and we choose Sh. Considering this
�gure, one of the covering rectangles covers all of the
blue points at one side of Sh and the other covering
rectangle covers all of the blue points at the other side
of it. Note that three sides of each covering rectangle
are de�ned by RCH(Q) and the fourth side is de�ned
by Sh. We call these rectangles MinB1 and MinB2,
which cover all of the blue points. MinB1 and MinB2
are de�ned similarly if we choose Sv. Lemma 2 shows
a necessary condition in this case.

Lemma 2. A necessary condition for separability of
two disjoint axis-aligned rectangles in Case A is:

(4-A) ((MinB1 \ (R0(P ) [ R�=2(P ) [ R�(P ) [
R3�=2(P )) = �) and ((MinB2 \ (R0(P ) [
R�=2(P ) [R�(P ) [R3�=2(P )) = �)

i.e., intersection of MinB1 and MinB2 with red rect-
angles should be empty.

Proof. Three sides of MinB1 and MinB2 are de�ned
by blue points of RCH(Q). If they intersect red
rectangles, we cannot �nd two rectangles covering the
blue points avoiding the red points, because every other
two covering rectangles must overlap the boundaries
MinB1 (and respectively MinB2), which are de�ned
by RCH(Q).�

In Case A, the conditions of Lemma 1 and
Lemma 2 are su�cient conditions for separability, be-
cause we can compute two covering rectangles MinB1
and MinB2 and report them as two disjoint axis-
aligned separating rectangles. But, since MinB1 and
MinB2 intersect the red points on Sh or Sv, we
compute two open rectangles by removing the sides
which intersect Sh or Sv and consider them as two
separating rectangles. As more description, let all the

conditions of Lemma 1 and Lemma 2 hold. Now, we
consider one of the monochromatic strips Sh or Sv,
then we compute MinB1 and MinB2 according to the
selected strip. If condition (4-A) holds, these rectangles
can de�ne separating rectangles. If this condition does
not hold, we consider another monochromatic strip,
then we compute MinB1 and MinB2 and report two
open rectangles as two disjoint axis-aligned separating
rectangles. In Figure 5, MinB1 and MinB2 are
not separating rectangles because MinB1 intersects
R�=2(P ) (condition 4-A does not hold) and there is
not any other monochromatic strip.

For computing two disjoint axis-aligned separat-
ing rectangles, when Sh and Sv are both empty, if both
R�(P ) and R3�=2(P ) are empty, we can extend the
bottom side of the red rectangle R0(P ) or R�=2(P )
that is lower than the other rectangle until it intersects
R(Q). We use the extended bottom edge as Sh. In the
other cases, when the other two adjacent red rectangles
are empty, we proceed in a similar manner.

Case B. When two opposite red rectangles are
empty.

Considering Figure 6, in this case, each separating
rectangle shares at least one corner of R(Q). We de�ne
two rectangles MaxB1 and MaxB2 as follows:

Consider two opposite red rectangles. We extend
a vertical side of one red rectangle and a horizontal side
of the opposite red rectangle until they meet. MaxB1
is de�ned by the extension of these sides and a corner
of R(Q) which does not overlap the red rectangles.
Similarly, MaxB2 is de�ned by the extension of a
horizontal side of the �rst red rectangle and a vertical
side of the other red rectangle and another corner of
R(Q) which does not overlap the red rectangles. We
de�ne rectangle B1B2 as the intersection of MaxB1
and MaxB2.

Now, consider MinB1 (or MinB2) to be the
minimum bounding rectangle that covers all of the blue
points outside B1B2 and be a sub-region of MaxB1
(respectively MaxB2); see Figure 6. Let B1 and B2

Figure 6. MinB1, MinB2, MaxB1, MaxB2, and B1B2

when two opposite red rectangles are empty.
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be the two disjoint axis-aligned separating rectangles
(if they exist), where B1 is included in MaxB1 and
B2 is included in MaxB2. Note that the blue points
within MinB1 (respectively MinB2) and outside B1B2
cannot be covered by B2 (respectively B1) and they
should be covered only by B1 (respectively B2).

According to these de�nitions, MinB1 � B1 �
MaxB1. Lemma 3 shows a necessary condition in this
case.

Lemma 3. Necessary conditions for separability of
two disjoint axis-aligned rectangles in Case B are as
follows:

(4-B-1) (MinB1 \ MinB2) = � (intersection of
MinB1 and MinB2 should be empty);

(4-B-2) (Sv \ (MinB1 [ MinB2)) = �) or (Sh \
(MinB1 [ MinB2)) = �) (intersection of
MinB1 and MinB2 with Sh or Sv should be
empty).

Proof. As we have shown MinB1 � B1 and
MinB2 � B2, if MinB1 intersects MinB2, B1 inter-
sects B2 and their intersection implies that two disjoint
separating rectangles do not exist. For example,
in Figure 6, two separating rectangles do not exist,
because MinB1 and MinB2 intersect.

Now, we prove correctness of the second condi-
tion. Assume that all the conditions of Lemma 1 and
the �rst condition of this lemma hold. Also, assume
that the second condition does not hold. Thus, both
Sh and Sv are intersected by MinB1 or MinB2. It
is clear that if red points of Sh or Sv are in MinB1 or
MinB2, then the two point sets are not separable, since
MinB1 � B1 and MinB2 � B2. Thus, assume that
all of the red points in Sh and Sv are outside MinB1
and MinB2. According to these assumptions, at least
one of Sh and Sv should be monochromatic and each
of them should be intersected by MinB1 or MinB2 or
both of them. By some simple tests on their location,
we see that one of Sh and Sv should be intersected
by MinB1 and another one should be intersected by
MinB2; consider Figure 7. We claim that at least one
blue point should be in the dashed region in this �gure.
This is because Sh and Sv include all of the red points
inside RCH(Q). If we extend MinB1 and MinB2 to
cover all of the blue points, they could not cover the
blue points inside the dashed region while avoiding the
red points. In other words, because of red points on
the segment ab, we cannot extend MinB1 to cover the
blue points in the dashed region; and because of red
points on the segment bc, we cannot extend MinB2
to cover such blue points. Therefore, there are not
any two separating rectangles and condition 4-B-2 is
another necessary condition for separability.�

Figure 7. At least one blue point would be in the dashed
region if both Sh and Sv intersect MinB1 or MinB2.

Figure 8. MinB1 and MinB2 when they do not intersect
Sh.

Now, we show that all the conditions of Lemma 1
and Lemma 3 are su�cient conditions for separability
in Case B.

Observation 1. If all the conditions of Lemma 1
and Lemma 3 hold, two point sets are separable by two
disjoint axis-aligned rectangles.

Conditions 1 and 4-b-2 imply that there exists a
monochromatic vertical or horizontal strip, of which
the intersection by MinB1 and MinB2 is empty. As-
sume that Sh is monochromatic and does not intersect
MinB1 and MinB2; consider Figure 8. Since MinB1
and MinB2 share the opposite corners of R(Q), one
of them is on one side of Sh and another one is on its
another side. Also, recall that all blue points outside
B1B2 are covered by MinB1 and MinB2. Thus, all
of non-covered blue points are inside B1B2, of which
some are on one side of Sh and another ones are on
its another side. Now, we can extend each of MinB1
and MinB2 to cover all of the blue points lying on
di�erent sides of Sh and report them as two disjoint
axis-aligned separating rectangles. It is su�cient to
extend them until they are tangent to red rectangles
and Sh. We compute two open rectangles by removing
the sides which intersect Sh and red rectangles and
consider them as two separating rectangles.

For computing two disjoint axis-aligned separat-
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ing rectangles, when Sh and Sv are both empty, if both
R�=2(P ) and R3�=2(P ) are empty, we can extend the
bottom side of MinB1 until it intersects R(Q). If the
extended bottom edge does not intersect MinB2, we
use the extended bottom edge as Sh. When it intersects
MinB2, we must extend the right side of MinB1 until
it intersects R(Q) and use it as Sv.

3.2. The algorithm
Algorithm 1 presents the pseudocode of the separability
algorithm. In this algorithm, we summarize all su�-
cient conditions to report the separability rectangles.

Theorem 1. Deciding on the separability of two
disjoint axis-aligned rectangles.

Proof. At �rst, all the red points are stored in a
2D range tree data structure in O(n logn) time [18].
Then, we specify the bottommost, the topmost, the
leftmost, and the rightmost points of the blue points
in O(n) time. Next, all the extremal points of stair-
cases S0(Q); :::; S3�=2(Q) are stored in four balanced
binary search trees T1; :::; T4, respectively, in O(n logn)
time [18]. RCH(Q) is de�ned by T1; :::; T4. Now,
we compute time complexity of the other steps of the
algorithm.

After the initial step, minimum bounding rect-
angle R(Q) is computed in constant time. Then, we
remove all of the red points outside it in O(n) time. By
using data structures T1; :::; T4, computation of Sh and
Sv is done in O(n log n) time. We can test them if they
are monochromatic in O(n) time. We get two extremal
points of the minimum and maximum x-coordinates of
T1 and denote them by minx and maxx. Then, we
pass a vertical ray from minx and a horizontal ray

from maxx until they meet. Consider the rectangle
that is de�ned by these rays and R(Q). Among all
of the red points in this rectangle, except the points
which are in RCH(Q), the closest point to the bottom
side of this rectangle and the closest point to the left
side of it, de�ne the down side and the left side of
R0(P ), respectively. Both of them can be computed in
O(log2 n) time using the 2D range tree data structure.
The right and top sides of R0(P ) are restricted to
R(Q). Similarly, we can compute R�=2(P ), R�(P ), and
R3�=2(P ).

We can examine whether a corner of the red
rectangles is inside RCH(Q) in O(log n) time by data
structures T1; :::; T4. If two adjacent rectangles are
empty, we compute covering rectangles MinB1 and
MinB2 in O(log n) time by T1; :::; T4 and we test
whether they intersect red rectangles in constant time.
On the other hand, if two opposite red rectangles
are empty, after computation of MaxB1 and MaxB2
in constant time, we compute B1B2. Using B1B2
and T1; :::; T4, we can compute MinB1 and MinB2 in
O(log n) time. The intersections of MinB1 and MinB2
with each other and with Sh and Sv are examined in
constant time. According to what was mentioned, the
total time required to report two disjoint axis-aligned
rectangles is O(n logn).�

4. Separation by two disjoint isothetic
rectangles

In the previous section, we introduced an algorithm
to report two disjoint axis-aligned separating rectan-
gles. In this section, we show how to separate the
bichromatic points by two disjoint isothetic rectangles.
Algorithm 1 was extended to relax the constraint of

Algorithm 1. Computing two separating disjoint axis-aligned rectangles.
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being axis-aligned. First, we introduce all the possible
events that may occur by rotation of the coordinate
system. Then, their processing would be explained and
�nally, our algorithm would be presented.

4.1. Introducing the possible events
By rotating the coordinate system, we have some
events as follows:

- Event 1. Entrance and exit event that is about
red points coming to R(Q) or leaving it: Each red
rectangleR0(P ); :::; R3�=2(P ) may be changed by the
entrance (respectively exit) of red points to (respec-
tively from) R(Q). This depends on the position of
this red point with respect to R0(P ); :::; R3�=2(P ).
Considering Figure 9, when we rotate R(Q), one red
point would enter R(Q) and the separability of two
point sets would be damaged.

- Event 2. Entrance and exit event that is about
red points coming to RCH(Q) or leaving it: When
we rotate the coordinate system, one red point may
enter RCH(Q) or leave it. So, Sh or Sv may be
changed. For example, in Figure 10, when Sh is

Figure 9. Entrance event of red point coming to R(Q).

Figure 10. Entrance and exit event of red points coming
to RCH(Q) or leaving it.

Figure 11. The event of changing blue staircases.

changed, it would be bichromatic whereas it was
monochromatic before the event.

- Event 3. The event of changing blue staircases:
This event is about the change of extremal points.
We know that the intersection of red rectangles and
RCH(Q) a�ects separability. Also, covering rectan-
gles MinB1 and MinB2 in Case A are computed
by RCH(Q) sides. Thus, it is necessary to update
them and the corresponding data structures after
rotating the coordinate system when extremal points
have been changed. Figure 11 shows this event. In
this �gure, one step is removed from RCH(Q) when
RCH(Q) is rotated. This event will be explained
more in the subsection of processing the events.

- Event 4. Changing de�ning points of red rect-
angles: When we rotate R(Q), each of the red
rectangles would be rotated and each side of them
sweeps a part of the plane. Therefore, each of
their sides can meet one of the red points and their
de�ning points can be changed. This event will be
described in more detail in the next subsection.

4.2. Processing the events
We describe processing of the events in this subsection.

- Event 1. Entrance and exit event that is about red
points coming to R(Q) or leaving it: By entering
(extracting) a red point into (from) R(Q), it is
necessary to update the convex hull of the red
points inside the corresponding red rectangle (i.e.,
one of CH0(P ); :::; CH3�=2(P )). Event 4 can be
predicated by CH0(P ); :::; CH3�=2(P ). Thus, it may
be necessary to update this event in the event queue
by changing CH0(P ); :::; CH3�=2(P ). Also, each
of the red rectangles may be changed. The red
rectangles are important in steps 3 to 6 of Algo-
rithm 1. Thus, by changing the red rectangles, we
must control the separability conditions as follows:
We know that one of the necessary conditions for
separability is that the corners of the red rectangles
should not be inside RCH(Q). Thus, whenever a
red rectangle changes, we must update the angles
at which its corner would enter RCH(Q) or leave
it. In Figure 12(a), the left-bottom corner of R0(P )
would enter RCH(Q) by rotation of the coordinate
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Figure 12. (a) Left-bottom corner of a red rectangle
entering RCH(Q) after a rotation. (b) Left-bottom corner
of a red rectangle leaving RCH(Q) after a rotation.

Figure 13. A red rectangle and MinB1 are collinear
after a rotation.

system, and in Figure 12(b), this corner would leave
RCH(Q).

Now, consider the case in which two adjacent
red rectangles are empty. We compute MinB1 and
MinB2 according to Algorithm 1 for this angle. If
their intersection by red rectangles is not empty,
they are not separating rectangles. So, by changing
the red rectangles, it is necessary to compute the
angle at which the intersection between them would
be empty. The intersection between two rectangles
would be empty when they are collinear, as shown
in Figure 13. Also, if the intersection of MinB1
and MinB2 with red rectangles is empty, they are
separating rectangles and we must compute the
angle at which they would be collinear with red
rectangles. After reaching this angle, they are not
separating rectangles, as shown in Figure 14. Thus,
by changing the red rectangles or covering rectangles
MinB1 and MinB2, it is necessary to compute the
angles at which the covering rectangles would be
collinear by the red rectangles.

Now, consider the case in which two opposite
red rectangles are empty. We know that B1B2 can
be computed by the sides of red rectangles. Also,
MinB1 and MinB2 are computed by all of the blue
points outside B1B2. So, when each of the red

Figure 14. A red rectangle and MinB1 are collinear
after a rotation.

Figure 15. Entrance of a blue point into B1B2.

rectangles is changed, it is necessary to compute new
B1B2 and the angles at which the blue points inside
B1B2 would be changed. By changing them, MinB1
or MinB2 may be changed. So, the separability
of two point sets may be changed. Considering
Figure 15, in the initial angle, two point sets are not
separable because the intersection between MinB1
and MinB2 is not empty. After that, when a blue
point that is outside B1B2 comes into B1B2, MinB2
would be changed and two point sets would be
separable.

- Event 2. Entrance and exit event that is about red
points coming to RCH(Q) or leaving it: When a red
point comes into RCH(Q), it could be outside the
red strip Sh or Sv. So, we must compute the new red
strip. Also, when a red point comes into RCH(Q) or
leaves it, one of the red rectangles would be changed.
Thus, this event a�ects all steps of Algorithm 1.
After updating Sh and Sv, it is necessary to check
whether the new strip is monochromatic or not.
It is clear that when one side of Sh (or Sv) is
collinear by one side of RCH(Q), it may be changed
to bichromatic from monochromatic or vice versa.
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Therefore, we must compute these angles that Sh (or
Sv) is changing from bichromatic to monochromatic
and vice versa from the current event until the next
event. Also, by changing the red rectangles, we do
what was mentioned in processing of the �rst event.

- Event 3. Changing of a blue staircase: First, we
must update the binary search tree of the changed
staircase. Now, we know that all steps of Algo-
rithm 1 are related to RCH(Q). The status of
Sh and Sv to be bichromatic or monochromatic,
entrance (respectively exit) of the corner of red
rectangles to (respectively from) RCH(Q) and com-
putation of MinB1 and MinB2 only depend on
RCH(Q). Therefore, we do same as Event 2 for
the processing of this event.

- Event 4. Change of de�ning points of red rect-
angles: Changing de�ning points of red rectangles
is similar to entrance of a red point into R(Q) and
a�ects steps 3 to 6 of Algorithm 1. Thus, we do
what was mentioned in the processing of the �rst
event. Now, we compute the total number of these
events and their processing time.

Lemma 4. The number of introduced events is
O(n�(n)), where �(n) is the inverse of Ackermans
function which grows very slowly.

Proof. van Kreveld et al. showed that the number of
Event 1 (entrance and exit event of red points coming
to R(Q) or leaving it) is O(n) [2]. Bae et al. showed
that the number of Event 3 (change of a blue staircase)
is O(n) [16]. Bae's idea can also be used to show the
number of Event 2 is O(n). The number of Event 4 is
O(n�(n)), in which �(n) is the inverse of Ackermans
function [9,10].�

Lemma 5. Processing of each event, when we rotate
the coordinate system from 0 to 2� is done in O(n logn)
time.

Proof. We review the operations that should be done
in each occurring event and compute the time required
for them.

- Event 1. Entrance and exit event of red points
coming to R(Q) or leaving it: By entrance of red
points to R(Q), we consider the corresponding red
rectangle (one of R0(P ); :::; R3�=2(P )). Then, we
compute the convex hull of red points inside the
corresponding rectangle and update it in O(logn)
time. When a red point leaves R(Q), the convex
hull of the corresponding rectangle can be updated
in O(log2 n) time [18]. Then, we compute the new
red rectangle in constant time. By changing the red
points on the sides of the red rectangles, we compute

the angles at which the corner of red rectangles
would be inside RCH(Q) in O(n) time, using the
binary search trees T1; :::; T4.

If two adjacent red rectangles are empty, we
compute the angles at which new red rectangles and
covering rectangles MinB1 and MinB2 would be
collinear, in constant time.

If two opposite red rectangles are empty, we
compute the new rectangles MinB1 and MinB2
in O(logn) time (refer to Theorem 1) and check
intersection between each of them and red strips
Sh and Sv in constant time. Also, we compute the
angles at which the blue points inside B1B2 would be
changed. These angles can be computed by binary
search trees T1; :::; T4 in O(n) time. So, the total
time for the processing of every event of this type is
O(n).

- Event 2. Entrance and exit event of red points
coming to RCH(Q) or leaving it: When this event
occurs, we compute the new red strip and check it
to be monochromatic in O(n) time. We compute
the angles at which the red strip is monochromatic
in O(n logn) time. This time is needed because all
of the blue points must be sorted according to their
entrance and exit angles of the red strip by rotating
the coordinate system. Then, if each of the red
rectangles is changed, we do what was mentioned
in processing of the �rst event in O(n) time. Thus,
the total time for processing of every event of this
type is O(n logn).

- Event 3. Change event of blue staircases: With the
occurrence of this event, we must update the cor-
responding binary search tree which takes O(log n)
time. According to what was mentioned before, we
do same as Event 2 for processing of this event. So,
the processing time of this event is O(n logn).

- Event 4. Change of de�ning points of red rectan-
gles: Processing of this event is similar to the �rst
event and it is done in O(n) time. According to
what was mentioned, processing time of each event
is O(n logn).�

4.3. The algorithm
In this subsection, we describe the algorithm of com-
puting two disjoint isothetic separating rectangles in
all of the orientations. In the �rst stage, we consider
the orientation whose axes are parallel to standard x-
axis and y-axis and examine the separability of two
point sets by two disjoint axis-aligned rectangles. Thus,
in the �rst stage, we compute R0(Q), RCH0(Q),
and red rectangles R0(P ); :::; R3�=2(P ). Furthermore,
the convex hull of red points inside each of the red
rectangles should be computed. We denote them
by CH0(P ); :::; CH3�=2(P ). Then, we compute all
of the events and insert them in the event queue
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Algorithm 2. Separating by two disjoint isothetic rectangles.

according to the increasing order of the angles that
occur. Computation of these events is done by rotating
the coordinate system from 0 to 2�. We also insert
the state of current orientation in the beginning of
the event queue. Processing of this event is similar
to that of the event of type 2. Now, we continuously
remove the �rst event from the event queue and process
it, according to what was mentioned in the previous
section. Thus, for each pair of consecutive event
points, we compute the angles in which there exist two
disjoint separating rectangles or such rectangles do not
exist.

Algorithm 2 provides the pseudocode of our al-
gorithm for separating bichromatic point sets by two
disjoint isothetic rectangles.

Theorem 2. Realizing separability of two point sets
of total size n by two disjoint isothetic rectangles and
reporting all of the two separating rectangles are done
in O(n2 logn) time.

Proof. In the �rst stage, computation of R0 (Q),
RCH0(Q), R0(P ); :::; R3�=2(P ), Sh, Sv, CH0(P ); :::;
CH3�=2(P ) is done in O(n logn) according to what was
mentioned in Theorem 1. Then, all the events of type 1
are computed in O(n logn) time [2]. Also, all the events
of types 2 and 3 are computed in O(n logn) time [16].
In Lemma 3, we saw that the number of these three
events is O(n). So, they would be inserted in the event
queue in O(n log n) time. Processing each of them is
done in O(n log n). The number of all the events of
type 4 is O(n�(n)). Processing each of these events
is done in O(n). In fact, O(�(n)) is less than 5 for
any practical input size n. Thus, processing of all the
events is done in O(n2 log n) time.

5. Conclusion

We presented an e�cient algorithm for reporting the
two separating disjoint axis-aligned rectangles of two
given point sets P and Q. The algorithm runs in
O(n log n) time. We also presented an O(n2 logn)
time algorithm for reporting all combinatorially dif-
ferent two separating disjoint isothetic rectangles in

all orientations. An interesting problem that can be
investigated is �nding non-disjoint isothetic rectan-
gles.
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