
Scientia Iranica B (2016) 23(3), 976{989

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

Modeling the size dependent pull-in instability of
cantilever nano-switch immersed in ionic liquid
electrolytes using strain gradient theory

A. Kanania, A. Koochib, M. Farahanib;�, E. Rouhic and M. Abadyand

a. Ionizing and Non-Ionizing Radiation Protection Research Center, Paramedical Sciences School, Shiraz University of Medical
Sciences, Shiraz, Iran.

b. Department of Aerospace Engineering, Sharif University of Technology, Tehran, P.O. Box 11365-11155, Iran.
c. Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
d. Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Received 14 March 2014; received in revised form 18 October 2014; accepted 7 March 2016

KEYWORDS
Cantilever NEMS;
Ionic liquid
electrolyte;
Pull-in instability;
Strain gradient
theory;
Dispersion forces.

Abstract. It is well recognized that size-e�ect often plays a signi�cant role in the
mechanical performance of nano-structures. Herein, strain gradient continuum elasticity
is employed to investigate the size dependent pull-in instability of the cantilever nano-
actuators immersed in ionic liquid electrolyte. The presence of dispersion forces, i.e.
Casimir and van der Waals �eld, is considered in the theoretical model as well as the
double-layer electrochemical attraction. To solve the non-linear constitutive equation of
the system, two approaches, i.e. the Rayleigh Ritz Method (RRM) and the numerical
solution method, are employed. Impact of the size dependency and dispersion forces on the
instability characteristics are discussed as well as the e�ect of ion concentration in liquid.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Micro/nano-electromechanical systems (MEMS/NE-
MS) are increasingly used in various engineering and
science branches, i.e. mechanics, chemistry, optics,
biology, electronics, etc. These ultra-small systems are
employed to develop nano-devices such as sensors,
actuators, accelerometer, tweezers, switches, etc. [1].
A typical MEMS/NEMS is constructed from movable
conductive component(s), which can be excited via
applying electrical Coulomb force �eld. The elec-
trical stimulation can result in de
ection, vibration,
or actuation of the movable component(s), depending
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on the system design. Generally, when the applied
voltage exceeds its critical value, the pull-in insta-
bility occurs and the MEMS/NEMS suddenly fails.
Prediction and simulation of the pull-in instability of
MEMS/NEMS are very crucial for reliable design and
fabrication of nano-devices; hence much research is
dedicated to study the pull-in behavior of the ultra-
small systems [2,3]. It should be noted that for
micro- and nano-beam, the electrical �eld is not exactly
homogenous and therefore the e�ects of fringing �elds
on the electrostatic force are not negligible because of
the nonzero thickness and �nite width of beams [4].

With recent developments in biological, chemi-
cal, and electronic sciences, NEMS/MEMS has found
many applications in liquid media. Some of the
promising applications of MEMS/NEMS in bio-
uid
are developing sensors and manipulators for cellu-
lar handling, bio-component characterization, device
motion, DNA manipulation, bio-mimetic cilia, drug
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delivery, etc. [5-8]. Besides biology, nano-devices
such as nano-actuators, nano-switches, nano-probes,
nano-tweezers, micro-valves, micro-gears, etc. are
employed as precise instruments operated in ionic
liquid media [9]. Moreover, usage of in-liquid im-
mersed MEMS/NEMS has great potentials in many
electrochemical and electronic applications including
super-capacitors, fuel cells, batteries, �lters, micro-
densitometers, micro/nano-pumps, active micro�uidic
devices, and atomic force microscopy [9-11]. In this
regard, the previous researchers have investigated the
mechanical behavior of MEMS/NEMS in liquid envi-
ronment [7,9,12]. Oh et al. [7] have fabricated and
characterized the oscillating bio-mimetic micro
uidic
device that mimics biological cilia for manipulation of
micro
uidics. Abdelhamid Maali et al. attempted
to measure the in
uence of the 
uid motion on the
hydrodynamics and oscillating behavior of an atomic
force microscopy cantilevers immersed in viscous 
u-
ids [13]. The stability behavior and pull-in perfor-
mance of various types of electrostatic parallel-plate
actuators in liquid solutions were studied by Rollier
et al. [5]. They have claimed that pull-in instability
can be shifted far beyond one-third of the initial
gap and can even be suppressed in liquid. Only
few works have focused on the pull-in behavior of
liquid-immersed NEMS in ionic environment where the
electrochemical �eld is characterized by double-layer
interaction [9,12]. A simple lumped model for the
calculation of pull-in voltage of electrostatic actuators
in ionic liquid electrolytes was presented by Boyd and
Kim [9]. They incorporated the e�ect of double-
layer electrochemical force in the pull-in model by
solving the linearized Poisson-Boltzmann equation. In
another work, Boyd and Lee [14] have modi�ed their
model with a distributed parameter model in order to
achieve more accurate results. The electromechanical
behavior and frequency response of an inter-digitated
silicon comb-drive actuator in various ionic liquids were
investigated by Sounart et al. [12]. They presented
a theoretical model that predicted the characteristic
actuation frequency of the system. Noghrehabadi
et al. [15] theoretically investigated the static pull-in
instability of nano-beams in a liquid electrolyte using
a distributed force model. They applied Adomian
method to solve the governing non-linear equation of
the system. The in
uences of hydration force and
elastic strain energy on stability of solid �lms in thin
solid-on-liquid structure were investigated in [16].

It is well established that the electromagnetic
quantum 
uctuations, i.e. dispersion forces, can sig-
ni�cantly a�ect the electromechanical performance of
nano-structures. Hence, incorporating the e�ect of
dispersion forces is crucial to accurate simulation of
nano-structures in liquid media. The dispersion forces
between interacting bodies are generally explained as

Casimir or van der Waals (vdW) attractions depending
on the distance between the bodies. If the separation
between the interacting bodies is su�ciently large
(typically of the order of hundreds of nanometers),
the retardation e�ect is signi�cant and the 
uctuation
force is modeled as Casimir force. Many researchers
have experimentally [17,18] and theoretically [19-29]
investigated the e�ect of Casimir force on the perfor-
mance of ultra-small systems. Lamoreaux presented
a comprehensive review of the theory of Casimir
force and its corrections for real material and �nite
temperature [30]. A comprehensive investigation of
the Casimir force between interacting bodies can be
found in [27]. However, if the separation between the
interacting bodies is typically less than few nanometers,
the retardation e�ect is negligible and the nano-scale
interaction is modeled as the vdW attraction regime.
The pull-in instability of NEMS in the presence of vdW
force has been studied by previous researchers using
various approaches [31-36].

To investigate the electromechanical performance
of MEMS/NEMS in liquid, continuum mechanic mod-
els can be applied [14]. Since the elastic characteristics
of materials in nano-scale are size-dependent [37,38],
the applied models should be able to consider this size-
dependency in constitutive equations. Lam et al. [39]
observed that the normalized bending rigidity of the
epoxy polymeric micro-beams becomes 2.4 times larger
when the thickness of the beam decreases from 115 mm
to 20 mm. The bending of polypropylene micro-sized
cantilever beams has been experimentally investigated
by McFarland and Colton [40]. They observed that
the sti�ness of micro-sized cantilevers was at least
four times larger than the value which the classical
theory of elasticity anticipated. By applying non-
classic continuum theories, the size dependent behavior
of nano-structures is attributed to material length-
scale parameters. A length-scale parameter might be
considered as a mathematical parameter that scales
the strain gradients in the constitutive model so as to
balance the dimensions of strains (") and strain gradi-
ents (d"=dx) [41]. As the characteristic length of the
deformation �eld becomes signi�cantly larger than the
material length-scale parameter, strain gradient e�ects
become negligible, because the strain terms are much
larger than their scaled gradient terms [41]. Some ex-
perimental measurements evaluate the material length-
scale parameters of single crystal and polycrystalline
copper to be 12 and 5.84 �m, respectively [42,43]. Also,
the size-dependent behavior has been detected in some
kinds of polymers [44]. For hardness measurement
of gold bulk, it is found that the plastic length-scale
parameter (for indentation test and hardness behavior)
of Au increases from 470 nm to 1.05 �m with increasing
the Au �lm thickness from 500 nm to 2 �m [45].
Based on test results gathered via microhardness test,
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the plastic length-scale parameters for metals such
as Cu and Ag Brass were determined in the range
about 0.2-20 �m depending on the crystallity [46].
Using microbend testing method, the plastic intrinsic
material length-scales of 4 �m for copper and 5 �m
for nickel were determined [41]. All these experiments
imply that when the characteristic size (thickness,
diameter, etc.) of a micro/nano element is in the order
of its intrinsic length scales (typically sub-micron),
the material elastic constants highly depend on the
element dimensions. Molecular dynamic simulations
could also be used to compute the material length-scale
parameters of materials [47].

This phenomenon cannot be conducted by us-
ing classical continuum mechanics. However, by ap-
plying non-classic continuum theories, the size de-
pendent behavior of nano-structures is attributed to
material length-scale parameters. In this regard,
the non-classical theories such as non-local elastic-
ity [48], couple stress theory [49,50], strain gradient
theory [39], modi�ed couple-stress theory [51], etc.
have been developed to consider the size-e�ect in
theoretical continuum models. While some simple
size-dependent models based on modi�ed couple-stress
theory have been applied to analyze the pull-in in-
stability of MEMS/NEMS [52-57], only rare works
have utilized strain gradient theory for analyzing this
phenomenon [58-63]. However, none of the above-
mentioned works has investigated the stability behavior
of MEMS/NEMS in liquid electrolyte media.

This paper is devoted to analyze the pull-in
behavior of a cantilever nano-switch immersed in liquid
electrolytes in the presence of small-scale e�ects, i.e.
the dispersion forces (Casimir and van der Waals),
as well as the size-dependency of characteristics (size-
e�ect). The strain gradient theory in conjunction
with Euler-Bernoulli beam model is used to derive the
non-linear equilibrium equation of the system. Two
di�erent methods, i.e. Rayleigh-Ritz and numerical
solution methods, have been applied to solve the
governing equation of the system. These two solution
approaches are compared with each other as well as
those presented in literature.

2. Theoretical model

2.1. Fundamentals of strain gradient theory
The mechanical behavior of ultra-small structures in
micro/nano-scales signi�cantly depends on the dimen-
sions of the structure. In spite of the classic contin-
uum mechanics, the strain gradient theory introduces
three length-scale parameters that can model the size-
dependent behavior of the ultra-small systems.

Regarding the strain gradient theory, modi�ed
and suggested by Lam et al. [39], �U , the stored strain
energy density in the linear elastic isotropic material,

is written as the followings:

�U =
1
2

�
�ij"ij + pi
i + � (1)

ijk�
(1)
ijk +ms

ij�
s
ij

�
; (1)

in which:

"ij =
1
2

(ui;j + uj;i) ; (2)


i = "mm;i; (3)

�(1)
ijk =

1
3

("jk;i + "ki;j + "ij;k)

� 1
15
�ij("mm;k + 2"mk;m)

� 1
15

[�jk("mm;i + 2"mi;m)

+ �ki("mm;j + 2"mj;m)]; (4)

�sij =
1
2
ejklul;ki: (5)

In the above equations, ui, 
i, �(1)
ijk, �sij , �ij , and

eijk indicate components of displacement vector, di-
latation gradient vector, deviatoric stretch gradient
tensor, symmetric rotation gradient tensor, Kronocker
delta, and permutation symbol, respectively. Also, �ij ,
pi, �

(1)
ijk , and ms

ij are components of Cauchy's stress
and high order stress tensors, respectively, that are
identi�ed as [39]:

�ij = 2�
�
"ij +

�
1� 2�

"mm�ij
�
; (6)

pi = 2�l20
i; (7)

� (1)
ijk = 2�l21�

(1)
ijk; (8)

ms
ij = 2�l22�

s
ij : (9)

In the above equations, � and � are Poisson's ratio
and shear modulus, respectively. Also, l0, l1, and l2
are additional material length-scale parameters, which
are dependent on dilatation gradient vector, deviatoric
stretch gradient tensor, and symmetric rotation gradi-
ent tensor.

2.2. Non-linear constitutive equation
Figure 1 shows the schematic representation of beam-
type nano-cantilever which is constructed from a con-
ductive electrode suspended over another �xed one
(grounded electrode). Herein, the cantilever electrode
with a length of L, width of b, and thickness of h is
considered. Applying voltage di�erence between the
electrodes causes de
ection of the upper one toward
the grounded one.
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Figure 1. Schematic representation of cantilever
nano-switch.

2.2.1. Strain energy
In this work, the displacement �eld of Euler-Bernoulli
beam theory is applied for modeling the elastic be-
havior of the cantilever nano-structure. Based on this
theory, the displacement �eld can be written as the
following:

u1 = �Z @W
@X

; u2 = 0; u3 = W (X): (10)

The variable W indicates beam displacement in direc-
tion of Z axis. Substituting the linear displacement
�eld of Eq. (10) in Eqs. (2)-(9), the nonzero component
is obtained as the following relations:

"11 = �z @2w(x)
@X2 ; (11a)

�11 = �Ez@2w(x)
@X2 ; (11b)


1 = �z @3w(x)
@X3 ; 
3 = �@2w(x)

@X2 ; (11c)

p1 = �2�l20z
@3w(x)
@X3 ; p3 = �2�l20

@2w(x)
@X2 ; (11d)
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2
@2w(X)
@X2 ; (11e)
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2w(X)
@X2 ; (11f)
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15
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1
5
Z
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1
15
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1
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5
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2
5
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2
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2
5
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Substituting Relations (11) after some elaboration by
Eq. (1) and integrating them into the beam volume,
the bending strain energy is obtained as the following:
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Z
V
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1
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6
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1
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1
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=
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8
15
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d2W
dX2

�2
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�
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4
5
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��
d3W
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�2
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In the above equation, I is the second cross section
moment around Y axis and �A is the cross section area.

It should be noted that axial stretching and
force resultants are not considered in deriving the
governing equation of the structure due to the free
end of the cantilever beam. However, in the case
of doubly clamped structures, the de
ection of beam
induces axial stretching. Therefore, for doubly clamped
structures, this axial stretching should be taken into
account in elastic energy.

2.2.2. Work of external forces
Considering the distribution of external forces per unit
length of the beam (fexternal), the work by the external
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forces can be obtained as:

Vexternal =
LZ

0

fexternalW (X)dX: (13)

The external force, fexternal, is the summation of elec-
trochemical and dispersion forces. The electrochemical
force, FE , is the sum of the electrical force, Fe, and
chemical (or osmotic) force, Fc:

FE = Fe + Fc: (14)

For small potentials, Fe and Fc can be approximated
as [14]:

Fc =
n1e2z2

0A
KBT

 2; (15)

Fe = �n1e2z2
0A

KBT

�
d 
dZ

�2

; (16)

where KB is the Boltzmann constant, n1 is the bulk
concentration, T is the absolute temperature, e is the
electronic charge, z0 is the absolute value of the va-
lence,  is the electric potential of the liquid-immersed
electrodes (which is the summation of applied potential
and zeta potential for each electrode), and A is the
electrode area.

The electrical potential,  , is determined by
solving Eq. (17), i.e. the linear Poisson-Boltzmann
equation (the Debye-H�uckel approximation) [14]:

d2 
dZ2 = �2 ;  (Z = 0) =  1;  (Z = g) =  2;

(17)

where g is the initial gap between two electrodes and
1=� = ""0KBT=2e2z2

0n1 is the Debye length. By
solving Eq. (17) and substituting it in Eq. (13), the
electrochemical force is obtained as:

FE =
b""0�2 2

1

2 sinh2(�(g �W (X))) 
2
 2

 1
cosh(�(g�W (X)))�

"
1+
�
 2

 1

�2
#!

;
(18)

where "0 is the permittivity of vacuum and " is the
relative permittivity of the dielectric medium. The
electrochemical force can be attractive or repulsive,
depending on the parameters.

The dispersion forces per unit length of the beam
(fdisp) are de�ned considering the van der Waals and
Casimir force regimes. Based on what is mentioned,
two interaction regimes can be de�ned: �rst, the large
separation regime in which the Casimir force is dom-
inant (typically above several tens of nanometers [64-
66]).

The Casimir energy due to a quantum �eld is the
sum of the zero point energies of the quantum �eld [67].
We assume that the electrodes are made from fully
conductive materials; therefore, when the initial gap
separation, g, is much smaller than the beam thickness,
the leading terms of the interaction term of the Casimir
force per unit length of beam are [67]:

fCas =
�2~b

240
p
��(g �W (X))4 ; (19)

where ~ = 1:055�10�34 Js is Planck's constant divided
by 2�, and � and � are the permittivity and the
permeability of 
uid, respectively.

The second regime is the small separation regime
(typically below several tens of nanometers [64-66]),
in which the van der Waals force is the dominant
attraction. In this case, the attraction between two
ideal surfaces is proportional to the inverse cube of the
separation:

fvdW =
AHb

6�(g �W (X))3 ; (20)

where AH is the Hamaker constant.

2.2.3. Dimensionless relation for total energy
By using Eqs. (11) and (12), the total energy of system
can be summarized as:

� =
1
2

LZ
0

" 
EI + 2�Al20 +

8
15
�Al21 + �Al22
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d2W
dX2
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4
5
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d3W
dX3

�2
#
dX

�
LZ

0

fexternalW (X)dX: (21)

Now, by using the substitutions x = X=L and w =
W=g, the nondimensional total energy can be explained
as:

��=
1
2

1Z
0
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�s
15
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�
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�2

+8
�
l1
l2

�2

+15

!!�
d2w
dx2

�2

+
�s

30(L=h)2

 
5
�
l0
l2

�2

+ 2
�
l1
l2

�2
!�

d3w
dx3

�2
#
dx

�
1Z

0

 
�n

(1� w)n
� �2

sinh2(�0(1� w))�
� cosh(�0(1� w))� 1

2
(1 + �2)

�!
w(x)dx; (22)
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where the dimensionless parameters are identi�ed as:

�n=

8><>:
�AbL4

6�g4EI vdW interaction (n=3)

�2~bL4

240
p
��g5EI Casimir interaction (n=4) (23a)

� =  1

s
b""0�2L4

g
; (23b)


 =
g
b
; (23c)

�s =
12�

E(h=l2)2 ; (23d)

� =
 2

 1
; (23e)

�0 = �g: (23f)

In the above relations, �, �s, �n, and �0 interpret the
dimensionless values of beam electrode voltage, size-
e�ect, dispersion forces, and bulk ion concentration,
respectively. The dimensionless parameter indicates
the ratio of potential on the ground electrode over the
beam electrode.

It should be noted that Relations (23) turns into
that of the classical theory by setting l0, l1, and l2 equal
to zero. Furthermore, the size-dependent behavior of
nano-beam based on the modi�ed couple stress theory
can be obtained by considering l0 = l1 = 0 and l2 = l.

3. Solution methods

3.1. Rayleigh-Ritz method
To solve the governing equation of the systems, the
displacement is expressed as a linear combination of a
complete set of independent basis functions 'i(x) in
the form of:

w(x) =
nX
i=1

qi�i(x); (24)

where the index i refers to the number of terms
included in the simulation. We use the free vibration
mode shapes of the nano-beam as basic functions in
the Rayleigh-Ritz procedure. The mode shapes of
cantilever nano-beam can be expressed as:

�i(�) = cosh(�i�)� cos(�i�)

� cosh(�i)� cos(�i)
sinh(�i)� sin(�i)

(sinh(�i�)� sin(�i�)); (25)

where �i is the ith root of the characteristic equation
of clamped-free beams. At the equilibrium point, the

following relation must be satis�ed:

@ ��
@qi

= 0 i = 0; 1; � � � ; N: (26)

This led to a system of algebraic equation which could
be solved numerically to obtain the �nal solution. By
using Taylor expansion for electrostatic and dispersion
forces, substituting Eqs. (24) and (25) into Eq. (26),
assuming the orthogonality of 'i(x), and then follow-
ing some straightforward mathematical operations, a
system of algebraic equation can be de�ned as:"

1 +
�s
15

 
30
�
l0
l2

�2

+ 8
�
l1
l2

�2

+ 15

!#
�4
i qi

� �s
30 (L=h)2

"
5
�
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�2
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�
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#

Z 1

0
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�
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0
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1X
k=0

Ak

0@ NX
j=1

qj�j

1Ak

dx+B:C: = 0;

i = 1; 2; � � � ; N; (27)

where N is the number of considered terms of Rayleigh-
Ritz and Ak is the Taylor expansion coe�cient of elec-
trostatic and dispersion forces. In the above equation,
the Boundary Condition terms, B.C., are de�ned as:

B.C. =
�s
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5
�
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� �s
30(L=h)2

 
5
�
l0
l2

�2

+ 2
�
l1
l2

�2
!

0@ NX
j=1

qj
d4

dX4�j

1A d�i
dX

������
x=1

: (28)

The Maple commercial software is employed to numer-
ically solve the system of equations.

The instability occurs when dw(x=1)=d�2 ! 0.
The instability parameters of the system can be deter-
mined via the slope of the w � � graphs by plotting w
versus �.

3.2. Numerical solution method
In addition to the analytical method, the de
ection
of the nano-cantilever is numerically simulated using
Maple software. For this purpose, the governing
di�erential equation of the system is required. Utilizing
Hamilton principle, i.e. �(��) = 0, in which � indicates
variations symbol, the governing equation of lateral
de
ection of the system can be derived as the following:"
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With the following boundary conditions:
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By numerically solving the di�erential equations, the
de
ections of the nano-cantilever are determined.
When instability occurs, no solution exists for Eq. (30)
and the pull-in parameters of the system can be
determined by plotting the NEMS tip de
ection versus
the applied force.

4. Result and discussion

In the following, typical nano-actuator with the ge-
ometrical characteristics of h=L = 20 and � = 0:1
is considered. The Young's modulus E and shear
modulus � are 169 GPa and 65.8 GPa, respectively.

4.1. Veri�cation
To validate the RAM and check the convergence rate
of series, e�ect of increasing the number of modes on
de
ection of typical NEMS is presented in Table 1.
This table shows the variations of tip de
ection of
the typical NEMS considering various series terms for
�3 = 0:5, � = 1, and l0 = l1 = l2 = 5h. This table
reveals the convergence of the series with increasing
the number of modes. By selecting only one mode, an
acceptable error is achieved. Therefore, one mode is
considered to determine instability of the NEMS.

Table 2 shows the variation of tip de
ection of
the typical NEMS considering various Taylor expansion
series terms for �3 = 0:5 and l0 = l1 = l2 = 5h. The
selected voltage equals 0:9�PI. This table reveals the

Table 1. The convergence check of RRM reduced order method.

RRM Numerical
1 term 2 terms 3 terms

w(x = 1) 0.04698 0.046416 0.046424 0.046457
Related error (%) 1.124458 0.089038 0.07206 -

Table 2. The convergence check of Taylor expansion series.

Number of Taylors series terms in RRM Numerical
2 terms 3 terms 4 terms 5 terms

w(x = 1) 0.191332 0.229715 0.250006 0.26248 0.259441
Related error (%) 26.3 11.5 3.6 1.2 -
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Figure 2. Variation of the normalized tip de
ection as a
function of applied voltage. The present approach is in
very good agreement with literature.

convergence of the series with increasing the number of
Taylor expansion terms.

To validate the present theoretical model with
literature, the governing equation of nano-actuator was
solved based on classical theory (l0 = l1 = l2 = 0)
and neglecting dispersion forces. Figure 2 shows the
in
uences of the applied voltage, �, on the normalized
tip de
ection, w(x = 1), of the cantilever beam for
�n = 0, � = 0:1, and �0 = 1. It can be observed that
the normalized tip de
ection would increase with an
increase in the input voltage. This �gure reveals that
the present approach is in very good agreement with
the �nite element solution [14] and modi�ed Adomian
results [15].

4.2. NEMS de
ection and pull-in instability
Figure 3 shows the variation of de
ection of typical
cantilever NEMS when the applied voltage increases
from zero to pull-in value. In this �gure, the vertical
axis reveals the de
ection of the nano-beams while the
horizontal axis reveals the dimensionless length of the
beams.

The dimensionless material length-scale param-
eters l0=l2, l1=l2, and h=l2 are equally selected as 1;
furthermore, the dispersion force parameter is consid-
ered equal to 0.2 (�n = 0:2) and �0 = 1:5. As seen,
increasing the applied voltage increases the de
ection
of the nano-beam. When the applied voltage exceeds
its critical value, �PI, no solution exists and the pull-in
instability occurs. Note that the operation distance
of the nano-systems is limited by this instability.
This �gure shows that the nano-beam has an initial
de
ection when no voltage is applied, which is due to
dispersion forces. It is shown that the results of RRM
are in good agreement with those of the numerical

Figure 3. De
ection of the cantilever NEMS for di�erent
values of applied voltage from 0 to pull-in voltage.

method. The relative error of the presented methods
with respect to the numerical solution is less that
2%.

4.3. In
uence of size e�ect
Variation of the pull-in voltage (�PI) of the nano-beams
is demonstrated in Figure 4 as a function of the nano-
scale parameter (h=l2). The horizontal lines correspond
to the pull-in voltage (�PI) when no size-e�ect has
been considered (i.e., classical theory). This �gure
shows that decreasing h=l2 results in decreasing the
pull-in voltage of the nano-system. It should be noted
that decrease in h=l2 value corresponds to increase
in size-e�ect. This means that size-e�ect provides a
hardening behavior that enhances the elastic resistance
and consequent pull-in voltage of the nano-device. On
the other hand, with increase in the beam thickness,
results of strain gradient theory approach those of
the classic continuum theory, i.e. enhancing the beam
thickness decreases the size-e�ect.
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Figure 4. Pull-in voltage for di�erent models as a
function of size e�ect parameter.

Figure 5 represents the in
uence of size-e�ect
(h=l2) on the instability de
ection (wPI) of the nano-
cantilever. This �gure shows that the pull-in de
ection
predicted using the classical and modi�ed couple stress
theories is independent on the size-e�ect. However, the
value of pull-in de
ection determined by strain gradient
theory slightly decreases by increasing the length-scale
parameter.

4.4. In
uence of dispersion forces
If the gap between the cantilever and the ground
is of the order of several nanometers, the e�ect of
dispersion forces must be taken into account. The
e�ect of dispersion forces on pull-in voltage of the
NEMS is presented in Figure 6. As shown, increasing
the dispersion forces leads to a decrease in the pull-
in voltage of the nano-cantilever. Interestingly, the
intersection point of the curves and the horizontal
axis correspond to the critical value of dispersion
forces in liquid media. When the nano-cantilever

Figure 5. Pull-in de
ection for di�erent models as a
function of size e�ect parameter.

Figure 6. E�ect of dispersion force on pull-in voltage.
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Figure 7. E�ects of dispersion forces on pull-in de
ection.

is close enough to the ground, dispersion forces can
induce stiction even without any electrostatic force.
In
uence of dispersion on the pull-in de
ection of
the system is presented in Figure 7. This �gure
shows that while increase in the van der Waals force
slightly reduces the pull-in de
ection of the NEMS,
increasing the Casimir traction increases the pull-in
de
ection of the NEMS. It is worth to note that the
e�ect of dispersion forces on the pull-in voltage of the
liquid-immersed beam-type structure is similar to that
reported for non-immersed nanostructures [28,68]. It
is reported that the dispersion forces reduce the pull-
in voltage of torsional systems as well as beam-type
ones [28,68].

4.5. E�ects of ion concentration
Variation of the pull-in voltage versus ion concentration
parameter (�0) is shown in Figure 8 considering the
presence of dispersion forces. This �gure illustrates the
e�ect of ion concentration on the instability of nano-
cantilever. Augmentation of ions in the vicinity of
the surface of electrodes increases the pull-in voltage.
Figure 9 illustrates the e�ect of ion concentration on
the pull-in de
ection of nano-cantilever. As seen,
increasing ion concentration can decrease pull-in de-

ection. These �gures reveal that increase in the
Debye length of the electrolyte enhances the pull-in
voltage while it can reduce the pull-in de
ection of the
system.

5. Conclusion

In this article, strain gradient theory has been em-
ployed to investigate the size-dependent pull-in per-
formance of cantilever NEMS immersed in liquid elec-
trolytes incorporating the e�ect of dispersion forces.
The governing non-linear equation was solved using

Figure 8. E�ect of ion concentration on the pull-in
voltage for �n = 10.

di�erent approaches, i.e. RRM, and numerical method.
Comparison between solving methods reveals that
RRM is in good agreement with numerical solution.
It is found that:

� The presence of dispersion force reduces pull-in
voltage of the system. While increase in Casimir
force reduces the pull-in de
ection of the cantilever
NEMS, enhancing the van der Waals attraction
increase the instability de
ection of the system;

� For ultra-thin NEMS where the beam thickness is
comparable with the material length-scale param-
eters, there is a substantial di�erence between the
results of classic continuum theory and those of
strain gradient and modi�ed couple stress theories.
Size-e�ect increases the pull-in voltage of the NEMS
due to the sti�ness e�ect;

� Augmentation of bulk ion concentration increases
the pull-in voltage of the liquid-immersed cantilever
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Figure 9. E�ects of ion concentration on the pull-in
de
ection.

NEMS. However, it can decrease the pull-in de
ec-
tion of the system.
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