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Abstract. This paper investigates the nonlinear resonant behavior of a capacitive micro-
beam based on the nonlocal theory of elasticity. The micro-beam is de
ected by a DC
voltage, where it acts as a micro-resonator by superimposing an AC voltage. Taking
into account stretching e�ects, the Galerkin projection method is used to discretize the
partial di�erential equations into a set of nonlinear, ordinary di�erential equations. The
multiple-scales method is used to obtain an approximate analytical solution to construct
the nonlinear resonant curves of the transverse vibration amplitude. Taking into account
the classical and nonlocal elasticity theories, the frequency response curves are plotted
for di�erent values of DC voltage. E�ects of mid-plane stretching on the resonant curves
are also examined. The hardening behavior of the system is shown to decrease due to
the presence of the nonlocality, as well as the DC voltage. However, mid-plane stretching
increases the hardening e�ects. The results show that, despite the existence of nonlinearity
in the system, this con
ict e�ect can result in a linear frequency response curve for some
values of the nonlocal parameter.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Micro-beams are key components in a large number of
micro-electromechanical systems (MEMS) [1]. Micro-
switches, accelerometers, mass 
ow sensors, tempera-
ture sensors, and micro-resonators are just a few ex-
amples of MEMS applications. Electrostatic actuation
has been used as a common mode of actuation in
MEMS due to its compatibility with micro-fabrication
processes [2]. In an electrostatic micro-beam-based
resonator, the micro-beam is de
ected by a DC bias
voltage and then driven to vibrate around its de
ected
position by an AC harmonic load. There are limits
for the applied DC and AC voltages. Thereafter,
a pull-in instability takes place [3], which leads to
a collapse of the micro-beam and, hence, failure of
the device. So, in the design of such devices, it is
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important to tune the electrostatic load so that the
micro-beam operates in a safe voltage range, in order
to prevent static and dynamic instability. Various
papers have been published on the nonlinear dynamics
and stability of micro-resonators. Mojahedi et al. [4]
investigated the static stability of an electrostatically
actuated micro-beam based on the homotopy perturba-
tion method. This method was also employed to pull-
in the instability of electrostatically actuated carbon
nanotubes [5]. In addition, Nayfeh et al. [6] studied
the nonlinear frequency response of a micro-resonator
and showed that the amplitude of the AC component
can change the frequency response e�ectively. You-
nis and Nayfeh [7] investigated the e�ects of axial
force and mid-plane stretching on the resonant curves.
They showed that DC load can a�ect the responses,
qualitatively and quantitatively, resulting in either a
softening or hardening behavior. They also studied the
frequency response of micro-resonators due to sub- and
superharmonic excitations [8].
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In an experimental study, Jin and Wang [9]
fabricated an electrostatic resonator in single-crystal
silicon and explored its second superharmonic resonant
behavior. Mestorn et al. [10] reported on both the
experimental and theoretical modeling used to study
the dynamic behavior of MEMS resonators. The
nonlinear response of a resonant micro-beam with
purely parametric electrostatic actuation was studied
by Rhoads et al. [11]. They modeled the electro-
static interaction between the beam and the multiple
electrodes as a parallel-plate capacitor with a single
moving plate and minimal fringe �eld e�ects. Their
results revealed that an inaccurate representation at
the modeling stage can lead to an inaccurate prediction
of frequency response. Researchers showed experimen-
tally that when the thickness of a beam is in the
order of microns and submicrons, it displays a size-
dependent deformation behavior [12,13]. Consequently,
new higher order theories, such as strain gradient,
modi�ed couple stress, and micropolar theories, should
be employed. Many studies have been undertaken on
the size-dependent behavior of micro-beams.

For instance, based on the Euler-Bernoulli theory,
Kong et al. [14] investigated the vibrational behav-
ior of micro-beams and reported the size-dependent
natural frequencies. Employing both the strain gra-
dient and modi�ed couple stress theories, Akg�oz and
Civalek [15,16] examined the buckling and free vibra-
tions of a micro-beam. Asghari et al. [17] explored
the size-dependent static and dynamic behavior of
functionally graded micro-beams on the basis of the
modi�ed couple stress theory. Taking into account
the nonlinear mid-plane stretching e�ects, Ghayesh et
al. [18,19] investigated the nonlinear forced vibrations
of a micro-beam using both the strain gradient and
modi�ed couple stress theories and constructed the
frequency-response curves of the system. Employing
the modi�ed couple stress theory, Ma et al. [20]
studied the size-dependent natural frequencies of a
Timoshenko micro-beam. Wang et al. [21] examined
the size-dependent behavior of a Timoshenko micro-
beam based on strain gradient elasticity theories.
Ansari et al. [22,23] employed the strain gradient
theory to study the vibration properties and ther-
mal post-buckling of a functionally-graded Timoshenko
micro-beam. Civalek et al. [24,25] used Eringen's
non-local elasticity theory to study the vibrational
properties and bending analysis of micro-cantilever
microtubules. The investigations were continued by
Ghayesh et al. [26] who examined the size-dependent
frequency response of a nonlinear micro-beam. They
used a pseudo-arc length continuation technique to
study the frequency response. Asghari et al. [27]
and Ramezani [28] developed a nonlinear model of
a micro-beam based on the Timoshenko beam the-
ory. They employed the multiple-time scale per-

turbation method to study size-dependent dynamic
behavior.

Based on the literature review, double-clamped,
micro-beam-based resonators su�er from geometric
nonlinearity induced by mid-plane stretching. For large
de
ections, this nonlinearity becomes more signi�cant.
In this paper, the con
ict e�ect of mid-plane stretching
and nonlocal beam theory on the nonlinear dynamic
behavior of a micro-beam is investigated. Taking
into account stretching e�ects and nonlocal elasticity
theory [29], the governing equation for the transverse
vibrations of an electrostatic micro-resonator is de-
rived. Employing the Galerkin projection method,
the nonlinear partial di�erential equation is discretized
into a set of nonlinear, ordinary di�erential equations.
Then the multiple-scales method is used to obtain
an approximate analytical solution for the nonlinear
resonant curves. Employing classical and nonlocal
elasticity theories, the frequency response curves are
plotted for di�erent values of DC voltage. The e�ect
of mid-plane stretching on the resonant curves is also
examined. Finally, the con
ict e�ect of nonlocality
and mid-plane stretching on the frequency response is
studied.

2. Mathematical modeling

Figure 1 shows a schematic view of an electrostatically-
actuated micro-resonator. The system consists of an
elastic beam with length L, width b, and thickness
h, with �xed-�xed boundary conditions, which is sus-
pended over a stationary conductor plate. When a
voltage is applied between two electrodes, an attractive
electrostatic force pulls down the upper deformable
electrode.

Taking into account the Euler-Bernoulli beam
theory, the displacement �eld for planar motion of the
microbeam can be written as:

u = u0 � z @w@x ; w = w(x; t); (1)

where u and w are the x and z components of the
displacement vector, respectively, and u0 is the axial
displacement of a point on the mid-plane. Based on the
nonlocal theory of elasticity, the constitutive relations

Figure 1. Schematic �gure of an electrostatically
actuated �xed-�xed micro-beam.
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of the microbeam can be expressed as [29,30]:

�xx � �@
2�xx
@x2 = E"xx;

"xx = �z @2x
@x2 )

�xx � �@
2�xx
@x2 = �Ez@2w

@x2 ; (2)

where " and � are the strain and stress tensors,
respectively. E is Young's modulus and � = (e0l)2 is
the nonlocal parameter. l is the length scale parameter
and e0 is a material constant. Considering mid-plane
stretching e�ects, the nonlocal theory of elasticity,
and, employing Hamilton's variational principle, the
governing equation for transverse vibrations of the
micro-beam can be written as [29,30]:
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�2

dx
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=
"0bV 2

2(g0 + w)2 ; (3)

where EI, �, and A are the 
exural rigidity, density,
and cross section of the micro-beam, respectively.
The right hand term in Eq. (3) reveals the nonlinear
attractive electrostatic force and g0 denotes the initial
gap between the �xed and moving electrodes. In order
to get the nondimensional equation of motion, the
following dimensionless parameters are de�ned as:

ŵ =
w
g0
; x̂ =

x
L
;

t̂ =
tp

�AL4=EI
; !̂ =

!p
EI=�AL4

; (4)

where ! is the fundamental frequency of the system.
Substituting these parameters into Eq. (3) and ignoring
the hat notation for briefness results in the following
dimensionless nonlinear governing equation:
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where:
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In the numerical simulations, it is considered that the
micro-beam is de
ected by a DC voltage, Vdc. Then,
the forced response of the system is considered regard-
ing these conditions by superimposing a harmonic AC
voltage with amplitude Vac. So, the total de
ection of
the micro-beam consists of two parts, as:

w(x; t) = ws(x) + wd(x; t); (7)

in which ws(x) introduces the static de
ection of the
micro-beam and wd(x; t) denotes the dynamic de
ec-
tion about ws(x). The governing equation for the static
de
ection can be obtained by dropping the time in
Eq. (5) as:
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(1 + ws)2 : (8)

This equation has four nonlinear terms in which the
Taylor expansion can be applied to treat these terms,
as follows:
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Considering this expansion, the governing equation can
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be written as:
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where Vac denotes the harmonic component of the
driving voltage, `�V ', and Vdc is the applied bias
voltage.

3. Perturbation analysis

In order to solve the governing equation, Galerkin's
projection method is employed to reduce it into a set
of nonlinear ordinary di�erential equations with �nite
degrees of freedom. So, the dynamic displacement of
the system is assumed as the following series expan-

sions:

wd(x; t) =
nX
j=1

'j(x)qj(t); (11)

where qj(t) denotes the generalized coordinates and
'j(x) represents the eigenfunctions for the transverse
vibrations of a clamped-clamped micro-beam, which
can be written as:

'j(x) =
�

cos�jx� cos h�jx� cos�jL� cosh�jL
sin�jL� sinh�jL

� (sin�jx� sinh�jx)
�
; (12)

in which �0js denote the eigenvalues of the micro-beam.
Substituting Eq. (11) into Eq. (10) and making use
of the orthogonality of trigonometric functions, the
following equation is obtained:
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t
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j=1
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where 
 and V0 are the nondimensional excitation fre-
quency and harmonic forcing amplitude, respectively.
The coe�cients in Eq. (13) can be de�ned as:

Mij =
Z 1

0
'j(x)'i(x)dx+D4

Z 1

0
'00j (x)'i(x)dx;

Cij = ĉ
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Symmetric electrostatic loading of the micro-beam
reveals that the �rst mode can be considered the
dominant mode [7]. Therefore, considering the �rst
as the dominant mode yields:

M �q + C _q +K1q +K2q2 +K3q3 = F1V0 cos 
t

+ f1V 2
0 cos2 
t+ F2qV0 cos 
t+ f2qV 2

0 cos2 
t;
(15)

where:

M = M11; C = C11; K1 = K11; K2 = K111;

K3 = K1111; F2 = F11; f2 = f11: (16)

To solve Eq. (15), the method of multiple-scales is
employed by assuming a uniform approximate solution
in the following form:

q(t; ") ="q1(T0; T1; T2) + "2q2(T0; T1; T2)

+ "3q3(T0; T1; T2) + :::; (17)

where T0 = t is a fast time scale and T1 = "t, and T2 =
"t are slow time scales associated with modulations
in the amplitude and phase caused by nonlinearities,
damping and any possible resonance. The derivatives,
with respect to time, are expressed in terms of the new
time scales as:
d
dt

= D0 + "D1 + "2D2 + :::;

d2

dt2
= D2

0 + 2"D0D1 + "2D2
1 + 2"2D0D2 + :::; (18)

where " is a small non-dimensional bookkeeping pa-
rameter and Dn = @=@tn. Taking into account the low
damping ratio and forcing amplitude as Cij = "2Cij ,
Vac = "3Vac, substituting Eq. (17) into Eq. (15), and
equating coe�cients of like powers of " on both sides,
yield the following set of ODEs:

O(") : D2
0q1 + !2q1 = 0; (19)



290 Sh. Valilou et al./Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 285{294

O("2) : D2
0q2 + !2q2 = �2D0D1q1 �K2q2

1 ; (20)

O("3) : D2
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�D2
1q1 � CD0q1 � 2K2q1q2

�K3q3
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T0): (21)

The general solution of Eq. (19) can be written as:

q1 = A(T1; T2)ei!T0 + �A(T1; T2)e�i!T0 ; (22)

where A is an unknown complex function, and �A is
the complex conjugates of A. It can be determined by
eliminating the secular and small-divisor terms at the
next approximation stage. Substituting Eq. (22) into
Eq. (20) leads to the solution of Eq. (21) as:

q2 =
K2

3!2

�
A2e2i!T0 + �A2e�2i!T0

�� 2K2

!2 A �A: (23)

Now, substituting Eq. (23) into Eq. (21) and expressing
cos(
T0) in complex form yields:
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�
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+
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2
(ei
T0 + e�i
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In order to describe the closeness of the excitation
frequency, 
, to the fundamental frequency, !, the
detuning parameter, �, is de�ned as:


 = ! + "2�: (25)

Substituting Eqs. (23) and (25) into Eq. (24), the
secular terms can be detected by comparing the ho-
mogenous solution and the forcing terms. Therefore:

�Ci!A(T2)� 2
@A(T2)
@T2

i! + 4
K2

2
!2 A
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2

3!2 A
2(T2) �A(T2)� 3K3A2(T2) �A(t2)

+ F1
V0

2
ei�T2 = 0: (26)

To �nd the steady state solution for the transverse
vibrations of the micro-beam, the complex function,
A, is assumed as:

A(T2) =
1
2
aei� ; (27)

where a is the transverse vibration amplitude and �
is the phase angle, both being real functions of T2.
Substituting Eq. (27) into Eq. (26) and separating the
result into real and imaginary parts, one can obtain:8<:a0 = 1

!

��C! 1
2a+ F1

V0
2 sin(
)

�

0= 1

!a

�
!a�+a3( 5

12
K2

2
!2 � 3

8K3)+F1
V0
2 cos(
)

�
;(28)

where autonomous Eqs. (28) is obtained by letting 
 =
�T2��. To �nd the steady state solution, the singular
points should be located and the motion in their
neighborhoods examined. The stability of the steady
state motion shows whether a small perturbation near
the points decays or grows. The steady state vibrations
occur when a0 = 
0 = 0, which corresponds to the
singular points of Eq. (28), or to the solutions of:8<: 1

!

��C! 1
2a+ F1

V0
2 sin(
)

�
= 0

1
!a

�
!a�+a3( 5

12
K2

2
!2 � 3

8K3)+F1
V0
2 cos(
)

�
=0 (29)

Eliminating 
 in Eq. (28), one can �nd the frequency
response equation as:

4
�
!a� + a3(

5
12
K2

2
!2 � 3

8
K3)

�2

+ (C!a)2 =(F1V0)2:
(30)

Eq. (29) reveals that the amplitude of the periodic
solution is a function of the detuning parameter, �,
as a representative of the excitation frequency, the
quadratic and cubic sti�ness, K2 and K3, the damping
coe�cient, C, and the amplitude of the harmonic
excitation, V0. The stability of the steady state so-
lution depends on the eigenvalues of the state equation
`Eq. (28)', which is evaluated at the singular points.

4. Numerical results and discussion

In order to validate the correctness of the formulation,
the �xed points of the system are compared with those
obtained by Nayfeh et al. [8], where the micro-beam
speci�cations were assumed to be L = 510 �m, b =
100 �m, g0 = 1:18 �m, N = 8:7 and h = 1:5 �m.
Figure 2 shows the �xed points of the system versus the
applied DC voltage. The stable (upper) and unstable
(lower) branches of the equilibrium points collide at a
saddle-node bifurcation point (static pull-in instability)
at Vdc � 4:8V , which is in close agreement with the
result reported in [8].
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Figure 2. Comparison of the �xed points of the
micro-beam versus DC voltage with those obtained by
Nayfeh et al. [8] (discrete points).

Figure 3. Comparison of the obtained normalized
nonlinear resonance frequencies with those obtained
theoretically by Nayfeh et al. [7] (squares) and
experimentally reported by Tilmans and Lectenberg [31]
(triangles).

In addition, the normalized nonlinear resonance
frequencies (
r=w) are compared with those obtained
theoretically by Younis et al. [7] and experimentally
reported by Tilmans and Lectenberg [31], where L =
310 �m, Q = 197, and the axial load is set at 0.0009 N,
as shown in Figure 3. As can be inferred from the
�gure, the results are in close agreement.

The material of the micro-beam is epoxy, and
its geometrical and material properties used in the
simulations are listed in Table 1. It should be noted
that in all simulations, the harmonic forcing amplitude
and quality factor are assumed to be V0 = 0:1V
and Q = 100, respectively. Taking into account the
classical theory and imposing di�erent DC voltages,
variations in the steady-state amplitude versus the
detuning parameter are presented in Figure 4.

The �gure shows that as the values of bias voltage
are increased, the frequency response curves bend more

Table 1. The values of design variables.

Design variable Value

L 100 �m

b 30 �m

h 1 �m

g0 1 �m

E 1.44 GPa

� 1000 kg/m3

" 8.85 PF/m

v 0.38

Figure 4. Frequency response of the micro-beam for
various values of the DC voltages.

to the left, implying that the softening behavior of
the system increases. Moreover, Figure 4 reveals that
the softening e�ect of the DC voltage acts against the
hardening e�ect of the stretching term. For voltages
higher than 4V , the softening e�ect of the bias voltage
overcomes the hardening e�ect of the stretching term,
whereas, for lower values, the stretching e�ect can be
dominated. It is shown that for a speci�c value of
bias voltage, Vdc = 4V , the softening e�ect of the
electrostatic loading counteracts the hardening e�ect
of the stretching term. Consequently, the frequency
response emerges without any bending and limit point
bifurcation [24], \similar to a linear system".

For additional clarity, the hardening e�ect of the
stretching term on the frequency response is shown in
Figure 5, where the bias voltage is considered to be
3.5 V. It is inferred that this e�ect can change the
response, qualitatively, and change the bending of the
frequency curves from left to right.

Taking into account the nonlocal theory, vari-
ations of the transverse vibration amplitude of the
micro-beam for di�erent nonlocal parameters, \�", are
shown in Figure 6. In this �gure, in addition to the
stretching e�ects, the bias voltage is set as 3.5 V.
It should be noted that although the length scale
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Figure 5. Comparison between the frequency response
curves of the micro-beam obtained with and without the
stretching e�ect.

Figure 6. Frequency response curves of the micro-beam
for di�erent values of the nonlocal parameter.

parameter is �xed (100 �m), the values of � can be
changed by varying the material constant \e0" of the
micro-beam. Figure 6 shows that as the value of �
increases, the frequency response curves bend more to
the left, implying that the softening behavior of the
system increases. In addition, it is observed that the
maximum amplitude of oscillations increase as a result
of increasing the value of �.

Comparison of Figures 5 and 6 shows that the
softening e�ect of the nonlocality is in con
ict with
the hardening e�ect of the stretching. Therefore, tak-
ing into account the stretching e�ects and employing
the nonlocal theory for some values of the material
constant, � = (0:1L)2, one can obtain a frequency
curve without any bending and limit point bifurcation,
\similar to a linear frequency response curve", as shown
in Figure 7.

5. Conclusion

Employing the nonlocal theory of elasticity and tak-
ing into account the stretching e�ects, the nonlinear

Figure 7. E�ects of the nonlocality and stretching term
of the frequency response of the micro-beam.

frequency response of an electrostatically actuated,
double-clamped micro-beam was investigated. Taking
advantage of the Galerkin projection method, the
partial di�erential equation was discretized into a set of
nonlinear, ordinary di�erential equations. The method
of multiple scales was used to solve the equations and
construct frequency response curves. The numerical
results showed that the stretching term displayed
hardening behavior. Examining the e�ects of the
bias voltage on the nonlinear dynamics of the system
showed that the frequency response became softer as
a result of increasing the bias voltage. It was also
shown that the softening behavior of the system and
the maximum amplitude of the micro-beam oscillations
increased with increases to the nonlocal parameter,
�. The results showed that the softening e�ect of
the bias voltage and nonlocality were in con
ict with
the hardening e�ect of the stretching. Therefore,
taking into account the mentioned nonlinear e�ects,
one can obtain a frequency curve without any bend-
ing and limit point bifurcation, \similar to a linear
frequency response curve". The obtained results can
be used in the design of micro-resonators in which
the frequency response curves play a signi�cant role
in performance.
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