
Scientia Iranica B (2016) 23(1), 206{217

Sharif University of Technology
Scientia Iranica

Transactions B: Mechanical Engineering
www.scientiairanica.com

A parametric study of optimal number and location of
radiant heaters in enclosures with participating media

H. Amiria;� and P.J. Coelhob

a. Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advance
Technology, Haftbagh Highway, Kerman, P.O. Box 76315-117, Iran.

b. IDMEC, LAETA, Instituto Superior T�ecnico, Universidade de Lisboa Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.

Received 24 April 2014; received in revised form 3 February 2015; accepted 13 April 2015

KEYWORDS
Optimization;
Participating media;
Micro-genetic
algorithm;
Discrete ordinates
method;
Anisotropic
scattering.

Abstract. An inverse solution technique is applied to the design of radiant enclosures
when design variables are discrete and radiation is the dominant mode of heat transfer.
The enclosure contains an absorbing, emitting and linear anisotropic scattering medium
in radiative equilibrium. The discrete ordinate method is employed to solve the radiative
transfer equation. The goal of the design problem is to �nd the best number and location
of discrete equally powered heaters which produce the desired (speci�ed) temperature and
heat 
ux pro�le over the design surface of enclosures. The inverse problem is formulated
as an optimization problem and is solved using a micro-genetic algorithm. Results show
that the micro genetic algorithm is able to �nd the optimal solution by just searching
a few percent of feasible solutions. The ability of this methodology is demonstrated by
�nding the optimal number and location of heaters in an irregular enclosure. Then,
the e�ect of some thermophysical properties, such as extinction coe�cient, scattering
albedo, scattering phase function, and design surface emissivity, on the optimal solution is
considered.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

High-temperature furnaces and ovens are used exten-
sively in industry to provide energy to engineering
processes. In these systems, radiative heat transfer
is important and often is the dominant mode of heat
transfer. These systems typically consist of an array
of heaters/burners that are placed on the top, bottom,
and sometimes the sides of the enclosure and which
provide a supply of thermal radiation to the load inside
them. In the design of such systems, the design goal is
to �nd the number and/or location and/or power of the
heaters/burners that produce the desired pre-speci�ed
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heat 
ux and temperature distributions over the object
to be heat treated (the so-called design surface). The
desired conditions over the design surface depend on
the process for which the thermal system is built and
the thermal properties of the object, such as thermal
conductivity, speci�c heat density, etc. Such problems
usually result in equation sets that are mathematically
ill-conditioned. This occurs because two conditions are
speci�ed on some parts of the system being designed
(the design portion), and the unknown conditions on
other parts of the system are to be determined. These
types of problem are called inverse problems, and
regularization [1-3] and optimization [4-12] methods
are used to solve them.

In an optimization method, an objective function
is de�ned in such a way that its minimum corresponds
to the optimal design outcome. The optimization tech-
niques can be classi�ed as gradient-based methods [4-
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6] and heuristic methods [7-14]. The gradient-based
methods are most often used if objective functions
are continuously di�erentiable functions with few local
extrema. They work by minimizing the objective
function using the local topography of the objective
function. The heuristic methods consist of techniques
that are based on random sampling of the objective
function over the entire feasible region; they can be
used for di�erentiable or non-di�erentiable objective
functions. When design variables are discrete or
combinatorial, heuristic methods are the only methods
that can be used. Genetic Algorithms (GAs) [7-
11] are the most popular heuristic methods and have
gained a permanent position as an optimization al-
gorithm for solving many di�cult optimization prob-
lems.

Heuristic search methods have been applied to a
number of radiation design problems. Li and Yang [9]
applied a genetic algorithm to solve the inverse prob-
lem for simultaneously determining the single scatter-
ing albedo, optical thickness and the phase function
from the knowledge of the exit radiation intensities.
Safavinejad et al. [10] used a Micro Genetic Algorithm
for determining the optimal heater settings in irregular
2-D transparent media. Kim et al. [11,12] used a hybrid
genetic algorithm for estimating wall emissivities in a
two-dimensional irregular geometry and also applied it
to inverse surface radiation analysis in an axisymmetric
cylindrical enclosure. Gosselin et al. [13] reviewed
the utilization of genetic algorithms in heat transfer
problems.

In most of the previous work on the inverse
design of radiant enclosures, the number and location
of heaters is assumed to be constant and the heater
setting that produces the desired condition over the
design surface is determined. However, the number
and location of heaters greatly a�ects the e�ciency
and uniformity with which the materials are heated.
Furthermore, the desired conditions on the design
surface may be satis�ed by using a set of heaters
with variable power over the heater surface, but, for
practical reasons, heaters with equal power may be
preferred in real problems. Porter et al. [14] applied
simulated annealing and Tabu search for optimization
of a discrete array of radiant heaters in �re simulation
equipment. They used an optimization technique to
�nd the optimal location of heaters in a transparent
medium. The power of the radiant heaters was
�xed in advance. Safavinejad et al. [7] found the
number and location of heaters in 2D enclosures con-
taining a transparent medium using a Micro Genetic
Algorithm (MGA). The power of the heaters was
not �xed in advance, but obtained according to the
conservation of energy. Amiri et al. [8] extended the
Safavinejad et al. [7] work to participating media,
where radiative transfer is the dominant mode of

heat transfer. Brittes and Franca [15] considered the
inverse boundary design of a 3D radiative enclosure
with a transparent medium. The goal was to de-
termine the power and location of the pre-speci�ed
number of heaters that produce uniform temperature
and heat 
ux on the design surface. In order to
solve the inverse problem, they proposed a hybrid
solution that combines regularization and optimization
approaches.

During the operation of a thermal system, the
radiative properties of the participating medium and
wall properties, such as extinction coe�cient, scat-
tering albedo and phase function, and the emissivity
of the design surface may change. It is interesting
to consider how these changes a�ect the optimum
solution. In this study, calculations have been carried
out to investigate the e�ect of these thermophysical
properties on the optimal number and location of
heaters over the heater surface that produces the
desired condition over the design surface. We con-
centrate on the design problem in high temperature
systems with an absorbing, emitting and scattering
medium where radiative transfer is the dominant mode
of heat transfer. Here, we extend our previous work [8]
to address the e�ect of thermophysical properties on
the optimal solution of inverse problems in radiant
enclosures. Two-dimensional irregular enclosures are
considered. The inverse problem is formulated as an
optimization problem. The Micro Genetic Algorithm
is used as an optimization tool for searching for the ap-
propriate number and location of heaters that produce
the desired heat 
ux and temperature distribution over
the design surface. First, the accuracy of the direct and
inverse solutions is veri�ed, and then the performance
of the inverse method is examined by some numerical
examples.

2. Formulation

2.1. Direct problem
The Radiative Transfer Equation (RTE) for an ab-
sorbing, emitting and scattering gray medium can be
written as [16]:

(~s:r)I(~r;~s) =�

(
�I(~r;~s) + (1� !)Ib(~r)

+
!
4�

Z
4�

I(~r;~s 0)'(~s 0 ! ~s)d
0
)
; (1)

in which � = ka + �s is the extinction coe�cient,
�s is the scattering coe�cient, and ka is the absorp-
tion coe�cient; ! = �s=� is the scattering albedo
Ib(~r) = �(T (~r))4

� is the blackbody radiation intensity at
position ~r in the medium; and I(~r;~s) is the radiation
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intensity at position ~r and in direction ~s. '(~s 0 ! ~s)
is the scattering phase function, which denotes the
probability that a ray from direction ~s 0 and con�ned
within solid angle d
0 is scattered into the direction
of radiation propagation, ~s, con�ned within a solid
angle, d
. In this paper, linear anisotropic scattering
is considered with the phase function given by:

'(~s 0 ! ~s) = 1:0 + a0(~s 0:~s); (2)

where �1 � a0 � 1 is an asymmetry factor. Values of
the parameter a0 are +1, 0 or -1 for forward, isotropic
or backward scattering, respectively.

The boundary conditions for di�usely emitting
and re
ecting gray walls are de�ned as:

I(~rw; ~s) = "wIb(~rw)

+
(1�"w)

�

Z
nw:~s 0<0

I(~rw; ~s 0) j~nw:~s 0j d
0; ~nw:~s>0;
(3)

where "w is the wall emissivity, Ib(~rw) is the blackbody
radiation intensity at the temperature of the boundary
surface, and ~nw is the outward unit vector normal to
the surface. The radiation intensity depends on the
temperature �eld, and, therefore, the temperature �eld
must be known in order to solve the RTE. Constant
temperature and radiative equilibrium cases are con-
sidered here. In the case of radiative equilibrium, the
temperature �eld is obtained:

r:~q = ka(4�Ib(~r)�
Z
4�

I(~r;~s)d
) = 0; (4)

where r:~q denotes divergence of the radiative heat 
ux
vector.

Among the di�erent numerical methods for solv-
ing RTE, the Discrete Ordinates Method (DOM) has
received signi�cant attention and development due to
its good accuracy, 
exibility and moderate computa-
tional requirements. DOM was originally formulated
by Chandrasekhar [17] and developed by Lathrop and
Carlson [18] and Lathrop [19].

Aiming at reducing ray e�ects, the Modi�ed
Discrete Ordinates Method (MDOM) was developed by
Ramankutty and Crosbie [20,21]. Amiri et al. [22,23]
used a modi�ed discrete ordinates method to solve
radiation [22], and combined conduction-radiation [23]
heat transfer problems in 2D irregular geometries. Kim
and Kim [24] proposed a hybrid spatial di�erencing
scheme for the discrete ordinates method which reduces
false scattering. They showed that this scheme can
predict more stable and less smeared results than
others. Coelho [25] surveys recent advances on the
discrete ordinates method.

In the DOM, the radiative transfer equation is
replaced by a discrete set of M coupled di�erential

equations for a �nite number of directions, ~s m (m =
1; 2; � � � ;M). Integrals over solid angles are replaced
by a quadrature of order M , which yields:

(~s m:r)I(~r;~s m) = ��I(~r;~s m) + kaIb(~r)

+
�s
4�

MX
n=1

I(~r;~s n)'(~s n ! ~s m)wn; (5)

in which wn is the quadrature weight of direction
~s n. The boundary condition, expressed by Eq. (3),
is discretized as:

I(~rw; ~s m) = "wIb(~rw)

+
(1� "w)

�

MX
n=1;~nw:~s n<0

I(~rw; ~s n) j~nw:~s njwn;

~nw:~s m > 0; (6)

and the divergence of radiative heat 
ux is expressed
as:

r:~q = ka

 
4�Ib(~r)�

MX
n=1

I(~r;~s)wn
!
: (7)

Spatial discretization of the discrete ordinate equations
is carried out using the �nite volume approach. For
a two-dimensional Cartesian coordinate system and
for direction ~s m with direction cosines �m and �m,
integrating from Eq. (5) yields the discretized equation:

j�mjAx(Imx;out � Imx;in) + j�mjAy(Imy;out � Imy;in)

= (��Imi;j + Smi;j)V; (8)

where:

Smi;j = kaIbi;j +
�s
4�

MX
n=1

Ini;j'(~sn ! ~sm)wn: (9)

In the above equations, Ax and Ay are the areas of
the control-volume faces normal to x- and y-directions,
respectively; V is the volume; Imi;j is the intensity at
grid node i; j and in direction ~sm. The subscripts
of the cell face intensities represent the direction (x
or y) and the upstream (in) or downstream (out)
face. In this study, the hybrid spatial di�erencing
scheme proposed by Kim and Kim [24] is used to
relate the unknown radiation intensities at the cell
faces to radiation intensities at neighboring grid nodes.
Eqs. (7) and (8) are coupled through term Imi;j , and
must be solved iteratively to yield radiation intensity
and temperature �elds. These equations are solved
using the procedure described in [26].
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Figure 1. Irregular enclosure, heater and design surfaces.

2.2. Optimization
Radiative heat transfer in an irregular enclosure, as
shown in Figure 1, is considered. The enclosure
contains a gray participating, absorbing, emitting and
linear anisotropic scattering medium with uniform
properties in radiative equilibrium surrounded by gray
and di�usive walls. The boundary conditions are
speci�ed over each part of the boundary surface, except
on the part corresponding to the heater surface (�H).
In addition, on the design surface (�D), both temper-
ature and heat 
ux distributions are speci�ed a priori.
In the present study, all surfaces, except heater and
design surfaces (�R), are assumed to be refractory and
adiabatic. In order to solve the optimization problem,
the heater and the design surfaces are discretized into
NH and ND elements, respectively. The desired heat

uxes over the design surface are represented by vector,
~qd = [qd�1; qd�2; qd�3; � � � ; qd�j ; � � � ; qd�ND ]T . In the
optimization processes, the temperature distribution
over the design surface is set to the desired tempera-
ture, and heat 
ux distribution over the design surface
is used to de�ne the objective function.

Consider NH possible heater locations over the
heater surface; there are 2NH possible heater con�g-
urations over the heater surface. The goal of the
optimization process is to �nd the number (Nh) and
location of the equally powered heaters in such a way
that they produce the desired heat 
ux and tem-
perature distributions over the design surface. Since
all enclosure walls are adiabatic, except the design
and heater surfaces, and the medium is in radiative
equilibrium, the energy supplied by the heaters must
be equal to the energy absorbed by the design surface.
For Nh heaters and for the case of equally powered
heaters, the heat 
ux of the heaters can be obtained
from the following equation:

qh =

8<:NDX
j=1

(jqd�j j dAd�j)
9=; =

(NhX
k=1

dAh�k
)
; (10)

where dAd�j is the area of element j on the design
surface, dAh�k is the area of element k on the heater
surface, jqd�j j is the absolute value of the desired heat

ux on element j of the design surface, ND is the
number of discrete elements on the design surface, and
qh is the heat 
ux of the heaters.

For a particular con�guration of heaters, all the
boundary conditions are known, and the DOM can
be used to calculate estimated heat 
ux distribution,
~qe = [qe�1; qe�2; qe�3; � � � ; qe�j ; � � � ; qe�ND ]T , over the
design surface. Now, an objective function is de�ned
using the heat 
ux evaluated at ND discrete locations
over the design surface:

F (	) =
NDX
j=1

(qd�j � qe�j(	))2; (11)

where qd;j and qe;j are the desired and estimated
heat 
uxes for element j over the design surface,
respectively. The objective function quanti�es how
close a particular con�guration of heaters is to the
optimal con�guration, in such a way that the minimum
of F (	) corresponds to the optimal con�guration.
The objective function depends on a set of variables
contained in 	, called design parameters, which specify
the number, Nh, and locations of the heaters.

The optimization method is used to modify the
initial con�guration towards the optimal con�guration,
iteratively. The solution of the optimization problem
is based on the minimization of the objective function,
with respect to the unknown parameters, 	. The
micro-genetic algorithm is used for this optimization
process, which will be described in the following sec-
tion.

2.3. Micro genetic algorithm
Genetic Algorithm (GA) is a robust parameter search
technique based on the concept of natural selection.
In the basic GA or Simple GA (SGA), individuals
randomly generated at the �rst stage reach the global
optimum through successive iterations, called genera-
tions. Each individual in the population is a potential
solution to the problem under consideration. During
each generation, each individual in the population is
evaluated using some measure of �tness (the value of
the objective function). After evaluating the �tness
of each individual, �tter individuals are selected for
reproducing o�spring for the next generation. Some
of the selected individuals are chosen to �nd mates
and undergo the crossover operation. Then, in order
to keep diversity in the population, some of o�spring
are chosen for mutation operation. The new individ-
uals and some of the best individuals from the last
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generation constitute the new generation. After some
number of generations, the algorithm converges to the
best string, which, hopefully, represents the optimal
or approximate optimal solution to the optimization
problem.

Typically, if the population size of SGA is too
small, then it might converge to a suboptimal solution.
On the other hand, when the population size is too
large (for problems with a large number of parameters),
the SGA takes longer to converge upon a solution.
The SGA cannot work with a small population, as
there is not enough diversity in the population pool
to allow the SGA to escape from the local optimum.
Therefore, di�erent methods are developed to reduce
the computational time and e�ciency of SGA. One
such method, known as the micro-genetic algorithm,
developed by Krishnakumar [27], reduces computa-
tional time considerably.

In general, Micro-Genetic Algorithm (MGA) can
work with populations as small as 5 to 10 individuals.
Moreover, MGAs use elitism and convergence checking
with re-initialization to obtain optimal or near optimal
solutions. The SGA is used in the normal fashion
on this small population until the binary strings of
each individual di�ers from that of the best individual
by less than a prescribe percentage (here, 5%). At
this point, a new random population is chosen, while
keeping the best individual from the previously con-
verged generations, and the evolution process restarts.
The population restart strategy avoids premature con-
vergence to local extremes and incorporates diversity
in the population. A 
owchart and more details
concerning MGA are given in [7,8].

In this study, initially, a set of 5 individuals
(population of size 5) is randomly generated for the �rst
generation. The length of each string (or an individual
in the population) is �xed to NH bits, because there
are NH possible heater locations on the heater surface.
In each string, \1" signi�es that in a given surface
location, a heater is installed (heater is on) and \0"
indicates that the given surface location is an adiabatic
surface (heater is o�). Uniform crossover is used here,
and the probability of crossover, Pc, has been taken as
0.5. As the number of generations increases, the genetic
algorithm produces better solutions until no improve-
ment is observed. Results from the genetic algorithm
depend somehow on the randomly generated numbers
(through the seed number in the random generating
subroutine), and, thus, they may probably not be the
same every time the program runs. Therefore, the
search should be performed with di�erent seed numbers
before reaching a conclusion as to whether the solution
is optimal. In order to be sure that the optimal solution
is independent of the seed number, the micro genetic
algorithm �rst runs with three di�erent seed numbers.
Then, the optimization code is run with 3 new seed

numbers and the lowest objective function in the �rst
set of runs is taken as the initial population. The
optimal solution, which is presented in this paper, is
the solution with the lowest objective function in the
second set of runs.

3. Validation

To check the performance and accuracy of the present
method in solving direct and inverse radiation prob-
lems, two comparisons are carried out. Throughout the
paper, heat 
uxes and temperatures are nondimension-
alized by Q = q=(�T 4

ref) and T � = T=Tref , respectively,
in which Tref is a reference temperature.

3.1. Direct method
Consider the radiative heat transfer in a square en-
closure with black walls. The medium is assumed to
scatter radiation isotropically and neither absorbs nor
emits radiant energy (! = 1). The bottom boundary of
the enclosure is at some �nite temperature, Tb and the
other three boundaries are cold (at zero temperature).
The calculations were performed using uniform grids
with 11 � 11 and 21 � 21 control volumes, and S4, S6
and S8 quadratures. A comparison of the dimensionless
heat 
ux distribution over the hot wall and the zonal
method results of [28] is shown in Figure 2. The
comparison shows that the present results are in good
agreement with the zonal solution. It is observed that
further re�nement of mesh size over 11�11 and further
re�nement of quadrature over S6 do not change the
results considerably. Other validations for the present
DOM is given in [24].

3.2. Inverse method
Consider radiative heat transfer in the enclosure shown
in Figure 3. The enclosure contains an absorbing,

Figure 2. Comparison of dimensionless heat 
ux over hot
wall predicted by the DOM, compared with the results of
the zonal method for a square enclosure with black walls.
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Figure 3. Geometry, boundary conditions and possible
heater locations for the rectangular enclosure.

emitting and isotropic scattering medium with � =
2 m�1, ! = 0:5 and a0 = 0. The boundary conditions,
wall properties and possible heater locations are shown
in the �gure. To show the ability of the optimization
method, three heaters with dimensionless heat 
ux
equal to Q = 6:0 are placed in locations 1, 2 and 3,
and the other locations are assumed to be adiabatic.
Then, the direct problem is solved with 11�11 uniform
control volumes and the heat 
ux over the design
surface is calculated. Finally, the calculated heat

ux over the design surface is taken as the desired
heat 
ux and the optimization method is applied to
�nd the number and location of the heaters. The
extinction coe�cient, scattering albedo, wall properties
and desired temperature are the same in the direct and
inverse problems.

Figure 4 shows the convergence rate of the ob-
jective function versus the number of generations for
di�erent seed numbers. It shows that the optimization
method rapidly �nds the exact location of the heaters
by searching only a small fraction ((12�5)=211�100 =
2:93%) of all possible con�gurations.

4. Results and discussion

4.1. Example problem
The optimization methodology is demonstrated by
applying it to solve a design problem involving a 2-
D di�use-walled enclosure, shown in Figure 5. The
enclosure is �lled with a participating medium with
an extinction coe�cient, scattering albedo, asymmetry
factor and the emissivity of a design surface equal
to � = 2 m�1, ! = 0:1, a0 = �1 and "D = 0:5,
respectively. The goal of this design problem is to �nd
the optimal number and location of equally powered

Figure 4. Variation of the �tness function various
generations for di�erent seed numbers.

Figure 5. Geometry, boundary conditions, heater
locations and heater number of the example problem.

heaters to produce the uniform dimensionless heat

ux of QD = �2 and temperature of T �D = 1:0
over the design surface. The radiative heat transfer
has been solved by discretizing the enclosure into a
20� 20 uniformly spaced spatial mesh and S6 angular
quadrature scheme. Due to the symmetry of the
boundary conditions and the con�guration, the optimal
number and position of heaters must be found from a
set of NH = 30 possible locations in one side of the
symmetry line. The same distribution applies over the
other side of the heater surface due to its symmetry.
There are 230 possible con�gurations for the number
and location of heaters. Figure 6 shows locations and
the optimal number of heaters over the heater surface.
It shows that Nh = 12 and that the number of heaters
over the heater surface, N , is equal to 2 � Nh = 24.
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Figure 6. The optimum arrangement of heaters over the
heater surface.

Figure 7. Desired and estimated heat 
ux over the
design surface.

Figure 7 shows the estimated dimensionless heat 
ux
distribution over the design surface. As shown, the
uniform desired heat 
ux distribution is well recovered
using the optimization method (F = 0:00973). The
maximum relative error over the design surface of the
enclosure is less than 2%, which is quite acceptable.
Figure 8 shows the rate of convergence of the objective
function versus the number of iterations for a seed
number of three. It shows that the objective function
is rapidly converged to a small value by searching only
((600 � 5=230) � 100 = 2:8 � 10�4%) percent of all
possible solutions.

4.1.1. E�ect of the number of possible heater locations
For practical reasons, the designer may prefer to use
larger heaters. For a constant con�guration, increasing
the area of the heaters (Ah�k, k = 1; 2; � � � ; NH)
decreases the number of possible heater locations, NH ,
and vice versa. In order to see the e�ect of the number

Figure 8. Variation of the �tness function versus
generations for di�erent runs.

Figure 9. E�ect of number of possible heater locations.

of possible heater locations, the optimization process is
applied to �nd an optimal solution for NH = 15 and
NH = 30. The enclosure, shown in Figure 5, contains
an absorbing, emitting and scattering medium, with
� = 0:1 m�1, ! = 0:5 and a0 = 1. The emissivity
of the design surface is "D = 0:5. A uniformly spaced
20 � 20 spatial mesh and the S6 angular quadrature
were used to solve the problem. As Figure 9 shows,
the optimal solutions are not exactly the same but
they have the same trend. As expected, and shown in
Figure 10, the estimated heat 
ux pro�le can be made
closer to the desired value by using smaller heaters
(NH = 30).
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Figure 10. Desired and estimated heat 
ux over the
design surface for two possible heater locations.

5. Parametric study

The properties of participating media, such as extinc-
tion coe�cient, scattering albedo, asymmetry factor,
and the emissivity of the design surface, may change.
It is interesting to consider how these changes can
a�ect the optimal number and location of the heaters.
The following calculations have been carried out to
investigate the e�ect of the above parameters on
the optimal number and location of equally powered
heaters over the heater surface to produce the uniform
dimensionless heat 
ux of QD = �2 and temperature
of T �D = 1:0 over the design surface in an enclosure, as
shown in Figure 6. For all cases, we have used a 20�20
uniform grid and the S6 angular quadrature scheme.

5.1. Extinction coe�cient
Consider radiative heat transfer in the enclosure shown
in Figure 5 with an absorbing, emitting and isotropic
scattering medium with ! = 0:5, a0 = 0 and
wall emissivity of "D = 0:5. Figure 11 shows the
optimal number and location of heaters for various
extinction coe�cients. Figure 12 shows the estimated
and desired heat 
uxes over the design surface for
some of these extinction coe�cients, and Figure 13
shows the convergence rate of the objective function
with generations for di�erent extinction coe�cients.
From the above �gures, two e�ects are clear. First,
as the extinction coe�cient increases, the number of
heaters decreases and, thus, the power of the heaters
will increase. Second, the locations of the heaters
go towards the regions in front of the design surface.
Also, it is seen that optimal solutions are less a�ected
by variations of the extinction coe�cient for optically
thick media, and the objective function convergences
to a relatively higher value for � > 5 m�1. The

Figure 11. E�ect of extinction coe�cient on optimal
solution for medium with ! = 0:5, a0 = 0 and "D = 0:5.

Figure 12. Desired and estimated heat 
uxes over the
design surface for various extinction coe�cients.

reason for this behavior is that, as the extinction
coe�cient and, therefore, the optical thickness of the
medium decreases, the radiation emitted by the heater
surface dominates the heat 
ux on the design surface,
whereas the local gas temperature will control the heat

ux on the design surface as the extinction coe�cient
increases.

5.2. Scattering albedo
In order to investigate the e�ect of the scattering
albedo, the optimization method has been used to
�nd the number and best location of equally powered
heaters in an enclosure with a0 = �1, and "D = 0:5,
and with two extinction coe�cients, � = 0:5 m�1 and
� = 2:0 m�1, for various scattering albedos. Optimal
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Figure 13. Variation of the objective function versus
generations for di�erent extinction coe�cients.

Figure 14. E�ect of scattering albedo on optimal
solution for � = 0:5 m�1, a0 = �1 and "D = 0:5.

solutions are shown in Figures 14 and 15. changes
As seen from these �gures, scattering albedo has a
profound e�ect on the optimal solutions, but a clear cut
conclusion cannot be reached as to how the scattering
albedo correlates with optimal solutions.

5.3. Asymmetry factor
In order to investigate the e�ect of the asymmetry
factor, radiative heat transfer in an enclosure with
! = 0:5, and "D = 0:5, and with two extinction
coe�cients, � = 1:0 m�1 and � = 5:0 m�1, have been
considered for various asymmetry factors, and optimal
solutions are shown in Figures 16 and 17. Results

Figure 15. E�ect of scattering albedo on optimal
solution for � = 2:0 m�1, a0 = �1 and "D = 0:5.

Figure 16. E�ect of asymmetry factor on optimal
solution for � = 1:0 m�1, ! = 0:5 and "D = 0:5.

show that the asymmetry factor variation the optimal
solution considerably for � = 1:0 m�1, but only slightly
changes the optimal solution for � = 5:0 m�1.

5.4. Emissivity of design surface
The optimal number and location of heaters in a
medium with ! = 0:5, and a0 = 0, and two absorption
coe�cients, � = 0:1 m�1 and � = 5 m�1, have been
obtained for various emissivities of design surfaces, and
are shown in Figures 18 and 19, respectively. As seen
from these �gures, variation of the emissivity of the
design surface changed the optimal con�guration, but
this variation is small for high extinction coe�cients.
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Figure 17. E�ect of asymmetry factor on optimal
solution for � = 5:0 m�1, ! = 0:5 and "D = 0:5.

Figure 18. E�ect of emissivity of design surface on
optimal solution for � = 0:1 m�1, ! = 0:5 and a0 = 0.

6. Conclusion

In this paper, discrete optimization problems of radia-
tive heat transfer in participating media with irregular
geometries have been studied. The genetic algorithm
has been used to �nd the optimum number and loca-
tion of equally powered heaters to produce a desired
temperature and heat 
ux distribution over the design
surface of radiant enclosures. The medium has been as-
sumed to be absorbing, emitting and linear anisotropic
scattering. The discrete ordinates method has been

Figure 19. E�ect of emissivity of design surface on
optimal solution for � = 5:0 m�1, ! = 0:5 and a0 = 0.

employed to solve the radiative transfer equation. The
micro genetic algorithm has been used to minimize an
objective function, expressed as the sum of the square
di�erence between estimated and desired heat 
uxes
over the design surface. The method is able to solve
combinatorial optimization problems for radiative heat
transfer in such a way that the temperature and heat

ux distributions over the design surface converges to
the desired pro�les. Results show that the estimated
values of heat transfer are in good agreement with the
desired values within an acceptable range of errors.
The e�ects of medium and wall characteristics, such
as extinction coe�cient, scattering albedo, asymmetry
factor and emissivity of the design surface, on the
optimal solution have been studied in detail. The
results indicate that variation in medium and wall
properties change the optimal solution considerably
for low optical thicknesses (extinction coe�cient), but
they have little in
uence on the optimal solution at
high optical thicknesses. Therefore, the designer must
determine the medium properties more precisely when
the extinction coe�cient is low. Results also show that
even a small change in radiative properties changes
the optimal solution. The reason for this behavior is
that radiative heat transfer is non-linear and makes the
inverse problem more ill-conditioned.

Nomenclature

Ax; Ay Areas of the control-volume faces
normal to the x and y directions (m2)

a0 Asymmetry factor
dA Element area (m2)
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F (	) Objective function
ka Absorption coe�cient (m�1)
~nw Outward unit vector normal to the

wall
NH Number of possible heater location
Nh Number of heaters
N Total number of heaters over the

heater surface
ND Number of discrete elements on the

design surface
Ib(~r) Black body radiation intensity

(Wm�2sr�1)
I(~r;~s) Radiation intensity at position ~r and

in direction ~s (Wm�2sr�1)
I m
i;j Intensity at grid node i; j (Wm�2sr�1)

Q
�

=
q

�T 4
ref

�
Dimensionless heat 
ux

~q Radiative heat 
ux vector (Wm�2)
qd Desired heat 
ux (Wm�2)
qe Estimated heat 
ux (Wm�2)
qw Wall heat 
ux (Wm�2)
~r Position vector (m)
~s Geometric path vector (m)
Smi;j Source term in Eq. (9)

T Absolute temperature (K)
Tref Reference temperature (K)
V Volume (m3)

wj Quadrature weight of the direction ~s j

Greek symbols

� = ka + �s Extinction coe�cient (m�1)
�D Design surface
�H Heater surface
�R Refractive surface
� Extinction coe�cient
! = �s=� Scattering albedo
"w Wall emissivity
�s Scattering coe�cient (m�1)
� Stefan-Boltzmann constant =

5:67� 10�8 Wm�2K�4

�m; �m x and y cosines of ~s m direction

x; 
y Spatial di�erencing weights to x and y

directions
'(~s 0 ! ~s) Scattering phase function

 Solid angle (sr)
� Dimensionless temperature
	 Design parameters

Subscripts

in Upstream
d; h Design and heater
R Radiation or refractive
out Downstream
w Wall
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