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Abstract. In this work, the e�ect of ductile damage on distributions of strain and
displacement components in rotating annular disks with variable thicknesses under plane
stress conditions is studied using semi-analytical and �nite element methods. The plastic
behavior of disks under mechanical loading is studied on the basis of continuum damage
mechanics. The semi-analytical method is developed using Prandtl-Reuss relations, the
method of successive elastic solution, and the damage plasticity model proposed by Xue
and Wierzbicki that is also used for �nite element analysis. The proposed damage plasticity
model incorporates the e�ects of both hydrostatic stress and the Lode angle to de�ne the
fracture envelope. The results obtained by the semi-analytical method are then compared
with the results obtained by the �nite element method. Numerical calculations for di�erent
ranges of thickness parameter, with and without damage e�ects, are carried out and the
results are compared. It is shown that the damage has a signi�cant e�ect on values of
maximum von Mises stress and the limit angular velocity of annular disks. Results of the
present study con�rm the credibility of the proposed model in predicting the damage limit
angular velocity, and can be extended to other states of loading.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Estimation of stress and strain distributions in disks
rotating at high speeds is an important subject, due to
their wide applications in engineering components such
as gears, turbine rotors, 
ywheels, etc. Theoretical re-
search into the behavior of such structures has received
appreciable focus, and the topic has been considered in
many standard and advanced textbooks [1-4], which
mostly concentrate on the analytical method and �-
nite element simulations [4-21]. Furthermore, to the
knowledge of the authors, no research work has been
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presented on the e�ects of ductile damage on the plastic
behavior and limit angular velocity of a rotating disk.

The theoretical treatment of elastic-plastic ro-
tating disks was started by Laszlo [5] and, since
then, interest in this problem has never ceased [5-
21]. Gamer [6] proposed a stable analytical solution
for the elastic-plastic response of a rotating solid disk
with uniform thickness. In his research, Tresca's yield
criterion, plane stress condition, linear strain hardening
material behavior and its associate 
ow rule were
assumed. These works were extended to studies on
annular and solid disks with variable thickness and
density [7,8]. The fully plastic state of a solid disk
with variable thickness was investigated by Guven [9].

Analytical solutions for disks with a convex form
of thickness variation obeying exponential and power
functions were presented by Orcan and Eraslan [10].



R. Akbari Alashti and S. Jafari/Scientia Iranica, Transactions B: Mechanical Engineering 23 (2016) 174{193 175

They also investigated the elastic-plastic deforma-
tion of solid disks with variable thickness in concave
form [11]. In these works, it was shown that the defor-
mation behavior of a solid disk with varying thickness
is di�erent from that of a disk with constant thickness,
in such a way that three di�erent stages of elastic-
plastic deformation occur. The numerical results of the
complete plastic state of a solid disk with exponentially
varying thickness have been obtained using von Mises
and Tresca criteria [12]. Eraslan carried out numerical
studies on the mechanical behavior of annular disks
with various thickness pro�les, including hyperbolic,
exponential and power forms [13]. In another work, he
studied the elastic-plastic deformation of rotating an-
nular disks of variable thickness with free, pressurized
and radially constrained boundary conditions [14].

Hojjati and Jafari studied the variational itera-
tion solution of the elastic behavior of rotating disks
with non-uniform thickness and density [15]. Hojjati
and Hassani employed the Variable Material Property
method (VMP) on analytical and numerical analyses of
rotating disks with variable thickness and density made
of elastic-linear hardening material [16]. Adomian's
Decomposition (ADM) and Homotopy Perturbation
Methods (HPM) have also been used by Hojjati and
Jafari for the solution of elastic [17] and elastic- linear
strain hardening [18] states of rotating annular disks
with variable thickness and density. Hojjati et al.
considered functionally graded rotating disks subjected
to thermo-mechanical loadings by Variable Material
Properties (VMP), Runge-Kutta's (RK) and Finite
Element (FE) methods [19]. Ekhteraei Toussi et al. [20]
worked on the elastic-plastic deformation analysis of a
rotating disk beyond its limit speed and demonstrated
the di�erence between the material models in the
prediction of rotating disk plastic failure. Jafari et
al. [21] presented classical and modern optimization
methods in minimum weight design of an elastic ro-
tating disk with variable thickness and density. They
used Karush-Kuhn-Tucker, Simulated Annealing (SA)
and Particle Swarm Methods (PSO) and found that
the performance of PSO and SA methods are simpler
and supply more 
exibility.

Semi-empirical methods are developed by Robin-
son [22] in order to easily �nd the burst speed by
knowing the ultimate tensile strength and the mean
hoop stress. According to Robinson, a criteria burst
occurs when the mean hoop stress on a disk section
becomes equal to the nominal tensile strength of the
material, determined from uniaxial tensile stress [22].
Recently, large deformation analysis of rotating disks
by Abaqus software [23], and theoretical analysis of
the elastic-plastic interface of rotating disks [24] was
undertaken by Hu. In his research, two types of
di�erential material disk were analyzed and the formula
for the large deformation analysis of a rotating disk was

derived. Finally, the bursting speeds of a rotating disk
were given out.

From experimental observations, it was found
that damage resulting from the plastic deformation in
a ductile metal is mainly due to the formation of micro-
voids [25]. Furthermore, accumulation of damage,
initiation of fracture as a result of the accumulation of
ductile plastic damage, and crack propagation, are the
three phases of the ductile failure of structures [25,26].
Ductile fracture refers to fractures where materials
experience large plastic deformation and exhibit high
ductility in the concerned region where structural
damage occurs [25,26-32]. For small and moderate
plasticity, the damage e�ect on the matrix strength
curve is negligible, and the material strength curve may
be considered equal to that proposed by classic contin-
uum mechanics. However, in the case of large plastic
deformations, the damage e�ect must be considered
in the prediction of material deterioration [25,26-32].
Therefore, in �nite element simulations of disks under
mechanical loading, it is essential to use the modi�ed
stress-strain curve.

Continuous e�orts have been made by researchers,
using various constitutive models, towards the �nite
element simulation of ductile fracture problems. The
micromechanical model that relies on the global me-
chanical response of some kind of microscopic repre-
sentative volume structure, such as models proposed
by Gurson [33] and Tvergaard [34], is one type of such
damage model. Another type of damage model, based
on cumulative strain damage, was used by Johnson
and Cook [35] and Wilkins et al. [36]. The Continuum
Damage Mechanics (CDM) model that includes ductile
damage under the yield condition to re
ect material
deterioration, as undertaken by Lemaitre [26], is a later
extension of this line of damage model.

The Finite Element Method Of Lines (FEMOL)
in fracture mechanics is presented in Hu and
Moran [37], in detail, in a set of examples such as edge-
crack plate, central-crack plate, and plate with cracks
emanating from a hole under tensile or under combi-
nation loads of tensile and bending. They have shown
that FEMOL is a useful method for studying fracture
mechanics problems [37]. Moreover, the Element-Free-
Galerkin (EFG) method for problems in 3D fracture is
presented by Sukumar et al. [38]. Fracture initiation
by ductile failure mechanisms in plates made of 4340
steel is studied by Narasimhan et al. [39] with a 3D
numerical method.

Experimental results have shown that four param-
eters are quite important in prediction of fracture ini-
tiation by ductile fracture models. These are, namely,
the damage rule, the softening e�ect, the Lode angle
(the third deviatoric stress invariant) parameter, and
the hydrostatic pressure dependence function [25,27-
32]. It is also observed that the fracture strain is
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loading path dependent, hence, the damage rule is em-
ployed to quantify the amount of damage accumulated
along the corresponding loading path [25,27-32]. The
softening e�ect becomes one of the most important
parameters when a ductile material is subjected to
large plastic deformation. As the plastic deformation
increases, micro cracks are initiated and propagated.
Hence, the softening e�ect must be considered using an
appropriate weakening function in the ductile fracture
model [25,27-32]. Hydrostatic pressure and Lode angle
parameter have signi�cant e�ects on the shape of the
fracture envelope in the principal stress space. The
Lode angle parameter modi�es the cross section of the
fracture envelope on the octahedral plane, based on
the current deviatoric stress state of the material. The
hydrostatic pressure parameter is important, since ma-
terials exhibit higher values of ductility when subjected
to compressive hydrostatic pressure [25]. For this
reason, at each step of the loading process, the shape
of the fracture envelope is improved by the hydrostatic
pressure parameter.

One of the recent damage plasticity models in the
CDM category, which includes these four e�ects, is the
one proposed by Xue and Wierzbicki (X-W) [25,27-32].
Xue et al. established the well-known damage plasticity
model that shows the signi�cance of the ductile damage
e�ect in the performance of rotating disks. If we intend
to design a rotating disk for practical purposes, we
must consider an appropriate damage model to obtain
a reasonably correct estimation of the limit load (i.e.
the limit angular velocity). In this study, it is assumed
that the maximum limit angular velocity of the disk
occurs at the incipient of the disk fracture.

In analysis of the elastic-plastic response of an
annular disk, the von Mises yield criterion and its asso-
ciated 
ow rule are used with the assumption of linear
hardening material behavior. In this paper, a damage
plasticity model proposed by Xue and Wierzbicki is
employed for semi-analytical and �nite element inves-
tigation of the plastic strain level and limit angular
velocity of a rotating disk subjected to mechanical
loading. In the semi-analytical method, the Prandtl-
Reuss relations and the method of successive elastic
solution are used to model the plastic deformation of
the rotating disk, and the Finite Di�erence Method
(FDM) is introduced to solve the governing equations.
The proposed damage plasticity model incorporates
pressure sensitivity and Lode angle dependence and
falls into the category of CDM theory. Deterioration of
material in the CDM theory is explained by an internal
variable known as damage. Plastic deformation that
contributes to damage is computed by integrating the
damage rate obtained at the current loading. To
determine the nonlinearity in damage accumulation, a
power law damage rule is assumed. The damage related
weakening factor is considered to describe material

deterioration. The material and damage parameters for
Aluminum 2024-T351 alloy are obtained from standard
experimental tests [25]. In this study, the disk is
assumed to have a varying thickness pro�le. The disk
is assumed to be radially constrained at the inner
surface and free of any traction at the outer surface.
The results obtained by the semi-analytical method,
with and without the damage e�ect, are obtained and
compared with the �nite element results.

2. Theoretical background

2.1. Governing equations of a rotating disk
In this research, the behavior of a variable thickness
rotating disk under isothermal conditions is studied, i.e.
no thermal stresses exist, and only stresses caused by
the rotation are considered. The cylindrical coordinate
system (r; �; z) is considered for the rotating disk. In
the steady state condition, and assuming that the
stresses do not vary over the thickness of the disk, the
force equilibrium in the radial direction results in the
following equation [2,16-17]:

d
dr

(h(r)r�r)� h(r)�� = �h(r)�!2r2; (1)

where !, � = �0, and h(r) are angular velocity,
density and thickness of the disk, respectively. With
the assumption of plane stress and small de
ection
condition, the strain-displacement relation is de�ned
as [2]:

"r =
du
dr
; "� =

u
r
: (2)

In this study, an elastic-linear hardening [2] model
is used to model the stress-strain curve of the disk
material, as shown in Figure 1:8<:" = �

E �h��
" = ��

E + 1
Et (� � ��) �i��

(3)

where �� and Et are the yield strength of the material

Figure 1. Idealized stress-strain curve for a linear
hardening material.
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and tangent modulus, respectively. By using Eq. (3),
the following relation for the equivalent stress, �e, that
occurs in the plastic region of the disk can be easily
obtained:

�e = ��(1 + �"peq); (4)

where "peq is the equivalent plastic strain and � =
EEt=[�0(E � Et)] indicates the hardening parame-
ter [14-18,40].

The disk is supposed to be symmetric, with
respect to the mid plane, and its thickness pro�le to
vary as a function of the radius (r) [6,16,17]:

h(r) = h�(r=b)�n; (5)

where n is the geometric parameter (0 � n � 1), h� is
the thickness of the disk at r = b, and b is the outer
radius of the disk. It is obvious that a uniform thickness
disk is simply obtained by setting n = 0. Figure 2
shows the geometry of a rotating disk with variable
thickness for di�erent values of geometric parameter,
n. The geometry and material properties of the disk
under study in this research are shown in Table 1.

2.2. Damage plasticity model
2.2.1. Formulation of X-W damage plasticity model
The results of experiments carried out on the behavior
of ductile materials reported in the literature show that
for better prediction of material behavior along the

Figure 2. Disk pro�le for di�erent geometric
parameter n.

loading path, an appropriate damage model must be
included in the classical plasticity theory [18-30]. The
main object of this study is to investigate the e�ects
of pressure and Lode angle parameter in the plasticity
model, with damage rule and softening e�ects that were
not accounted previously. The damage is assumed to
be isotropic and quanti�ed by the scalar parameter,
D. In the principal stress space, the hydrostatic
pressure (p), von Mises equivalent stress (�eq) and
Lode angle parameter (�L) are de�ned in terms of
�1, �2 and �3, i.e. the maximum, intermediate and
minimum principal stresses, and s1, s2 and s3, i.e.
the maximum, intermediate and minimum principal
deviatoric stresses, as follows [25,27-32]:

p = �1
3

(�1 + �2 + �3); (6)

�eq =
1p
2

p
(�1 � �2)2 + (�1 � �3)2 + (�2 � �3)2;

(7)

�L = tan�1
�

1p
3

�
2
S2 � S3

S1 � S3

�
� 1
�
: (8)

2.2.2. Damage rule
Using the ductile damage parameter, D, one can de�ne
the fracture criterion by setting the inequality, D �
Dcr, where Dcr is the material constant. The fracture
criterion is generally expressed in the non-dimensional
form of (D=Dcr) � 1. The damage is not necessarily
linear, with respect to the equivalent plastic strain,
and, hence, the power law function of damage potential
of the following form may be considered [27-32]:

D =
�
"peq="f

�m : (9)

For a known, "f , the incremental damage evolution law
can be derived:

dD = m
�"peq
"f

�m�1 d"peq
"f

: (10)

For an arbitrary plastic loading path, the damage is
obtained by the following integral:

D =
"cZ

0

dD � 1; (11)

where m is the material parameter, "f is the fracture
strain envelope de�ned on the stress state in the next

Table 1. Geometry and material properties of the rotating disk.

a
(m)

b
(m)

��
(kg/m3)

h(r) �(r)
E

(GPa)
Et

(GPa)
v ��

(MPa)
0.1 0.6 2800 h�(r=b)�n �� 70 35 0.3 300
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sections, "c is the critical strain at which fracture
occurs, and "peq is the accumulated equivalent plastic
strain. It is assumed that D = 0 for the intact material
and D = 1 for the complete loss of load carrying
capacity, i.e. fracture occurrence [27-32].

2.2.3. Material deterioration
When the damage occurs, due to the reduction of the
e�ective load carrying area, the material strength is
decreased [25,26]. This e�ect can be modeled with
the material weakening due to plastic damage that
is incorporated as a scalar function to the matrix
strength. On the basis of CDM theory, the constitutive
equation of the damaged material can be derived from
the modi�ed yield potential function:

' = �eq � w(D)�M : (12)

We include a particular form of weakening e�ect by the
weakening factor of (1�D�), i.e.:

�eq = (1�D�)�M ; (13)

where �M is the matrix strength and � is the weak-
ening factor that is assumed to be a non-negative
constant [25,27-32].

2.2.4. Cylindrical decomposition of damage
In the cylindrical decomposition method, pressure,
Lode angle, and plastic strain and its rate are used to
determine the damage rate. The pressure sensitivity
and Lode angle dependence of the fracture strains are
included by a pressure dependence function, �p(p), and
a Lode angle dependence function, ��(�), respectively.
The pressure and the Lode angle are orthogonal in the
principal stress space. It is supposed that pressure
sensitivity and Lode angle dependency on the fracture
strain are independent of each other. The fracture
envelope obtained by multiplication of pressure sensi-
tivity and the Lode dependency function is assumed to
take the following form:

"f = "f0�p(p)��(�); (14)

where "f0 is the reference fracture strain demonstrated
by zero mean stress tension.

The ratio of the mean stress to the equivalent
von Mises stress is de�ned as the stress triaxiality, i.e.
(�m=�eq). Materials exhibit higher values of ductility
when subjected to compressive hydrostatic pressure.
The damage resulting from plastic deformation in
a ductile material is mainly due to the growth of
microvoids. At high stress triaxiality, the void growth
is considerably higher than in the case of low stress
triaxiality [25,27-32], hence, the pressure e�ect on the
fracture strain is sometimes explained by the stress
triaxiality ratio. The pressure dependence function
for a (X-W) damage plasticity model is the result of

Bridgman uniaxial tension under pressure tests. In
the present study, a logarithmic form of the pressure
dependence function is de�ned as follows:

�p(p)

=

8<:(1�qLn(1�p=pLim)); p�plim[1�exp(1=q)]

0 p<plim[1�exp(1=q)] (15)

The �rst kind of Lode angle dependence function is:

��(�) =

8><>:
pX 2�X+1

1+(
p

3=
�2)X 0 � X � 0:5

pX 2�X+1
1+(
p

3=
�2)(1�X )
0:5 � X � 1

(16)

in which X is the relative ratio of the principal
deviatoric stresses de�ned as:

X =
S2 � S3

S1 � S3
; (17)

where q and pLim are material constants, p is the cur-
rent hydrostatic pressure in Eq.(15), and 
 is material
constant in Eq.(16) [27-32].

The fracture envelope in the space of plastic strain
and the mean stress is demonstrated in Figure 3,
in which the vertical and horizontal axes represent
components of the mean stress and the principal plastic
strain, respectively, the thick solid line shows the
pressure dependence of the material, and the thick dash

Figure 3. Three dimensional damage strain envelope,
mean stress - plastic strain space.
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line depicts the Lode angle dependence. The failure
strain is a decaying function with respect to increasing
mean stress. It could be shown from Eq. (15) that the
failure strain approaches to zero when the hydrostatic
pressure reaches the cut-o� pressure:

pcut-o� = plim(1� exp1=q); (18)

where plim is the limiting pressure beyond which the
material will not fail under the uniaxial tensile con-
dition, and pcut-o� is the cut-o� pressure above which
fracture occurs in hydrostatic tension. As shown in
Figure 3, the fracture locus is placed between the
limiting and cut-o� pressures. On an octahedral plane
of cut-o� pressure, the fracture locus shrinks to a single
point at the triad axis.

Each of the ductile damage models have several
constant parameters known as damage parameters.
These parameters are considered as constants for a
given material and are obtained from four standard
laboratory tests. The material chosen for this investiga-
tion is Aluminum 2024-T351 alloy. Damage parameters
for Aluminum 2024-T351 alloy are obtained from stan-
dard experimental tests from the research of Xue [25].
For the proposed set of constitutive damage plasticity
equations, six material parameters are used in total,
namely, the reference strain, "f0, parameters for the
pressure dependence function, q, pLim, the parameter
for the Lode angle dependence function, 
, the damage
accumulation exponent, m, and the parameter for the
weakening e�ect, �. Xue and Wierzbicki presented
a series of un-notched and notched round bars under
axial tension, cylinders under axial compression and
doubly-grooved plates (transversely plane strain) under
uniaxial tension tests, which cover a wide range of mean
stresses and Lode angles to calibrate these parameters
for Aluminum 2024-T351 alloy [25,31]. A material
parameter calibration process is then followed. Parallel
numerical studies by �nite element simulations for
these tests are conducted to evaluate the obtained
material parameter from experiments, and to improve
the estimated parameters using an iterative \trial-and-
error" method [25,31]. Damage characteristics for this
material are shown in Table 2.

2.3. Finite Di�erence Method (FDM)
The �nite di�erence method is an e�ective method
for numerical solution of di�erential equations. The
derivatives appearing in the di�erential equation and
boundary conditions are replaced by suitable �nite
di�erence approximations. The accuracy of the so-
lution depends on the chosen number of grid points.

Table 2. Damage characteristics of Aluminum 2024-T351
alloy.

"f0 PLim q 
 m � Reference

0.8 800 MPa 1.5 0.4 2 2 Xue [20]

One can increase the accuracy of the solution to some
desired degree by increasing the number of grid points.
However, it involves increasingly tedious mathematical
analysis. The basic idea of di�erence approximations
is a Taylor series expansion. To solve di�erential equa-
tions with speci�ed boundary conditions, the interval
[0; 1] is divided into N � 1 equal parts [41]. The �rst
derivative of a function, f(u), with respect to r, in
central di�erence form, can be written as:

du
dr

����
r=ri

=
ui+1 � ui�1

2�r
+O(h2): (19)

While the second derivative of a function, f(u), with
respect to r, is:

d2u
dr2

����
r=ri

=
ui+1 � 2ui + ui�1

�r2 +O(h2): (20)

Other �nite di�erence forms of derivatives for function
f(u) are available in [41,42]. For each grid point in
the interval [0; 1], the di�erential equation is written
in the �nite di�erence form. Also, the boundary
conditions are written in this scheme. Finally, the set
of linear algebraic equations can be obtained in the
following matrix expression that must be solved using
an appropriate method [41]:

A:U = B: (21)

3. Finite Element Method (FEM)

The elastic-plastic analysis of a rotating disk with
variable thickness is carried out by the �nite element
method using a nonlinear approach with quadratic
isoparametric elements in the Ansys suite of pro-
gram [43]. The nonlinear approach used in the �nite
element simulation consists of both the material and
the geometrical nonlinearities. The material is assumed
to have a bilinear strain hardening behavior that is
de�ned in the Ansys suite of program, according to
the stress-strain data curve shown in Figure 1, using
the TB, BISO command. When the damage e�ect is
considered, the material behavior of the disk becomes
nonlinear. At each loading step of the loading path,
the material property is changed proportional to the
corresponding damage variable of the previous loading
step, as de�ned in Eq. (13). Regarding geometric
nonlinearities, it is to be noted that the geometric
properties of the disk are linear when the thickness of
the disk along the radius is constant, i.e. n = 0. If the
thickness of the disk varies along the radius, according
to the geometric parameter, n, the geometrical model
of the disk becomes nonlinear.

The loading is considered to be due to the inertia
force caused by rotation. Due to symmetry in the
geometry and loading of the disk, it is desirable to
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Figure 4. Axisymmetric model of a variable thickness
rotating disk.

model just a sector of the disk in order to reduce both
the model size and the solution time. Hence, a two
dimensional axisymmetric �nite element model of the
variable thickness rotating disk is created, as shown
in Figure 4. The axisymmetric slice is o�set in the
x-direction to simulate a hole in the disk. Radially
constrained-free boundary conditions are applied at
the inner surface and the outer surface of the disk,
respectively.

The �nite element model of the disk presented
here consists of two-dimensional axisymmetric solid
elements, PLANE42, to model a cross-section of the
disk that implicitly simulates the behavior of its three-
dimensional axisymmetric structure. Also, a conver-
gence test is carried out to obtain the accurate number
of elements in the variable disk.

3.1. Implementation of damage evolution in
FEM

Numerical solution of governing equations for the
damage plasticity material model requires time dis-
cretization. In the present study, an explicit integration
procedure is used to convert the rate form of equations
to an incremental form. The numerical integration
scheme in FE simulations for the (X-W) model is shown
by multiple steps in this section. The value of the
ductile damage variable is calculated for each element
and deformation loading step. This model obeys a
damage rule and, by considering the softening e�ect
in the fracture model, the damage variable is included
in the plasticity 
ow for each loading step. Plastic
deformation that contributes to damage is calculated
by integrating the damage rate measured at the current
loading step.

The state of the nonlinear local problem with
variables, "peq;n, Dn and the stress state, �n, are
assumed to be known at time, tn, for all fracture
models. An increment in the strain, �", is applied in
the time interval. The task is to solve the stress tensor
and internal variables at time tn+1 = tn + �t.

Given: f"peq;n; Dn; �ng and �" = "n+1 � "n at time tn.
Calculate: f"peq;n+1; Dn+1; �n+1g at time tn+1 = tn +
�t.

Step 1: Material properties de�nition: Initially, and
before loading, for each element in the meshing of the
disk, the material property is de�ned (the number of
material properties is equal to the number of elements
in the meshing of the disk);

Step 2: Elastic predictor and plastic consistency
check: For FE simulation of the ductile fracture model
under study, a small value of angular velocity is the �rst
loading step, so that elastic deformation occurs in the
disk and, hence, no damage is included. The equivalent
von Mises stress of each element for the present loading
step is calculated as the trial stress, �trial

n+1. The value
of �trial

n+1 is substituted into the yield function, '. If:

'(�trial
n+1; Dn; �M ("peq;n)) � 0;

the deformation at this stage of loading is still in the
elastic range with no damage, hence:

�n+1 = �trial
n+1

"peq;n+1 = "peq;n = 0

Dn+1 = Dn = 0

9>>>>=>>>>; :

If ' > 0, the deformation is in the elastic-plastic state.
For these elements, a plastic correction step is used to
enforce the consistency condition and equivalent stress
corrections;

Step 3: Return mapping and update the variables: For
each element undergoing elastic-plastic deformation,
the incremental equivalent plastic strain, �"peq, is �rst
calculated. Two internal variables, "peq and D, are to
be updated for the next loading step.

In the (X-W) model, the softening e�ect and the
subsequent weakening factor is considered in the FE
simulation. For each loading step, the damage variable
and accumulated equivalent plastic strain and stress
are updated. The damage at time tn+1 is found based
on the damage rule, as de�ned in Eq. (8):

Dn+1 = Dn +m
�"peq;n
"f;n

�m�1 �"peq
"f;n

; (22)

where:

"f;n="f0

8>>>>>>>><>>>>>>>>:

[1� qLn(1� �hn=pLim)]
pX 2

n�Xn+1

1+
�p

3

 �2

�Xn
0 � Xn � 0:5

[1�qLn(1��hn=pLim)]
pX 2

n�Xn+1

1+
�p

3

 �2

�
(1�Xn)

0:5 � Xn � 1

(23)
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The update on the equivalent plastic strain is:

"peq;n+1 = "peq;n + �"peq: (24)

The stress update at time tn+1 is calculated based on
the updated weakening factor:

�n+1 = w(Dn+1)�n = (1�Dn+1)��n: (25)

All necessary �eld variables f�n+1; "peq;n+1; Dn+1g are
updated at time tn+1 = tn + �t.

Step 4: Termination criterion: For the proposed
fracture model, the new incremental strain is imposed
and Step 1 of the algorithm is restarted until the
fracture criterion is satis�ed for a given element, i.e.
the integral over D reaches the value of one. At
this time, the fracture occurs and the calculation is
terminated. Angular velocity relating to this situation
is considered the critical value for the rotating disk.

4. Semi-analytical method

4.1. Elastic solution
For the plane stress condition (i.e. �z = 0), the elastic
stress-displacement relations are found to be [2,16]:

�r =
E

1� v2

�
vu
r

+
du(r)
dr

�
; (26)

�� =
E

1� v2

�
u
r

+ v
du(r)
dr

�
; (27)

where u is the radial displacement, E is the modulus
of elasticity, �r and �� are radial and circumferential
components of the stress �eld, respectively, and v is the
Poisson's ratio. Substitution of Eqs. (5), (26), and (27)
into Eq. (1) yields the following governing di�erential
equation for the radial displacement:

d2

dr2u(r) +
(�n+ 1)

r
d
dr
u(r)� (nv + 1)

r2 u(r)

=
���!2r(1� v2)

E
: (28)

The above di�erential equation is valid for elastic
deformations of the variable thickness rotating disk. To
solve the di�erential equation by the �nite di�erence
method, derivatives of the displacement component in
the radial direction are replaced by Eqs. (19) and (20).
Finally, the �nite di�erence form of the di�erential
equation is expressed as follows:

ui+1 � 2ui + ui�1

�r2 +
(�n+ 1)

2ri
ui+1 � ui�1

�r

� (nv + 1)
r2
i

ui = ��0!2
i ri(1� v2)
E

: (29)

The radial direction of the disk (r 2 [a; b]) is divided
into N grid points (i = [1; N ]). For internal grid points
(i = [2; N�1]), the FD form of the di�erential equation
is written. In addition, the boundary condition of the
rotating disk at the inner and outer surfaces of the
disk must be expressed in FD form. The inner surface
of the disk is assumed to be attached to a rigid shaft
and, hence, the radial displacement at this surface is
assumed to be zero. The outer surface of the disk is
free of any traction and the radial stress is zero. These
boundary conditions are shown as follows:

i = 1; u(a) = 0! u1 = 0; (30)

i = N; �r(b) = 0;
uN � uN�1

�r
+
vuN
b

= 0: (31)

Finally, a system of linear algebraic equations is
obtained. By solving the system of equations, the
radial displacement of the rotating disk in the radial
direction for each grid point is calculated. Now, with
strain-displacement and stress-strain relations, one can
achieve values of stresses and strains in the rotating
disk under elastic limit angular velocity.

4.2. Plastic solution
If the angular velocity of the rotating disk is increased
beyond the critical value, some part of the disk will de-
form plastically. For the plastic deformation, relations
between stresses and plastic strains can be determined
according to the deformation theory in plasticity. The
equilibrium equation of the rotating disk for plastic
deformation is similar to the elastic state, as in Eq. (1).
The stress-strain relations for the plastic deformation
are:

"r =
1
E

[�r � v��] + "pr ; (32)

"� =
1
E

[�� � v�r] + "p�; (33)

where "r and "� are total strains and "pr and "p�
are total plastic strains in radial and circumferential
directions, respectively. To achieve the Navier form of
equilibrium equation, stress components from Eqs. (32)
and (33) are substituted into the equilibrium equation,
i.e. Eq. (1). Then, total strains are replaced with
Eq. (2), and, �nally, the Navier form of the equilibrium
equation of the rotating disk with plastic deformation
is obtained as follows:

(�n+ 1)

(
d
dr
u(r)� "pr(r) + v

�
u(r)
r
� "p�(r)

�)
+ r

(
d2

dr2u(r)� d
dr
"pr(r) + v

 
1
r
d
dr
u(r)
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� 1
r2u(r)� d

dr
"p�(r)

!)
�
(
u(r)
r
� "p�(r)

+ v
�
d
dr
u(r)�"pr(r)

�)
+
�0!2r2(1�v2)

E
=0:

(34)

Using relations in Section 2.3, the FD form of this
di�erential equation can be expressed as follows:

(�n+ 1)

(
1

2ri
ui+1 � ui�1

�r
� ("pr)i

+ v

 
ui
ri
� ("p�)i

!)
+ r

(
ui+1 � 2ui + ui�1

�r2

� 1
2

("pr)i+1 � ("pr)i�1

�r
+ v

 
1

2ri
ui+1 � ui�1

�r

� ui
r2
i
� 1

2
("p�)i+1 � ("p�)i�1

�r

!)
�
(
ui
ri
� ("p�)i

+ v
�

1
2
ui+1 � ui�1

�r
� ("pr)i

�)
+
�0!2

i r2
i (1� v2)
E

= 0: (35)

Similar to the elastic solution, the FD form of the equi-
librium equation for internal grid points (i = [2; N�1])
and the FD form of boundary conditions for i = 1; N
are written. Finally, the system of linear algebraic
equations is solved and the radial displacement of the
rotating disk in the radial direction is obtained for each
grid point. Now, one can achieve values of stresses
and strains in the rotating disk beyond the elastic limit
angular velocity. However, it should be noted that the
equation cannot be solved directly, since plastic strains
are path-dependent. Therefore, increments of plastic
strains must be integrated or added together along the
loading path to give the total plastic strains. To achieve
this goal, the incremental Prandtl-Reuss stress-strain
relations and the method of successive elastic solutions
are used.

4.2.1. Prandtl-Reuss equation
In the Prandtl-Reuss equation, increments of the plas-
tic strain are related to the value of the stress and the
uniaxial stress-strain curve. Prandtl and Reuss assume
that the plastic strain increment is proportional to the
instantaneous stress deviation [44,45]:

�"pij = �Sij ; (36)

where Sij is the deviatoric stress tensor and � is a
nonnegative constant, which may vary throughout the

loading history. These equations imply that the plastic
strain increments depend on the current stress state
and not on the stress increment required to reach this
state. One can de�ne e�ective plastic strain increment
and e�ective stress, respectively, as:

�"peq =
r

2
3

�"pij�"
p
ij ; �e =

r
2
3
SijSij : (37)

Using these de�nitions, � is determined as:

� =
3
2

�"peq
�e

; (38)

and the Prandtl-Reuss relations become [43,44]:

�"pij =
3
2

�"peq
�e

Sij : (39)

These equations are used together with the von Mises
yield criterion. Yielding begins when the e�ective
stress reaches the yield stress determined from a uniax-
ial tensile test. In this study, a linear strain hardening
stress-strain curve is selected for AL2024-T351.

4.2.2. The method of successive elastic solution
To solve the governing di�erential equation of the
rotating disk beyond elastic limit angular velocity, an
iterative process, known as the method of successive
elastic solution [45], is used. The method involves
breaking the loading path into a number of small incre-
ments. The rotating disk is assumed to be under the
plane stress loading condition. For each new increment
of loading, the solution is obtained as follows [45,46]:

Step 1: For each thickness, geometric parameter, n,
and the elastic limit angular velocity (!crit;e), at which
the plastic yielding begins, are calculated from the
elastic solution;

Step 2: Assuming that the �nal angular velocity is
!f , the loading path is divided into M steps and each
angular velocity increment is �! = (!f � !crit;e)=M .
The angular velocity at the jth loading step is found
to be:

!j = !crit;e + j�!: (40)

Step 3: Initial values of radial and tangential plastic
strain increments, i.e. �"pr;ij and �"p�;ij , respectively,
are assumed and added to the accumulated plastic
strains obtained from previous loading steps at any
increment of the radius. In the initial loading step,
the accumulated plastic strains are zero. The radial
and tangential plastic strains are:

"pr =
j�1X
k=0

�"pr;ik + �"pr;ik; (41)
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Figure 5. A schematic diagram of the iteration scheme without the damage e�ect.

"p� =
j�1X
k=0

�"p�;ik + �"p�;ik: (42)

Subscripts i and j refer to the point along the radius
and the loading step, respectively. The plastic strain
increment in the thickness direction is obtained from
an incompressibility condition, that is:

�"pz;ij = �(�"pr;ij + �"p�;ij): (43)

Step 4: The equivalent plastic strain increment is then
calculated as:

�"peq;ij =
2p
3

h
(�"pr;ij ��"p�;ij)

2

+ (�"p�;ij ��"pz;ij)
2 + (�"pr;ij ��"pz;ij)

2
i1=2

: (44)

Step 5: From the stress-strain curve, the e�ective
stress is calculated at each loading step for each
increment of radius:

�e;ij = �0(1 + �"peq;ij); � =
EEt

�0(E � Et) ; (45)

in which "peq;ij =
P

�"peq;ij .

Step 6: Based on the assumption made for values
of plastic strains and the angular velocity increment,
the inhomogeneous governing di�erential equation, i.e.
Eq. (34), is solved and the stress is calculated.

Step 7: Having found the value of stresses from Step 6,
and the equivalent plastic strain and stress from Steps
4 and 5, a new and improved approximation is obtained
for the latest increment of the plastic strains employing
Prandtl-Reuss relations:

�"p(new)
r;ij =

�"peq;ij
2�e;ij

(2�r;ij � ��;ij); (46)

�"p(new)
�;ij =

�"peq;ij
2�e;ij

(2��;ij � �r;ij): (47)

Step 8: The method is iterated from Step 4 until the
jth loading step converges. The convergence criteria of
the iteration number, L, in each loading step, can be

expressed in terms of the value of the maximum plastic
strain component as follows:

("pmax)L+1 � ("pmax)L
("pmax)L

� 10�5: (48)

Step 9: The loading step is advanced by one incre-
ment and the numerical procedure is repeated from
Step 2 [45,46]. A schematic diagram of the iteration
scheme without the damage e�ect is shown in Figure 5.

4.3. Implementation of damage evolution
equations in SAM

In order to apply the X-W damage plasticity model
to the semi-analytical method, the same concept pre-
sented in Section 3.1 may be used. The e�ect of
damage variable, D, in weakening function w(D) by the
weakening factor of (1 � D�) is applied to the plastic
solution. This weakening function is added to Step 5 of
Section 4.2.2. Hence, the value of the e�ective stress at
each loading step and for each increment of the radius
is corrected as follows:

�e;ij = W (Dj)�0(1 + �"peq;ij): (49)

For the angular velocities beyond the elastic limit, once
the converged value of the �rst increment of the loading
is reached, the damage variable for grid points in the
radial direction of the disk is calculated according to
Eq. (9). The new increment is then imposed, and the
algorithm for the method of successive elastic solution
is restarted and repeated until the fracture criterion
for a given point is satis�ed, i.e. the integral over the
damage variable reaches unity. At this time, fracture
occurs and calculation is terminated. Similar to
the �nite element method, the corresponding angular
velocity is considered to be the critical velocity for the
rotating disk. A schematic diagram of the iteration
scheme with the damage e�ect is shown in Figure 6.

5. Results and discussions

5.1. Elastic solution
The geometry and material properties of the disk under
study in this research are shown in Table 1. A detailed
analysis is presented and results of the non homogonous
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Figure 6. A schematic diagram of the iteration scheme with the damage e�ect.

Table 3. Convergence test for FDM with no. of grid
points.

Number of grid
points in FDM

Mises stress at
r = 0:1 (MPa)

N = 401 300.06
N = 301 300.05
N = 201 300.004
N = 101 299.53
N = 51 298.86

di�erential equation for the elastic rotating disk of
variable thickness are obtained. In order to estimate
the elastic limit of the angular velocity of a rotating
disk at which yielding begins, one has to consider
the boundary conditions. As mentioned earlier, the
annular disk is mounted on a rigid shaft, hence, the
boundary conditions become u(a) = 0 and �r(b) = 0.

The convergence of results obtained by the Finite
Di�erence Method (FDM), on the basis of the elastic
solution of von Mises stress at !crit;e = 495 rad/s for an
arbitrary geometric parameter, n = 0:2, for a various
number of grid points along the radius, is shown in
Table 3. It is shown that the optimum number of
grid points, considering the converged result and the
duration of calculation, is N = 401.

The FE simulations are carried out on the basis of
axisymmetry of the loading and boundary conditions.
A geometric model of the disk is made, as shown in
Figure 4, and the convergence test of FE simulations
is done in the same manner as that of the FDM.
The convergence of results obtained from the elastic
solution of von Mises stress at !crit;e = 495 rad/s for
an arbitrary geometric parameter, n = 0:2, is shown in
Table 4. As shown in this table, the optimum number
of nodes, considering the converged result and the
duration of calculation, is N = 7357. The example of
the mesh that is used for FE simulations of the annular
rotating disk with geometric parameter n = 0:2, is
shown in Figure 7, where h0 is the thickness at the
axis of the disk. The rotating disk is thin, and the
semi-analytical formulations are based on the plane

Table 4. Convergence test for FEM with no. of nodes.

Number of nodes
in FE mesh

Mises stress at
r = 0:1 (MPa)

N = 7353 300.015
N = 6485 300.01
N = 4671 299.9
N = 2034 298.02
N = 234 293.73
N = 102 289.52

Figure 7. Axisymmetric �nite element mesh of the
rotating disk.

stress assumption. The thickness of the disk is assumed
to be su�ciently small compared to its diameter, so
that the plane stress assumption is justi�ed. As seen
in the Navier form of elastic and plastic equilibrium
equations for annular disks with variable thickness in
semi-analytical methods in Eqs. (31) and (36), h0 is
not included in these equations. In the �nite element
simulation, h0 should be considered small enough, so
that the stress in the thickness direction of the disk
approaches zero and becomes negligibly small.

The elastic limit angular velocity for di�erent
values of geometric parameter, n, is shown in Table 5.
In this table, !crit;e is the elastic limit of the angular
velocity and r(�e)max is the radius of the disk with the
maximum value of the von Mises stress at !crit;e. The
von Mises stress at this angular velocity must be set
equal to the yield stress of the disk material and that
is the starting point for the yield state. The results
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Figure 8. Comparison of elastic solutions by semi-analytical and �nite element method with di�erent n at !crit;e: (a)
Radial displacement; (b) radial total strain; (c) circumferential total strain; and (d) von Mises stress.

Table 5. Elastic limit angular velocity and radius of the
disk with maximum von Mises stress for di�erent values of
n.

Geometric
parameter

n

!crit;e

(rad/s)

Radius with
maximum von Mises

stress (�e)max

n = 0 440 r(�e)max = 0:1
n = 0:2 495 r(�e)max = 0:1
n = 0:5 585 r(�e)max = 0:1
n = 0:8 655 r(�e)max = 0:27

for the radial displacement, total radial strain, total
circumferential strain and von Mises stress obtained
by the semi-analytical and �nite element methods are
shown in Figure 8. The results are obtained using
the elastic limit angular velocity, !crit;e, and di�erent
values of the geometric parameter, n.

As demonstrated in Figure 8, results obtained
by the two methods are in very good agreement. It
can be seen that the von Mises stress, �e, reaches its
maximum value at the inner surface of the disk, i.e.
at r = a for n = 0; 0:2; 0:5, and yielding begins from
this surface. However, for n = 0:8, the maximum

von Mises stress occurs at r = 0:27. It is observed
from Table 5 that as the geometric parameter, n,
increases, the value of the elastic limit angular velocity
increases. This means that by considering variable
thickness for the annular disk, the critical strain-stress
level is increased and plastic deformation is delayed.
The agreement observed between results obtained by
these two methods shows their ability to simulate
elastic deformation of a rotating disk in its general
form. The results of this section are used for the plastic
analysis.

5.2. Plastic solution
A numerical study of the plastic deformation of a
rotating annular disk with variable thickness, with
and without damage e�ect, is presented next. In
this study, the plane stress condition is considered
and the plastic strain in the thickness direction is not
assumed to be equal to zero ("pz 6= 0). The failure
load, i.e. the damage limit angular velocity of the
rotating disk, is not directly predicted by the Ansys
program, the common Prandtl-Reuss relations or the
method of successive elastic solution, since the failure
criterion is not included in the material properties.
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However, it would be possible to �nd the target speed
by employing an appropriate failure model. In this
paper, we use both plasticity and damage e�ects to
estimate the damage limit angular velocity (!crit;D) of
the rotating disk. According to the continuum damage
mechanics, the fracture initiates in the disk when the
value of the non-dimensional damage parameter, D,
becomes equal to unity.

First, results of the semi-analytical and �nite
element methods of the rotating annular disk for an
arbitrary geometric parameter, n = 0:2, at di�erent
angular velocities, with and without damage e�ects,
are obtained and compared. After validation of the
two proposed methods, a parametric study for di�erent
values of geometric parameter, n, is carried out. The
radial strain component has been adopted as the
convergence criterion in the successive elastic solution,
since it has the highest value among other strain
components, as shown earlier in the elastic solution.

Now, results of the disk with geometric parameter
n = 0:2 rotating at the plastic limit angular veloc-
ity (!crit;p) obtained by these two methods, without
damage e�ect, is compared. The plastic limit angular
velocity is de�ned as the speed at which the plastic
deformation is reached at the outer surface of the disk.
According to the classical theory of plasticity, at this
angular velocity, the plastic 
ow reaches the outer

surface of the disk and no elastic portion remains in
the disk to withstand the load and restrict the plastic

ow. Hence, at this angular velocity, plastic failure
occurs and the disk fails. However, in the case of
strain hardening material, and without considering the
damage e�ect, the �nite element program will continue
until an angular velocity at which it becomes unstable.
This angular velocity is indicated as !unstable. The
values of these angular velocities for di�erent geometric
parameters are shown in Table 6. The results obtained
for the radial displacement, radial and circumferential
plastic strains and the von Mises stress by semi-
analytical and �nite element methods are compared
in Figure 9. The reported results are based on the
plastic limit angular velocity, !crit;p, and the geometric
parameter, n = 0:2.

Table 6. Variation of !crit;p, !crit;D, !unstable and radius
of disk with Dmax for di�erent geometric parameters n.
Geometric
parameter

n

!crit;p

(rad/s)
!crit;D

(rad/s)
!unstable

(rad/s)

Radius
with
Dmax

n = 0 740 980 2100 rDmax =0:1
n = 0:2 800 1078 2980 rDmax =0:13
n = 0:5 830 1182 3220 rDmax =0:22
n = 0:8 890 1260 2800 rDmax =0:28

Figure 9. Comparison of plastic solution by semi-analytical and �nite element method, n = 0:2 at !crit;p without damage
e�ect: (a) Radial displacement; (b) radial plastic strain; (c) circumferential plastic strain; and (d) von Mises stress.
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Figure 10. Variation of ductile damage parameter versus
angular velocity of the rotating disk, n = 0:2.

As shown in Figure 9, these two methods can very
well describe the plastic behavior of the rotating disk
without the damage e�ect, and results are in very good
agreement. It is found that the radial strain is one of
the largest plastic strain components and the maximum
von Mises stress occurs at the inner surface of the disk
rotating at !crit;p for n = 0:2. In the following section,
the failure analysis of the rotating disk using these two
methods is presented. Variation of the ductile damage
parameter versus the angular velocity of the rotating
disk until fracture occurs is shown in Figure 10. The
two methods are found to be in very good agreement
in prediction of the damage parameter.

It is also observed from the �gure that at the
vicinity of !crit;p, the value of the damage parameter
is very small and the damage e�ect can be ignored.
However, beyond this limit, the value of the damage
parameter increases rapidly and �nally reaches one.
At this point, the disk cannot withstand any further
loading increment and failure occurs. As shown in
Figure 10, for a small value of loading increment (i.e.,
�! � 5 rad/s) at the �nal stage, the damage parameter
reaches one and, therefore, the disk ruptures. On
the other hand, in the X-W damage plasticity model,
the e�ect of applied load in the rotating disk is such
that the value of pcut-o� is approximately equal to
the mean stress at the vicinity of !crit;D, as shown
in Figure 4. At this point, the pressure dependence
function (�p(p)) from Eq. (16) falls below zero due
to its logarithmic de�nition, and the fracture strain,
"f , becomes zero. This means that the material
cannot e�ectively accommodate any further plastic
strain. This implies that the volumetric deformation
becomes dominant and the material shatters under
considerably high hydrostatic tensions. Although the
material chosen for the disk is mild, the brittle type
material fracture occurs in it and the disk shatters at
!crit;D. On an octahedral plane of cut-o� pressure,

the fracture locus shrinks to a single point at the triad
axis.

Since the disk is made of Aluminum 2024-T351,
the damage material constant is obtained experimen-
tally, i.e. the fracture test [25,27-32]. It is observed
from Table 2 that q = 1:5 and plim = 800 MPa, and
the value of pcut-o� for the rotating disk is found to be:

pcut-o� =plim(1�e1=q)=�1:94plim =�758 MPa: (50)

Knowing that the mean stress, �m, is the negative value
of the pressure, p, the damage occurs for the following
range of values of the mean stress:

�800 MPa � �m � 758 MPa: (51)

In the following section, semi-analytical and �nite
element investigations considering the damage e�ect
are carried out. Results obtained by these methods for
radial displacement, radial and circumferential plastic
strain, and von Mises stress distribution are presented
in Figure 11. The results are obtained on the basis
of the damage limit angular velocity, !crit;D, and the
geometric parameter, n = 0:2. It is observed in these
�gures that the maximum e�ect of damage occurs
in radii with the maximum value of ductile damage
parameter. The mean stress level for the disk under
study with di�erent geometric parameters, i.e. n at
!crit;D, are shown in Figure 12. According to Figure 3,
the value of the mean stress at the e�ected radius with
D = 1 is in the vicinity of �m = �pcut-o� = 758 MPa.

Variation of the ductile damage parameter with
the radius of disk at !crit;D for geometric parameter
n = 0:2, obtained by semi-analytical and �nite element
methods, is shown in Figure 13. It is expected
from the elastic solution that the inner surface of the
disk with the maximum value of von Mises stress at
!crit;e will have the highest value of ductile damage
parameter. However, it can be found from Figure 13
and Table 6 that the point with the highest value of
damage parameter is at some position inside the disk,
i.e. rDmax = 0:13.

The variation of Lode angle and pressure depen-
dence function along the radius of the disk for an
arbitrary geometric parameter, n = 0:2 at !crit;D, is
shown in Figure 14. According to results shown in
Table 6, the radius of the disk with highest value of
damage parameter (D = 1) for n = 0:2 is at r = 0:13.
As shown in Figure 14, at this radius, the value of the
Lode angle parameter is minimized and the value of
the pressure dependence parameter is also near to zero.
Certainly, at this radius, the value of the fracture strain
approaches zero. In other radii, the value of the Lode
angle is high, so, the e�ect of the pressure dependence
function is reduced.

Despite di�culties experienced in application of
the algorithm of the damage plasticity model in the
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Figure 11. Comparison of results for a rotating annular disk by semi-analytical and FE methods with damage e�ect,
n = 0:2 at !crit;D: (a) Radial displacement; (b) radial plastic strain; (c) circumferential plastic strain; and (d) von Mises
stress.

Figure 12. Variation of mean stress along the radius of
the disk with damage e�ect for a di�erent geometric
parameter n at !crit;D.

semi-analytical and �nite element methods, results
obtained by the two methods show an excellent degree
of agreement. In the semi-analytical method, the
load is applied in small incremental values, requiring
more computational e�ort and longer solution timing
in comparison with the �nite element method. In
the next section, a parametric study is made using

Figure 13. Variations of damage variable with radius of
disk at !crit;D, n = 0:2.

the veri�ed �nite element method, with and without
damage e�ect.

5.3. Parametric study
The main object of this section is to carry out a
parametric study on the e�ects of the geometric pa-
rameter, n, with and without the damage e�ect, on
the behavior of the rotating disk. Variation of radial
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Figure 14. Variation of Lode angle-pressure dependence
function along the radius of the disk for geometric
parameter n = 0:2 at !crit;D.

Figure 15. Variation of radial displacement of a rotating
disk with n at !crit;D with and without damage e�ect.

displacement, with geometric parameter, n, with and
without the damage e�ect, is shown in Figure 15.
Results obtained for the radial, circumferential and
through the thickness plastic strain for di�erent values
of n, are shown in Figure 16. Finally, the variation of
von Mises stress with the geometric parameter, with
and without the damage e�ect, is shown in Figure 17.
The reported results are based on using the damage
limit angular velocity, !crit;D, as indicated in Table 6
for di�erent geometric parameters, n.

The radial position at which the e�ect of the
damage parameter is the highest (i.e. D = 1), for
di�erent values of the geometric parameter, n, is shown
in Table 6. These results are veri�ed by both semi-
analytical and �nite element methods. It is observed
from Figure 8(d) that the maximum value of von Mises
stress in the elastic limit occurs at the inner radius
of the disk for n = 0; 0:2; 0:5. It is expected that

for these geometric parameters, the highest value of
the damage parameter occurs at the inner radius. For
other geometric parameters, i.e. n = 0:8, this location
is shifted towards the center of the disk. When the
damage e�ect is considered, the strength matrix for the
material of the disk is corrected at each loading step by
the damage variable obtained in the previous loading
step with a weakening function of W (D) = (1 � D�)
as de�ned in Eq. (13). It is observed from Eq. (9)
that the value of the damage variable is directly related
to three parameters, namely, the accumulated plastic
strain, the pressure dependence function and the Lode
angle dependence function. The combined e�ect of
these parameters causes the disk to become more
nonlinear or the geometric parameter, n, to increase,
and the position of the maximum value of the damage
parameter (D = 1) shift towards the inner portion of
the disk.

When the damage e�ect is considered, the von
Mises stress at every a�ected point of the disk is
decreased and, correspondingly, the value of the plastic
strain is increased. It may generally be concluded
that as the geometric parameter increases, the e�ect
of ductile damage on plastic strains becomes more
predominant. From Figure 17, it can be seen that
in simulations with and without damage e�ects, as
the geometric parameter n increases, i.e. the rate of
change of the thickness increases, the stress level in the
rotating disk at the inner surface of the disk decreases.
It is also found that the value of plastic strains with the
damage e�ect at !crit;D asymptotically approaches the
value of the plastic strain corresponding to !unstable
of the disk without damage e�ect. For strain linear
hardening material and without considering the dam-
age e�ect, the �nite element program will continue till
an angular velocity at which the disk becomes unstable.
This angular velocity is indicated as !unstable, which is
found to be very high for working environments and
an inaccurate prediction of the failure angular velocity.
Hence, !unstable is not a realistic estimation of the
working angular velocity of the rotating disk.

!crit;D is the damage limit angular velocity of
the rotating disk that can be estimated using an
appropriate failure model that considers both plasticity
and damage e�ects. According to Table 6, the value of
this limit angular velocity is much less than !unstable.
However, the maximum value of the plastic strain
at this angular velocity is high and asymptotically
approaches the value of the plastic strain corresponding
to !unstable of the disk without damage e�ect. This
e�ect is shown in Figure 16 for di�erent geometric
parameter, n. Therefore, it may be concluded that
by considering the damage e�ect in the simulation, one
can carry out more accurate analysis and obtain more
realistic estimation of the working angular velocity of
the rotating disk.
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Figure 16. Variations of radial, circumferential and through thickness strains of a rotating disk at !crit;D with and
without damage e�ect: (a) n = 0; (b) n = 0:2; (c) n = 0:5; and (d) n = 0:8.

Figure 17. von Mises stress distribution of a rotating
disk with n at !crit;D with and without damage e�ect.

In Figure 18, variations of the ductile damage
parameter versus the angular velocity of the rotating
disk for di�erent geometric parameter, n, is shown.
The trend of variations of the damage parameter
for di�erent geometric parameters is almost similar.
It is also observed that as the geometric parameter
increases. the value of !crit;D increases.

Figure 18. Variation of the ductile damage parameter
versus angular velocity of a rotating disk; n is a parameter.

6. Conclusions

Semi-analytical and �nite element calculations for the
elastic-plastic analysis of a rotating annular disk of
variable thickness, with and without damage e�ects,
are presented. The (X-W) damage plasticity model
is introduced in both methods to obtain variations
of plastic strains and the damage limit angular ve-
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locity for di�erent values of the geometric parameter,
n. The proposed damage plasticity model includes
material deterioration, pressure sensitivity, Lode angle
dependence and the nonlinear damage evolution law.
The numerical implementation of the damage evolution
equation is simple, with good physical understanding.
The ductile damage parameter is obtained from the
accumulation of plastic strains in the rotating disk and
is a�ected by the geometric parameter and mechanical
loading. The plastic strains and von Mises stress
distribution are found to vary proportional to the
ductile damage parameter along the radius of the disk.
However, for angular velocities in the vicinity of !crit;p,
values of the ductile damage parameter are small and
the damage e�ect can be ignored. It is also noted
that for each geometric parameter in the vicinity of
the target angular velocity, the plastic strain increases
rapidly for any incremental values of the order of �! �
5 rad/s, and the damage variable rapidly reaches one.
Due to this e�ect, the rotating disk in the vicinity of
the damage limit angular velocity shatters suddenly.
According to X-W damage plasticity model, in the
vicinity of the damage angular velocity, the value of
the cut-o� pressure becomes approximately equal to
the mean stress, and the fracture envelope approaches
a point in the mean stress-plastic strain space. The
radius with the maximum value of ductile damage
parameter is found to be at some position inside the
disk for di�erent values of n = 0:2; 0:5; 0:8. However,
for n = 0, the position of the point is at the inner
surface of the disk. Moreover, it is found that the
damage has a reducing e�ect on the von Mises stress
and an increasing e�ect on the plastic strains in radii
with the maximum value of ductile damage parameter.
The results of the two methods have found to be
in excellent agreement for both cases, i.e. with and
without the damage e�ect. It can be concluded that the
proposed semi-analytical and �nite element methods
can successfully handle the elastic-plastic problem of
a rotating disk under mechanical loading, and could
be extended to analyze more complicated problems
of combined loading cases, such as thermo-mechanical
loadings of gears, turbine rotors, 
ywheels and other
mechanical components.
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