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Abstract. In this paper, for the Multiple Attribute Group Decision Making (MAGDM)
problems where attribute values are the Interval-Valued Intuitionistic Fuzzy Numbers
(IVIFNs), the group decision making method based on some generalized Einstein aggre-
gation operators was developed. Firstly, Interval-Valued Intuitionistic Fuzzy Generalized
Einstein Weighted Averaging (IVIFGEWA) operator, Interval-Valued Intuitionistic Fuzzy
Generalized Einstein Ordered Weighted Averaging (IVIFGEOWA) operator, and Interval-
Valued Intuitionistic Fuzzy Generalized Einstein Hybrid Weighted Averaging (IVIFGE-
HWA) operator were proposed. Some general properties of these operators such as
idempotency, commutativity, monotonicity, and boundedness, were discussed, and some
special cases in these operators were analyzed. Furthermore, the method for MAGDM
problems based on these operators was developed, and the operational processes were
illustrated in detail. Finally, an illustrative example was given to show the decision steps
of the proposed method and to demonstrate their e�ectiveness.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Fuzzy theory is an important tool to process fuzzy
information. Zadeh [1] �rstly proposed the fuzzy set
theory, then Atanassov [2,3] proposed the Intuition-
istic Fuzzy Set (IFS) by adding a non-membership
function. Furthermore, Atanassov and Gargov [4],
and Atanassov [5] proposed the Interval-Valued Intu-
itionistic Fuzzy Set (IVIFS) in which the membership
and non-membership degrees were extended to interval
numbers. Chen et al. [6] proposed a fuzzy ranking
method for Interval-Valued Intuitionistic Fuzzy Num-
bers (IVIFNs) based on likelihood-based comparison
relations, and then presented a new multi-attribute de-
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cision making method based on the proposed interval-
valued intuitionistic fuzzy weighted average operator.
Gomathi Nayagam et al. [7] proposed a new accuracy
function for IVIFNs. Liu et al. [8] proposed the
interval-valued intuitionistic fuzzy entropy. Wei et
al. [9] proposed an entropy measure for IVIFS, which
generalizes three entropy measures of intuitionistic
fuzzy sets de�ned independently by Szmidt, Wang, and
Huang. Zhang and Yu [10] constructed an optimiza-
tion model to determine the attribute weights based
on cross-entropy for multi-attribute decision making
problems with interval-valued intuitionistic fuzzy in-
formation; then, an extended TOPSIS method was
proposed to rank all the alternatives. Wang et al. [11]
de�ned a new score function for the IVIFNs based
on the prospect value functions. Xu and Yager [12]
developed a new similarity measure between IVIFSs
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and utilized it to solve the group decision making
problems where attribute values are interval-valued
intuitionistic fuzzy numbers. Wan and Dong [13]
proposed a possibility degree decision method for
multi-attribute group decision making with interval-
valued intuitionistic fuzzy information. Wang et al. [14]
proposed a decision approach based on interval belief
degrees and fuzzy evidential reasoning for multi-criteria
decision problems in which the criteria weights are
interval numbers and criteria values are triangular
intuitionistic fuzzy numbers. Wang and Zhang [15]
proposed a new decision-making method based on
the evidential reasoning algorithms for multicriteria
fuzzy decision-making problems in which the criteria's
weight is not completely certain, and the criteria values
are Atanassov's Intuitionistic Fuzzy Sets (A-IFSs).
The above-mentioned researchers have investigated
the basic methods for ranking the intuitionistic fuzzy
numbers or some extensions of them based on some
extended theory such as entropy, possibility degree,
similarity, etc. However, these methods can only give
the ranking of the alternatives with intuitionistic fuzzy
information, and cannot give the overall evaluation
values of each alternative.

The information aggregation operators, based
on IVIFS, are the important decision making tools
which can give the overall evaluation values of each
alternative, and then rank the alternatives based on
these overall values. The aggregation operators are
receiving more and more attentions [16-31]. Xu [23],
and Xu and Chen [24,25] proposed some aggregation
operators for IVIFSs such as the Interval Intuitionistic
Fuzzy Weighted Aggregation operator (IIFWA), the
Interval Intuitionistic Fuzzy Ordered Weighted Ag-
gregation operator (IIFOWA), Interval Intuitionistic
Fuzzy Hybrid Aggregation operator (IIFHA), the Inter-
val Intuitionistic Fuzzy Weighted Geometric operator
(IIFWG), the Interval Intuitionistic Fuzzy Ordered
Weighted Geometric operator (IIFOWG), and the In-
terval Intuitionistic Fuzzy Hybrid Geometric operator
(IIFHG). Furthermore, some properties of these oper-
ators were investigated. Wei and Yi [26] developed an
Induced Interval Intuitionistic Fuzzy Ordered Weighted
Geometric operator (I-IIFOWG) by adding the induced
parameters. Yu et al. [27] proposed the Interval-
Valued Intuitionistic Fuzzy Prioritized Weighted Av-
erage (IVIFPWA) operator and the Interval-Valued
Intuitionistic Fuzzy Prioritized Weighted Geometric
(IVIFPWG) operator according to the priority of the
di�erent attributes, and studied some of their desirable
properties. Furthermore, a decision making approach
based on these operators is given to solve the MADM
problems in which attribute values take the form of
interval-valued intuitionistic fuzzy numbers. Zhao [28]
proposed generalized interval intuitionistic fuzzy aggre-
gation operators, including arithmetic weighted averag-

ing operator, ordered weighted averaging operator, and
hybrid weighted averaging operator, which extended
the generalized aggregation operators to the environ-
ment in which the attribute values are interval-valued
intuitionistic fuzzy sets. The generalized aggregation
operators are a generalization of arithmetic aggregation
operators and geometric aggregation operators. Wang
et al. [29,30] de�ned intuitionistic interval numbers,
and proposed intuitionistic interval weighted arith-
metic averaging operator, intuitionistic interval ordered
weighted averaging operator, and intuitionistic interval
heavy averaging operator, etc. Wang et al. [31] de�ned
the Normal Intuitionistic Fuzzy Numbers (NIFNs),
and proposed some normal intuitionistic fuzzy aggrega-
tion operators, including Normal Intuitionistic Fuzzy-
Induced Generalized Ordered Weighted Averaging op-
erator (NIFIGOWA), etc.

All the above aggregation operators are based on
the algebraic operational rules of IVIFNs, and the keys
of the algebraic operations are Algebraic product and
Algebraic sum, which are one type of operations that
can be chosen to model the intersection and union
of IVIFNs. In general, a general T -norm and T -
conorm can be used to model the intersection and
union of IVIFNs [32,33]. Wang and Liu [34] proposed
the intuitionistic fuzzy Einstein aggregation operators
based on Einstein operations which meet the typical
T -norm and T -conorm and have the same smooth
approximations as the algebraic operators such as the
Intuitionistic Fuzzy Einstein Weighted Geometric op-
erator (IFEWG) and the Intuitionistic Fuzzy Einstein
Ordered Weighted Geometric operator (IFEOWG),
and established some general properties of these oper-
ators such as idempotency, commutativity, and mono-
tonicity. Wang and Liu [35] proposed the Intuitionistic
Fuzzy Einstein Weighted Averaging operator (IFEWA)
and the Intuitionistic Fuzzy Einstein Ordered Weighted
Averaging operator (IFEOWA), and studied various
properties of these operators and analyzed the relations
between the existing intuitionistic fuzzy aggregation
operators and them. Maris and Iliadis [36] further
explained the advantages of Einstein operations by
using some T -norms to unify the risk indices and to
produce a uni�ed means of risk measure. The algebraic
T -norm estimated the risky areas under average rainfall
conditions, and the Einstein T -norm o�ered a good
approach for an overall evaluation. The computer
system has proven its ability to work more e�ectively
compared to the older methods.

Because the interval-valued intuitionistic fuzzy
numbers are easier to express the fuzzy decision
information and Einstein operations have the good
smooth approximations, and the generalized aggrega-
tion operators are a generalization of most aggregation
operators such as arithmetic aggregation operators and
geometric aggregation operators, how to extend the
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Einstein operations to aggregate the interval-valued
intuitionistic fuzzy information based on the gener-
alized aggregation operators is a meaningful works,
which is also the focus of this paper. In the following,
we will investigate interval-valued intuitionistic gener-
alized Einstein aggregation operators which combine
Einstein aggregation operators with the generalized
aggregation operators based on interval-valued intu-
itionistic fuzzy information in order to generalize the
existing aggregation operators.

In order to do so, the remainder of this paper
is shown as follows. In Section 2, we brie
y review
some basic concepts of interval-valued intuitionistic
fuzzy sets, generalized aggregation operators, and Ein-
stein operations. In Section 3, we establish Einstein
operations of IVIFNs and their characteristics, fur-
thermore, develop some generalized Einstein aggre-
gation operators such as Interval-Valued Intuitionis-
tic Fuzzy Generalized Einstein Weighted Averaging
(IVIFGEWA) operator, Interval-Valued Intuitionistic
Fuzzy Generalized Einstein Ordered Weighted Averag-
ing (IVIFGEOWA) operator, and Interval-Valued Intu-
itionistic Fuzzy Generalized Einstein Hybrid Averaging
(IVIFGEHA) operator. We also study some desirable
properties of them such as idempotency, commutativ-
ity, monotonicity and boundedness and some special
cases of them. In Section 4, based on the operators
introduced in Section 3, we propose a decision making
method for multiple attribute group decision making
problems with interval-valued intuitionistic fuzzy infor-
mation. In Section 5, we give an example to illustrate
the application of proposed method, and compare the
developed methods with the existing methods. In
Section 6, we conclude the paper.

2. Preliminaries

2.1. Interval-valued intuitionistic fuzzy set
De�nition 1 [2]. If X = fx1; x2; � � � ; xng is a
universe of discourse, then an Intuitionistic Fuzzy Set
(IFS) A in X is given by:

A = f< x; uA(x); vA(x) > x 2 Xg; (1)

where uA : X ! [0; 1] and vA : X ! [0; 1], on condition
that 0 � uA(x) + vA(x) � 1, 8x 2 X. The numbers
uA(x) and vA(x) represent the membership degree and
non-membership degree of the element x to the set A,
respectively.

For each IFS A in X, if �(x) = 1�uA(x)�vA(x),
8x 2 X, then �(x) is called the degree of indeterminacy
of x to the set A [2,3]. It is obvious that 0 � �(x) � 1,
8x 2 X.

To give element x, the pair (uA(x); vA(x)) is
called an Intuitionistic Fuzzy Value (IFV) [37] which
for convenience can be denoted as ~a = (u~a; v~a) such
that u~a 2 [0; 1], v~a 2 [0; 1] and 0 � u~a + v~a � 1.

Atanassov and Gargov [4] further extended the
intuitionistic fuzzy set to the Interval-Valued Intu-
itionistic Fuzzy Set (IVIFS) in which membership and
non-membership functions are expressed by interval
numbers.

De�nition 2 [3,5]. Let X = fx1; x2; � � � ; xng be a
universe of discourse, then an IVIFS ~A in X is given
by:

~A = f< x; ~u ~A(x); ~v ~A(x) > x 2 Xg ; (2)

where ~u ~A(x) � [0; 1] and ~v ~A(x) � [0; 1] are inter-
val numbers, on condition that 0 � sup(~u ~A(x)) +
sup(~v ~A(x)) � 1, 8x 2 X. The numbers ~u ~A(x)
and ~v ~A(x) represent the membership degree and non-
membership degree of the element x to the set ~A,
respectively. For convenience, if ~u ~A(xi) = [a; b] and
~v ~A(xi) = [c; d], then ~a = ([a; b]; [c; d]) is called an
Interval-Valued Intuitionistic Fuzzy Number (IVIFN).

De�nition 3 [6]. If ~a = ([a; b]; [c; d]) be an IVIFN, a
score function S of the IVIFN ~a can be represented as
follows:

S(~a) =
a+ b� c� d

2
: (3)

Obviously, S(~a) 2 [�1; 1].

De�nition 4 [6]. Let ~a = ([a; b]; [c; d]) be an IVIFN,
then an accuracy function H of the IVIFN ~a can be
represented as follows:

H(~a) =
a+ b+ c+ d

2
: (4)

De�nition 5 [6]. If ~a1 = ([a1; b1]; [c1; d1]) and ~a2 =
([a2; b2]; [c2; d2]) are any two IVIFNs, then:

1. If S(~a1) > S(~a2), then, ~a1 > ~a2;
2. If S(~a1) = S(~a2), then:

If L(~a1) > L(~a2), then ~a1 > ~a2;
If L(~a1) = L(~a2), then ~a1 = ~a2.

2.2. GHWA operator
De�nition 6 [28]. A GWA operator of dimension n is a
mapping GWA: (R+)n ! R+. Such that:

GWA(a1; a2; � � � ; an) =

0@ nX
j=1

wja�j

1A1=�

; (5)

where w = (w1; w2; � � � ; wn)T is a weight vector of
(a1; a2; � � � ; an), satisfying wj 2 [0; 1] (j = 1; 2; � � � ; n)
and

Pn
j=1 wj = 1. � is a parameter such that � 2

(0;+1), and R+ is the set of all nonnegative real
numbers.
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De�nition 7 [28]. A GOWA operator of dimension
n is a mapping GOWA: (R+)n ! R+, such that:

GOWA(a1; a2; � � � ; an) =

0@ nX
j=1

!jb�j

1A1=�

; (6)

where ! = (!1; !2; � � � ; !n)T is a weight vector which
is correlative with GOWA, satisfying !j 2 [0; 1] (j =
1; 2; � � � ; n) and

Pn
j=1 !j = 1; bj is the jth largest

among real numbers ak(k = 1; 2; � � � ; n). � is a
parameter, such that � 2 (0;+1), and R+ is the set
of all nonnegative real numbers.

De�nition 8. A GHWA operator of dimension n is
a mapping GHWA: (R+)n ! R+, such that:

GHWA(a1; a2; � � � ; an) =

0@ nX
j=1

!jb�j

1A1=�

; (7)

where ! = (!1; !2; � � � ; !n)T is a weight vector which
is correlative with GOWA, satisfying !j 2 [0; 1](j =
1; 2; � � � ; n) and

Pn
j=1 !j = 1; bj is the jth largest

among real numbers (nwkak)(k = 1; 2; � � � ; n); w =
(w1; w2; � � � ; wn)T is a weight vector of (a1; a2; � � � ; an),
satisfying wk 2 [0; 1](k = 1; 2; � � � ; n) and

Pn
k=1 wk =

1. � is a parameter, such that � 2 (0;+1), and R+ is
the set of all nonnegative real numbers.

2.3. Einstein operators
The t-operators are intersection and union operators
in fuzzy set theory which are composed of T -norm
(T ) and T -conorm (T �), respectively [38]. Although
they are originated from the �eld of statistical metric
spaces, they also have important applications in the
fuzzy inference and fuzzy decision making.

Based on a T -norm and T -conorm, a generalized
union and a generalized intersection of intuitionis-
tic fuzzy sets were introduced by Deschrijver and
Kerre [39].

De�nition 9 [39]. Let A and B be any two intu-
itionistic fuzzy sets, then the generalized intersection
and union are de�ned as follows:

A \T;T� B = f < x; T (uA(x); uB(x));

T �(vA(x); vB(x)) > x 2 Xg; (8)

A [T;T� B = f < x; T �(uA(x); uB(x));

T (vA(x); vB(x)) > x 2 Xg; (9)

where T denotes a T -norm and T � a T -conorm.
For instance, the algebraic product ~a1 
 ~a2 and

the algebraic sum ~a1�~a2 on two IVIFNs ~a1 and ~a2 can

be obtained by de�ning T -norm and T -conorm. When
T (x; y) = xy and T �
 (x; y) = x+ y�xy, we can obtain:

~a1 � ~a2 =([a1 + a2 � a1a2; b1 + b2 � b1b2];

[c1c2; d1d2]); (10)

~a1 
 ~a2 =([a1a2; b1b2]; [c1 + c2 � c1c2;
d1 + d2 � d1d2]); (11)

n~a1 = ([1� (1� a1)n; 1� (1� b1)n]; [cn1 ; d
n
1 ])

n > 0; (12)

~an1 = ([an1 ; b
n
1 ]; [1� (1� c1)n; 1� (1� c1)n])

n > 0: (13)

Obviously, the above operational laws are the same as
those given by Atanassov [5].

Furthermore, based on the T -norm and T -
conorm, Einstein operations are de�ned as follows [40]:

T (x; y) =
xy

1 + (1� x)(1� y)
; (14)

T �
 (x; y) =
x+ y
1 + xy

; (15)

where T denotes a T -norm and T � a T -conorm.
Wang and Liu [34] de�ned the Einstein opera-

tional rules of IFVs as shown in the following.
Let ~a1 = (a1; b1) and ~a2 = (a2; b2) be two IFVs,

then the operational rules based on Einstein T -norm
and T -conorm are de�ned as follows:

~a1 �E ~a2 =
�
a1 + a2

1 + a1a2
;

b1b2
1 + (1� b1)(1� b2)

�
; (16)

~a1 
E ~a2 =
�

a1a2

(1 + (1� a1)(1� a2)
;
b1 + b2
1 + b1b2

�
; (17)

n~a1 =
�

(1 + a1)n � (1� a1)n

(1 + a1)n + (1� a1)n
;

2bn1
(2� b1)n + bn1

�
n > 0; (18)

~an1 =
�

2an1
(2� a1)n + an1

;
(1 + b1)n � (1� b1)n

(1 + b1)n + (1� b1)n

�
n > 0: (19)

3. Einstein operations of IVIFNs

3.1. The operational rules based on Einstein
T -norm and T -conorm

In order to establish Einstein operation rules of IV-
IFNs, �rstly, we can give the following de�nitions.
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De�nition 10. Let ~a1 = ([a1; b1]; [c1; d1]) and ~a2 =
([a2; b2]; [c2; d2]) be two IVIFNs, then, the generalized
intersection and union are de�ned as follows:

~a1 
T;T� ~a2 = ([T (a1; a2); T (b1; b2)];

[T �(c1; c2); T �(d1; d2)]); (20)

~a1 �T�;T ~a2 = ([T �(a1; a2); T �(b1; b2];

[T (c1; c2); T (d1; d2)]): (21)

Based on De�nition 10, Einstein T -norm and T -
conorm, we can establish the Einstein operational rules
for two IVIFNs, respectively.

Let ~a1 = ([a1; b1], [c1; d1]) and ~a2 = ([a2; b2],
[c2; d2]) be two IVIFNs, then the operational rules
based on Einstein T -norm and T -conorm are de�ned
as follows:

~a1 �E ~a2 =

 �
a1 + a2

1 + a1a2
;
b1 + b2
1 + b1b2

�
;

"
c1c2

1 + (1� c1)(1� c2)
;

d1d2

1 + (1� d1)(1� d2)

#!
; (22)

~a1 
E ~a2 =

 "
a1a2

1 + (1� a1)(1� a2)
;

b1b2
1 + (1� b1)(1� b2)

#
;

�
c1 + c2
1 + c1c2

;
d1 + d2

1 + d1d2

�!
; (23)

n~a1 =

 "
(1 + a1)n � (1� a1)n

(1 + a1)n + (1� a1)n
;

(1 + b1)n � (1� b1)n

(1 + b1)n + (1� b1)n

#
;

�
2cn1

(2� c1)n + cn1
;

2dn1
(2� d1)n + dn1

�!
n > 0; (24)

~an1 =

 �
2an1

(2� a1)n + an1
;

2bn1
(2� b1)n + bn1

�
;

"
(1 + c1)n � (1� c1)n

(1 + c1)n + (1� c1)n
;

(1 + d1)n � (1� d1)n

(1 + d1)n + (1� d1)n

#!
n > 0: (25)

Theorem 1. Let ~a1 = ([a1; b1]; [c1; d1]) and ~a2 =
([a2; b2]; [c2; d2]) be any two IVIFNs, and 
 > 0, then:

~a1 �E ~a2 = ~a2 �E ~a1; (26)

~a1 
E ~a2 = ~a2 
E ~a1; (27)

�(~a1 �E ~a2) = �~a1 �E �~a2; � � 0; (28)

�1~a1 �E �2~a1 = (�1 + �2)~a1;

�1; �2 � 0; (29)

~a�1
1 
E ~a�2

1 = (~a1)�1+�2 ;

�1; �2 � 0; (30)

~a�1 
E ~a�2 = (~a1 
E ~a2)�;

� � 0: (31)

It is easy to prove that the formulas in Theorem 1 are
all right, the proofs are omitted in here.

3.2. The interval-valued intuitionistic fuzzy
generalized Einstein hybrid averaging
operators

We can give de�nition of the interval-valued intuition-
istic fuzzy generalized Einstein averaging operators.

De�nition 11. Let ~aj = ([aj ; bj ]; [cj ; dj ]) (j =
1; 2; � � � ; n) be a collection of the IVIFNs, and
IVIFGEWA : 
n ! 
, if:

IVIFGEWA (~a1; ~a2; � � � ; ~an)=
�

n�E
j=1

�
wj~a�j

��1=�

; (32)

where 
 is the set of all IVIFNs, and � > 0. w =
(w1; w2; � � � ; wn)T is weight vector of (~a1; ~a2; � � � ; ~an),
such that wj > 0 and

Pn
j=1 wj = 1. Then IVIFGEWA

is called the interval-valued intuitionistic fuzzy gener-
alized Einstein weighted averaging operator.

Based on the Einstein operational rules of the
IVIFNs, we can derive the result shown as Theorem 2.

Theorem 2. Let ~aj = ([aj ; bj ]; [cj ; dj ]) (j =
1; 2 � � � ; n) be a collection of the IVIFNs, then, the
result aggregated from De�nition 11 is still an IVIFN,
and even:
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IVIFGEWA(~a1; ~a2; � � � ; ~an) =0BBBBB@
2666664

2

 
nQ
j=1

xwjaj �
nQ
j=1

ywjaj

!1=�

 
nQ
j=1

xwjaj +3
nQ
j=1

ywjaj

!1=�

+

 
nQ
j=1

xwjaj �
nQ
j=1

ywjaj

!1=� ;

2

 
nQ
j=1

xwjbj �
nQ
j=1

ywjbj

!1=�

 
nQ
j=1

xwjbj +3
nQ
j=1

ywjbj

!1=�

+

 
nQ
j=1

xwjbj �
nQ
j=1

ywjbj

!1=�

3777775 ;
2666664
 

nQ
j=1

zwjcj +3
nQ
j=1

twjcj

!1=�

�
 

nQ
j=1

zwjcj �
nQ
j=1

twjcj

!1=�

 
nQ
j=1

zwjcj +3
nQ
j=1

twjcj

!1=�

+

 
nQ
j=1

zwjcj �
nQ
j=1

twjcj

!1=� ;

 
nQ
j=1

zwjdj +3
nQ
j=1

twjdj

!1=�

�
 

nQ
j=1

zwjdj �
nQ
j=1

twjdj

!1=�

 
nQ
j=1

zwjdj +3
nQ
j=1

twjdj

!1=�

+

 
nQ
j=1

zwjdj �
nQ
j=1

twjdj

!1=�

3777775
1CCCCCA ;

(33)

where:

xaj = (2� aj)� + 3a�j ; yaj = (2� aj)� � a�j ;
xbj = (2� bj)� + 3b�j ; ybj = (2� bj)� � b�j ;
zcj = (1 + cj)� + 3(1� cj)�;
tcj = (1 + cj)� � (1� cj)�;
zdj = (1 + dj)� + 3(1� dj)�;
tdj = (1 + dj)� � (1� dj)�:

Proof.

1. From Eq. (32), we can calculate ~a�j �rstly, and
obtain:

~a�1 =
��

2a�1
(2� a1)� + a�1

;
2b�1

(2� b1)� + b�1

�
;�

(1 + c1)� � (1� c1)�

(1 + c1)� + (1� c1)�
;

(1 + d1)� � (1� d1)�

(1 + d1)� + (1� d1)�

��
:

2. Calculate wj~a�j , and obtain the equation as shown
in Box I.

3. Calculate
n�E
j=1

(wj~a�j ). For convenience, let:

xaj =(2�aj)�+3a�j ; yaj =(2�aj)��a�j ;
xbj = (2� bj)� + 3b�j ; ybj = (2� bj)� � b�j ;
zcj = (1 + cj)� + 3(1� cj)�;
tcj = (1 + cj)� � (1� cj)�;
zdj = (1 + dj)� + 3(1� dj)�;
tdj = (1 + dj)� � (1� dj)�:

Then:

wj~a�j =

 "
xwjaj � ywjaj
xwjaj + ywjaj

;
xwjbj � ywjbj
xwjbj + ywjbj

#
;

"
2twjcj

zwjcj + twjcj
;

2twjdj
zwjdj + twjdj

#!
:

In the following, by mathematical induction, we can
prove:

n�E
j=1

(wj~a�j ) =

0BB@
2664

nQ
j=1

xwjaj �
nQ
j=1

ywjaj
nQ
j=1

xwjaj +
nQ
j=1

ywjaj
;

nQ
j=1

xwjbj �
nQ
j=1

ywjbj
nQ
j=1

xwjbj +
nQ
j=1

ywjbj

3775 ;
2664 2

nQ
j=1

twjcj
nQ
j=1

zwjcj +
nQ
j=1

twjcj
;

2
nQ
j=1

twjdj
nQ
j=1

zwjdj +
nQ
j=1

twjdj

3775
1CCA : (34)

(a) When n = 1,

* w1 = 1:

For the left-hand side of Eq. (34):
n�E
j=1

(wj~a�j ) = ~a�1

=
��

2a�1
(2� a1)� + a�1

;
2b�1

(2� b1)� + b�1

�
;�

(1 + c1)� � (1� c1)�

(1 + c1)� + (1� c1)�
;

(1 + d1)� � (1� d1)�

(1 + d1)� + (1� d1)�

��
;
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wj~a�j =

 "
((2� aj)� + 3a�j )wj � ((2� aj)� � a�j )wj

((2� aj)� + 3a�j )wj + ((2� aj)� � a�j )wj
;

((2� bj)� + 3b�j )wj � ((2� aj)� � a�j )wj

((2� bj)� + 3b�j )wj + ((2� aj)� � a�j )wj

#
;

"
2((1 + cj)� � (1� cj)�)wj�

(1 + cj)� + 3(1� cj)��wj +
�
(1 + cj)� � (1� cj)��wj ;

2((1 + dj)� � (1� dj)�)wj�
(1 + dj)� + 3(1� dj)��wj + ((1 + dj)� � (1� dj)�)wj

#!
:

Box I

and for the right-hand side of Eq. (34), we
have:0BBB@

26664
1Q
j=1

xwjaj �
1Q
j=1

ywjaj

1Q
j=1

xwjaj +
1Q
j=1

ywjaj
;

1Q
j=1

xwjbj �
1Q
j=1

ywjbj
1Q
j=1

xwjbj +
1Q
j=1

ywjbj

37775 ;
26664 2

1Q
j=1

twjcj

1Q
j=1

zwjcj +
1Q
j=1

twjcj
;

2
1Q
j=1

twjdj
1Q
j=1

zwjdj +
1Q
j=1

twjdj

37775
1CCCA

=
��

xaj � yaj
xaj + yaj

;
xbj � ybj
xbj + ybj

�
;�

2tcj
zcj + tcj

;
2tdj

zdj + tdj

��
=
��

2a�1
(2� a1)� + a�1

;
2b�1

(2� b1)� + b�1

�
;�

(1 + c1)� � (1� c1)�

(1 + c1)� + (1� c1)�
;

(1 + d1)� � (1� d1)�

(1 + d1)� + (1� d1)�

��
:

Therefore, Eq. (34) holds for n = 1.
(b) Assume that Eq. (34) holds for n = k, then we

have:

k�E
j=1

(wj~a�j )

=

0BBB@
26664

kQ
j=1

xwjaj �
kQ
j=1

ywjaj

kQ
j=1

xwjaj +
kQ
j=1

ywjaj

;

kQ
j=1

xwjbj �
kQ
j=1

ywjbj
kQ
j=1

xwjbj +
kQ
j=1

ywjbj

37775 ;

26664 2
kQ
j=1

twjcj

kQ
j=1

zwjcj +
kQ
j=1

twjcj

;
2

kQ
j=1

twjdj
kQ
j=1

zwjdj +
kQ
j=1

twjdj

37775
1CCCA ;

when n = k + 1,

k+1�E
j=1

�
wj~a�j

�
=
k+1�h
j=1

�
wj~a�j

��E �wk+1~a�k+1
�

=

0BBB@
26664

kQ
j=1

xwjaj �
kQ
j=1

ywjaj

kQ
j=1

xwjaj +
kQ
j=1

ywjaj

;

kQ
j=1

xwjbj �
kQ
j=1

ywjbj
kQ
j=1

xwjbj +
kQ
j=1

ywjbj

37775 ;
26664 2

kQ
j=1

twjcj

kQ
j=1

zwjcj +
kQ
j=1

twjcj

;
2

kQ
j=1

twjdj
kQ
j=1

zwjdj +
kQ
j=1

twjdj

37775
1CCCA

�E
 "

xwj+1
aj+1 � ywj+1

aj+1

xwj+1
aj+1 + ywj+1

aj+1

;
xwj+1
bj+1

� ywj+1
bj+1

xwj+1
bj+1

+ ywj+1
bj+1

#
;

"
2twj+1
cj+1

zwj+1
cj+1 + twj+1

cj+1

;
2twj+1
dj+1

zwj+1
dj+1

+ twj+1
dj+1

#!

=

0BBBBBBB@
266666664

kQ
j=1

x
wj
aj �

kQ
j=1

y
wj
aj

kQ
j=1

x
wj
aj +

kQ
j=1

y
wj
aj

+
x
wj+1
aj+1 �ywj+1

aj+1

x
wj+1
aj+1 +y

wj+1
aj+1

1 +

kQ
j=1

x
wj
aj �

kQ
j=1

y
wj
aj

kQ
j=1

x
wj
aj +

kQ
j=1

y
wj
aj

� x
wj+1
aj+1 �ywj+1

aj+1

x
wj+1
aj+1 +y

wj+1
aj+1

;
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kQ
j=1

x
wj
bj
� kQ
j=1

y
wj
bj

kQ
j=1

x
wj
bj

+
kQ
j=1

y
wj
bj

+
x
wj+1
bj+1

�ywj+1
bj+1

x
wj+1
bj+1

+y
wj+1
bj+1

1 +

kQ
j=1

x
wj
bj
� kQ
j=1

y
wj
bj

kQ
j=1

x
wj
bj

+
kQ
j=1

y
wj
bj

� x
wj+1
bj+1

�ywj+1
bj+1

x
wj+1
bj+1

+y
wj+1
bj+1

377777775 ;
266666664

2
kQ
j=1

t
wj
cj

kQ
j=1

z
wj
cj +

kQ
j=1

t
wj
cj

� 2t
wj+1
cj+1

z
wj+1
cj+1 +t

wj+1
cj+1

1+

0@1�
2

kQ
j=1

t
wj
cj

kQ
j=1

z
wj
cj +

kQ
j=1

t
wj
cj

1A��1� 2t
wj+1
cj+1

z
wj+1
cj+1 +t

wj+1
cj+1

� ;

2
kQ
j=1

t
wj
dj

kQ
j=1

z
wj
dj

+
kQ
j=1

t
wj
dj

� 2t
wj+1
dj+1

z
wj+1
dj+1

+t
wj+1
dj+1

1+

0@1�
2

kQ
j=1

t
wj
dj

kQ
j=1

z
wj
dj

+
kQ
j=1

t
wj
dj

1A��1� 2t
wj+1
dj+1

z
wj+1
dj+1

+t
wj+1
dj+1

�
377777775
1CCCCCCCA

=

0BBB@
26664
k+1Q
j=1

xwjaj �
k+1Q
j=1

ywjaj

k+1Q
j=1

xwjaj +
k+1Q
j=1

ywjaj

;

k+1Q
j=1

xwjbj �
k+1Q
j=1

ywjbj
k+1Q
j=1

xwjbj +
k+1Q
j=1

ywjbj

37775 ;
26664 2

k+1Q
j=1

twjcj

k+1Q
j=1

zwjcj +
k+1Q
j=1

twjcj

;
2
k+1Q
j=1

twjdj
k+1Q
j=1

zwjdj +
k+1Q
j=1

twjdj

37775
1CCCA :

Therefore, when n = k + 1, Eq. (34) holds.
(c) According to steps (a) and (b), we can deduce

that Eq. (34) holds for any n. Therefore:
n�E
j=1

�
wj~a�j

�
=

0BB@
2664

nQ
j=1

xwjaj �
nQ
j=1

ywjaj
nQ
j=1

xwjaj +
nQ
j=1

ywjaj
;

nQ
j=1

xwjbj �
nQ
j=1

ywjbj
nQ
j=1

xwjbj +
nQ
j=1

ywjbj

3775 ;
2664 2

nQ
j=1

twjcj
nQ
j=1

zwjcj +
nQ
j=1

twjcj
;

2
nQ
j=1

twjdj
nQ
j=1

zwjdj +
nQ
j=1

twjdj

3775
1CCA :

4. Calculate (
n�E
j=1

(wj~a�j ))1=�; we can obtain the

equation as shown in Box II.

The proof ends.

It is easy to prove that the IVIFGEWA operator
has the following properties.

1. Theorem 3 (monotonicity)
Let (~a01; ~a02; � � � ; ~a0n) and (~a1; ~a2; � � � ; ~an) be two
collections of IVIFNs, if ~a0j � ~aj for all j =
1; 2; � � � ; n, then:

IVIFGEWA (~a01; ~a02; � � � ; ~a0n)

� IVIFGEWA (~a1; ~a2; � � � ; ~an):

2. Theorem 4 (idempotency)
Let ~aj = ~a, j = 1; 2; � � � ; n, then IVIFGEWA
(~a1; ~a2; � � � ; ~an) = ~a.

3. Theorem 5 (bounded)
The IVIFGEWA operator lies between the max and
min operators.

min(~a1; ~a2; � � � ; ~an) � IVIFGEWA (~a1; ~a2; � � � ; ~an)

� max (~a1; ~a2; � � � ; ~an):

Now we can discuss some special cases of the IV-
IFGEWA operator with respect to the parameter �.

1. If � = 1, then the IVIFGEWA operator (Eq. (32))
will be reduced to the Interval-Valued Intuitionistic
Fuzzy Einstein Weighted Averaging (IVIFEWA)
operator, which is shown as follows:

IVIFEWA(~a1; ~a2; � � � ; ~an)

= w1~a1 �E w2~a2 �E � � � �E wn~an:

According to Eq. (33), we can obtain:

IVIFEWA(~a1; ~a2; � � � ; ~an)

=

0BB@
2664

nQ
j=1

(1 + aj)wj � nQ
j=1

(1� aj)wj
nQ
j=1

(1 + aj)wj +
nQ
j=1

(1� aj)wj
;

nQ
j=1

(1 + bj)wj � nQ
j=1

(1� bj)wj
nQ
j=1

(1 + bj)wj +
nQ
j=1

(1� bj)wj

3775 ;
2664 2

nQ
j=1

cwjj
nQ
j=1

(2� cj)wj +
nQ
j=1

cwjj
;

2
nQ
j=1

dwjj
nQ
j=1

(2� dj)wj +
nQ
j=1

dwjj

3775
1CCA : (35)
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�
n�E
j=1

�
wj~a�j

��1=�

=

0BB@
2664

nQ
j=1

xwjaj �
nQ
j=1

ywjaj
nQ
j=1

xwjaj +
nQ
j=1

ywjaj
;

nQ
j=1

xwjbj �
nQ
j=1

ywjbj
nQ
j=1

xwjbj +
nQ
j=1

ywjbj

3775 ;
2664 2

nQ
j=1

twjcj
nQ
j=1

zwjcj +
nQ
j=1

twjcj
;

2
nQ
j=1

twjdj
nQ
j=1

zwjdj +
nQ
j=1

twjdj

3775
1CCA

1=�

=

0BBBBBBB@
266666664

2

0@ nQ
j=1

x
wj
aj �

nQ
j=1

y
wj
aj

nQ
j=1

x
wj
aj +

nQ
j=1

y
wj
aj

1A1=�

0@2�
nQ
j=1

x
wj
aj �

nQ
j=1

y
wj
aj

nQ
j=1

x
wj
aj +

nQ
j=1

y
wj
aj

1A1=�

+

0@ nQ
j=1

x
wj
aj �

nQ
j=1

y
wj
aj

nQ
j=1

x
wj
aj +

nQ
j=1

y
wj
aj

1A1=� ;

2

0@ nQ
j=1

x
wj
bj
� nQ
j=1

y
wj
bj

nQ
j=1

x
wj
bj

+
nQ
j=1

y
wj
bj

1A1=�

0@2�
nQ
j=1

x
wj
bj
� nQ
j=1

y
wj
bj

nQ
j=1

x
wj
bj

+
nQ
j=1

y
wj
bj

1A1=�

+

0@ nQ
j=1

x
wj
bj
� nQ
j=1

y
wj
bj

nQ
j=1

x
wj
bj

+
nQ
j=1

y
wj
bj

1A1=�

377777775 ;
266666664
0@1 +

2
nQ
j=1

t
wj
cj

nQ
j=1

z
wj
cj +

nQ
j=1

t
wj
cj

1A1=�

�
0@1�

2
nQ
j=1

t
wj
cj

nQ
j=1

z
wj
cj +

nQ
j=1

t
wj
cj

1A1=�

0@1 +
2
nQ
j=1

t
wj
cj

nQ
j=1

z
wj
cj +

nQ
j=1

t
wj
cj

1A1=�

+

0@1�
2
nQ
j=1

t
wj
cj

nQ
j=1

z
wj
cj +

nQ
j=1

t
wj
cj

1A1=� ;

0@1 +
2
nQ
j=1

t
wj
dj

nQ
j=1

z
wj
dj

+
nQ
j=1

t
wj
dj

1A1=�

�
0@1�

2
nQ
j=1

t
wj
dj

nQ
j=1

z
wj
dj

+
nQ
j=1

t
wj
dj

1A1=�

0@1 +
2
nQ
j=1

t
wj
dj

nQ
j=1

z
wj
dj

+
nQ
j=1

t
wj
dj

1A1=�

+

0@1�
2
nQ
j=1

t
wj
dj

nQ
j=1

z
wj
dj

+
nQ
j=1

t
wj
dj

1A1=�

377777775
1CCCCCCCA

=

0BBBBB@
2666664

2

 
nQ
j=1

xwjaj �
nQ
j=1

ywjaj

!1=�

 
nQ
j=1

xwjaj +3
nQ
j=1

ywjaj

!1=�

+

 
nQ
j=1

xwjaj �
nQ
j=1

ywjaj

!1=� ;

2

 
nQ
j=1

xwjbj �
nQ
j=1

ywjbj

!1=�

 
nQ
j=1

xwjbj +3
nQ
j=1

ywjbj

!1=�

+

 
nQ
j=1

xwjbj �
nQ
j=1

ywjbj

!1=�

3777775 ;
2666664
 

nQ
j=1

zwjcj + 3
nQ
j=1

twjcj

!1=�

�
 

nQ
j=1

zwjcj �
nQ
j=1

twjcj

!1=�

 
nQ
j=1

zwjcj + 3
nQ
j=1

twjcj

!1=�

+

 
nQ
j=1

zwjcj �
nQ
j=1

twjcj

!1=� ;

 
nQ
j=1

zwjdj + 3
nQ
j=1

twjdj

!1=�

�
 

nQ
j=1

zwjdj �
nQ
j=1

twjdj

!1=�

 
nQ
j=1

zwjdj + 3
nQ
j=1

twjdj

!1=�

+

 
nQ
j=1

zwjdj �
nQ
j=1

twjdj

!1=�

3777775
1CCCCCA :

Box II

2. If �! 0, then the IVIFGEWA operator (Eq. (32))
will be reduced to the Interval-Valued Intuitionistic
Fuzzy Einstein Weighted Geometric (IVIFEWG)
operator, which is shown as follows:

IVIFEWG(~a1; ~a2; � � � ; ~an)

= ~aw1
1 
E ~aw2

2 
E � � � 
E ~awnn :

According to Eq. (33), we can obtain:

IVIFEWG(~a1; ~a2; � � � ; ~an)

=

0BB@
2664 2

nQ
j=1

awjj
nQ
j=1

(2� aj)wj +
nQ
j=1

awjj
;

2
nQ
j=1

bwjj
nQ
j=1

(2� bj)wj +
nQ
j=1

bwjj

3775 ;
2664

nQ
j=1

(1 + cj)wj � nQ
j=1

(1� cj)wj
nQ
j=1

(1 + cj)wj +
nQ
j=1

(1� cj)wj
;

nQ
j=1

(1 + dj)wj � nQ
j=1

(1� dj)wj
nQ
j=1

(1 + dj)wj +
nQ
j=1

(1� dj)wj

3775
1CCA : (36)

De�nition 12. Let ~aj = ([aj ; bj ]; [cj ; dj ]) (j =
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1; 2 � � � ; n) be a collection of the IVIFNs, and
IVIFGEOWA : 
n ! 
, if:

IVIFGEOWA(~a1; ~a2; � � � ; ~an) =
n�E
j=1

�
!j~a��(j)

�1=�
;

(37)

where 
 is the set of all IVIFNs, and � > 0. ! =
(!1; !2; � � � ; !n)T is the weighted vector associated
with IVIFGEOWA, such that !j > 0 and

Pn
j=1 !j = 1.

(�(1); �(2); � � � ; �(n)) is a permutation of (1; 2; � � � ; n),
such that ~a�(j�1) � ~a�(j) for any j. Then IVIFGE-
OWA is called the Interval-Valued Intuitionistic Fuzzy
Generalized Einstein Ordered Weighted Averaging (IV-
IFGEOWA) operator.

Based on the Einstein operational rules of the
IVIFNs, we can derive the result shown as Theorem 6.

Theorem 6. Let ~aj = ([aj ; bj ]; [cj ; dj ]) (j =
1; 2 � � � ; n) be a collection of the IVIFNs, and � > 0,
then, the result aggregated from De�nition 12 is still
an IVIFN, and can be expressed in Eq. (38) as shown
in Box III. The proof is similar to Theorem 2, and it
is not repeated here.

The IVIFGEOWA operator can weigh the input
data according to the data position in ranking from
largest to smallest for all data. We can call ! the
position weighted vector. In general, position weighted
vector ! can be assigned according to the real decision-
making needs. In some cases, it can be determined by
some mathematical methods. Two examples are shown
as follows:

1. The method proposed by Herrera et al. [41] is as
follows:

!j = Q
�
j
n

�
�Q

�
j � 1
n

�
j = 1; 2; � � � ; n; (39)

where quantitative fuzzy semantics operator, Q,
can be given by the following formula:

Q(r) =

8>>><>>>:
0; r < �
r��
��� ; � � r � �
1; r > �

�; �; r 2 [0; 1]: (40)

The parameters � and � in function Q are de-
termined by the fuzzy linguistic quantitative rules
according to Table 1.

2. The method proposed by Wang and Xu [42] is as
follows:

!i+1 =
Cin�1

2n�1 i = 0; 1; � � � ; n� 1: (41)

Table 1. Relation between the fuzzy linguistic
quantitative rules and values of the parameters.

Quantitative
criteria for

fuzzy semantic
Most At least

half
As much as

possible

Values of (�; �) (0.3,0.8) (0,0.5) (0.5,1.0)

The IVIFGEOWA operator has the following proper-
ties:

1. Theorem 7 (monotonicity)
Let (~a01; ~a02; � � � ; ~a0n) and (~a1; ~a2; � � � ; ~an) be two
collections of IVIFNs. If ~a0j � ~aj for all j =
1; 2; � � � ; n, then:

IVIFGEOWA(~a01; ~a02; � � � ; ~a0n)

� IVIFGEOWA(~a1; ~a2; � � � ; ~an):

2. Theorem 8 (idempotency)
Let ~aj = ~a, j = 1; 2; � � � ; n, then IVIFGEOWA
(~a1; ~a2; � � � ; ~an) = ~a.

3. Theorem 9 (bounded)
The IVIFGEOWA operator lies between the max
and min operators.

min(~a1; ~a2; � � � ; ~an) � IVIFGEOWA

� max(~a1; ~a2; � � � ; ~an):

4. Theorem 10 (commutativity)
Let (~a01; ~a02; � � � ; ~a0n) and (~a1; ~a2; � � � ; ~an) be two
collections of IVIFNs, and (~a01; ~a02; � � � ; ~a0n) is any
permutation of (~a1; ~a2; � � � ; ~an), then:

IVIFGEOWA (~a01; ~a02; � � � ; ~a0n)

= IVIFGEOWA(~a1; ~a2; � � � ; ~an):

Similarly, some special cases of the IVIFGEOWA
operator with respect to the parameter � are discussed
as follows:

1. If � = 1, then the IVIFGEOWA operator (Eq. (37))
will be reduced to the Interval-Valued Intuitionistic
Fuzzy Einstein Ordered Weighted Averaging (IV-
IFEOWA) operator, which is shown as follows:

IVIFEOWA (~a1; ~a2; � � � ; ~an)

= !1~a�(1) �E !2~a�(2) �E � � � �E !n~a�(n):

According to Eq. (38), we can obtain:

IVIFEOWA(~a1; ~a2; � � � ; ~an)
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IVIFGEOWA(~a1; ~a2; � � � ; ~an) =

0BBBBB@
2666664

2

 
nQ
j=1

x!ja�(j) �
nQ
j=1

y!ja�(j)

!1=�

 
nQ
j=1

x!ja�(j) + 3
nQ
j=1

y!ja�(j)

!1=�

+

 
nQ
j=1

x!ja�(j) �
nQ
j=1

y!ja�(j)

!1=� ;

2

 
nQ
j=1

x!jb�(j)
� nQ
j=1

y!jb�(j)

!1=�

 
nQ
j=1

x!jb�(j)
+ 3

nQ
j=1

y!jb�(j)

!1=�

+

 
nQ
j=1

x!jb�(j)
� nQ
j=1

y!jb�(j)

!1=�

3777775 ;
2666664
 

nQ
j=1

z!jc�(j) + 3
nQ
j=1

t!jc�(j)

!1=�

�
 

nQ
j=1

z!jc�(j) �
nQ
j=1

t!jc�(j)

!1=�

 
nQ
j=1

z!jc�(j) + 3
nQ
j=1

t!jc�(j)

!1=�

+

 
nQ
j=1

z!jc�(j) �
nQ
j=1

t!jc�(j)

!1=� ;

 
nQ
j=1

z!jd�(j)
+ 3

nQ
j=1

t!jd�(j)

!1=�

�
 

nQ
j=1

z!jd�(j)
� nQ
j=1

t!jd�(j)

!1=�

 
nQ
j=1

z!jd�(j)
+ 3

nQ
j=1

t!jd�(j)

!1=�

+

 
nQ
j=1

z!jd�(j)
� nQ
j=1

t!jd�(j)

!1=�

3777775
1CCCCCA ; (38)

where:

xaj = (2� aj)� + 3a�j ; yaj = (2� aj)� � a�j ; xbj = (2� bj)� + 3b�j ; ybj = (2� bj)� � b�j ;
zcj = (1 + cj)� + 3(1� cj)�; tcj = (1 + cj)� � (1� cj)�; zdj = (1 + dj)� + 3(1� dj)�;
tdj = (1 + dj)� � (1� dj)�:

Box III

=

0BB@
2664

nQ
j=1

(1 + a�(j))!j �
nQ
j=1

(1� a�(j))!j

nQ
j=1

(1 + a�(j))!j +
nQ
j=1

(1� a�(j))!j
;

nQ
j=1

(1 + b�(j))!j �
nQ
j=1

(1� b�(j))!j

nQ
j=1

(1 + b�(j))!j +
nQ
j=1

(1� b�(j))!j

3775 ;
2664 2

nQ
j=1

c!j�(j)

nQ
j=1

(2� c�(j))!j +
nQ
j=1

c!j�(j)

;

2
nQ
j=1

d!j�(j)

nQ
j=1

(2� d�(j))!j +
nQ
j=1

d!j�(j)

3775
1CCA : (42)

2. If �! 0, then the IVIFGEOWA operator (Eq. (37))
will be reduced to the Interval-Valued Intuitionistic
Fuzzy Einstein Ordered Weighted Geometric (IV-
IFEOWG) operator, which is shown as follows:

IVIFEOWG(~a1; ~a2; � � � ; ~an)

= ~a!1
�(1) 
E ~a!2

�(2) 
E � � � 
E ~a!n�(n):

According to Eq. (38), we can obtain:

IVIFEOWG(~a1; ~a2; � � � ; ~an)
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=

0BB@
2664 2

nQ
j=1

a!j�(j)

nQ
j=1

(2� a�(j))!j +
nQ
j=1

a!j�(j)

;

2
nQ
j=1

b!j�(j)

nQ
j=1

(2� b�(j))!j +
nQ
j=1

b!j�(j)

3775 ;
2664

nQ
j=1

(1 + c�(j))!j �
nQ
j=1

(1� c�(j))!j

nQ
j=1

(1 + c�(j))!j +
nQ
j=1

(1� c�(j))!j
;

nQ
j=1

(1 + d�(j))!j �
nQ
j=1

(1� d�(j))!j

nQ
j=1

(1 + d�(j))!j +
nQ
j=1

(1� d�(j))!j

3775
1CCA :

(43)

We have discussed two interval-valued intuitionistic
fuzzy Einstein operators, i.e. the IVIFGEWA and
IVIFGEOWA. They have their own characteristics;
the IVIFGEWA operator weights only the IVIFN, and
IVIFGEOWA operator weights only each IVIFN by
their ordered positions. In the real decision-making,
we need to consider these two weighted modes because
they represent di�erent aspects of decision making
problems. However, each operator considers only one
of them. In order to overcome these shortcomings,
hybrid averaging operator based on Einstein operations
is given as follows.

De�nition 13. Let ~aj = ([aj ; bj ]; [cj ; dj ]) (j =
1; 2 � � � ; n) be a collection of the IVIFNs, and
IVIFGEHWA : 
n ! 
, if:

IVIFGEHWA(~a1; ~a2; � � � ; ~an) =
n�E
j=1

�
!j~s��(j)

�1=�
;
(44)

where 
 is the set of all IVIFNs, and � > 0. ! =
(!1; !2; � � � ; !n)T is the weighted vector associated
with IVIFGEHWA, such that !j > 0 and

Pn
j=1

!j = 1. w = (w1; w2; � � � ; wn) is the weight vector of
~aj(j = 1; 2; � � � ; n), and wj 2 [0; 1];

Pn
j=1 wj = 1.

Let ~sj = nwj~aj =
�

[ _aj ; _bj ]; [ _cj ; _dj ]
�

, n is the ad-
justment factor. Suppose (�(1); �(2); � � � ; �(n)) is a
permutation of (1; 2; � � � ; n), such that ~s�(j�1) � ~s�(j)
for any j, and then function IVIFGEHWA is called
the Interval-Valued Intuitionistic Fuzzy Generalized
Einstein Hybrid Weighted Averaging (IVIFGEHWA)
operator.

Based on the Einstein operational rules of the
IVIFNs, we can derive the result shown as Theorem 11.

Theorem 11. Let ~aj = ([aj ; bj ]; [cj ; dj ]) (j =
1; 2 � � � ; n) be a collection of the IVIFNs, and � > 0,
then, the result aggregated from De�nition 13 is still
an IVIFN, and even can be expressed in Eq. (45) as
shown in Box IV. The proof is similar to Theorem 2,
so it is not repeated here.

Theorem 12. The IVIFGEWA and IVIFGEOWA
operators are the special cases of the IVIFGEHWA
operator.

It is easy to prove that when:

W =
�

1
n
;

1
n
; � � � ; 1

n

�
;

the IVIFGEHWA operator will reduce to IVIFGEOWA
operator, and when:

! =
�

1
n
;

1
n
; � � � ; 1

n

�
;

the IVIFGEHWA operator will reduce to IVIFGEWA
operator.

From De�nition 13, we can know that the IV-
IFGEHWA operator �rstly weights the given dada,
and then reorders the weighted values in descending
order and weights these ordered data. Therefore,
the IVIFGEHWA operator can re
ect the importance
degrees of both the given data and their ordered
positions.

4. Multiple attribute group decision making
methods based on generalized Einstein
aggregation operators

In this section, we will use these generalized Einstein
aggregation operators to the Multiple Attribute Group
Decision Making (MAGDM) problems where the at-
tribute values are the interval-valued intuitionistic
fuzzy information.

4.1. Description of the decision making
problems

For the MAGDM problems, let A = fA1; A2; � � � ; Amg
be the collection of alternatives, C = fC1; C2; � � � ; Cng
be the collection of attributes, and E = fe1; e2; � � � ; eqg
be the collection of decision-makers. Suppose that
~akij = ([akij ; bkij ]; [ckij ; dkij ]) is an attribute value for the
alternative Ai with respect to the attribute Cj given
by the decision-maker ek. w = (w1; w2; � � � ; wn) is the
weight vector of attribute set C = fC1; C2; � � � ; Cng,
and wj 2 [0; 1],

nP
j=1

wj = 1. � = (�1; �2; � � � ; �q) is the

weight vector of decision-makers fe1; e2; � � � ; eqg, and

�k 2 [0; 1],
qP

k=1
�k = 1.
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IVIFGEHWA(~a1; ~a2; � � � ; ~an) =

0BBBBB@
2666664

2

 
nQ
j=1

_x!ja�(j) �
nQ
j=1

_y!ja�(j)

!1=�

 
nQ
j=1

_x!ja�(j) + 3
nQ
j=1

_y!ja�(j)

!1=�

+

 
nQ
j=1

_x!ja�(j) �
nQ
j=1

_y!ja�(j)

!1=� ;

2

 
nQ
j=1

_x!jb�(j)
� nQ
j=1

_y!jb�(j)

!1=�

 
nQ
j=1

_x!jb�(j)
+ 3

nQ
j=1

_y!jb�(j)

!1=�

+

 
nQ
j=1

_x!jb�(j)
� nQ
j=1

_y!jb�(j)

!1=�

3777775 ;
2666664
 

nQ
j=1

_z!jc�(j) + 3
nQ
j=1

_t!jc�(j)

!1=�

�
 

nQ
j=1

_z!jc�(j) �
nQ
j=1

_t!jc�(j)

!1=�

 
nQ
j=1

_z!jc�(j) + 3
nQ
j=1

_t!jc�(j)

!1=�

+

 
nQ
j=1

_z!jc�(j) �
nQ
j=1

_t!jc�(j)

!1=� ;

 
nQ
j=1

_z!jd�(j)
+ 3

nQ
j=1

_t!jd�(j)

!1=�

�
 

nQ
j=1

_z!jd�(j)
� nQ
j=1

_t!jd�(j)

!1=�

 
nQ
j=1

_z!jd�(j)
+ 3

nQ
j=1

_t!jd�(j)

!1=�

+

 
nQ
j=1

_z!jd�(j)
� nQ
j=1

_t!jd�(j)

!1=�

3777775
1CCCCCA ; (45)

where:

_xaj = (2� _aj)
� + 3_a�j ; _yaj = (2� _aj)

� � _a�j ; _xbj =
�

2� _bj
��

+ 3_b�j ;

_ybj =
�

2� _bj
�� � _b�j ; _zcj = (1 + _cj)

� + 3(1� _cj)�; _tcj = (1 + _cj)
� � (1� _cj)�;

_zdj =
�

1 + _dj
��

+ 3(1� _dj)�; _tdj =
�

1 + _dj
�� � (1� _dj)�; _aj =

(1 + aj)nwj � (1� aj)nwj
(1 + aj)nwj + (1� aj)nwj ;

_bj =
(1 + bj)nwj � (1� bj)nwj
(1 + bj)nwj + (1� bj)nwj ; _cj =

2cnwjj

(2� cj)nwj + cnwjj
; _dj =

2dnwjj

(2� dj)nwj + dnwjj
:

Box IV

4.2. The decision making method based on
generalized Einstein hybrid weighted
averaging operator

Step 1. Normalize the decision-making information.
In general, there are two types for the at-
tribute values: bene�t attributes (I1) (the
bigger the attribute value is, the better it
is), and cost attributes (I2) (the bigger the
attribute value is, the worse it is). In order to
eliminate the impact of di�erent types in the

attribute values, it is necessary to normalize
the decision-making information.

We may transform the attribute values
from cost type to bene�t type; in such a
case, decision matrices Ak = [~akij ]m�n (k =
1; 2; � � � ; q) can be transformed into matrices
Rk = [~rkij ]m�n (k = 1; 2; � � � ; q), where ~rkij =
([ukij ; �ukij ]; [f

k
ij ;

�fkij ]).

~rkij =
�

[ukij ; �u
k
ij ]; [f

k
ij ;

�fkij ]
�
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=

8>>>>>><>>>>>>:

�
[akij ; bkij ]; [ckij ; dkij ]

�
for bene�t attribute Cj�

[ckij ; dkij ]; [akij ; bkij ]
�

for cost attribute Cj

i = 1; 2; � � � ;m; j = 1; 2; � � � ; n: (46)

Step 2. Utilize the IVIFGEHWA operator:

~rij =
��
uij ; �uij

�
;
h
f ij ;

�fij
i�

= IVIFGEHWA
�
~r1
ij ; ~r

2
ij ; � � � ; ~rqij� ; (47)

to aggregate all the individual interval-valued
intuitionistic fuzzy decision matrixes Rk =
[~rkij ]m�n (k = 1; 2; � � � ; q) into the collective
decision matrix R = [~rij ]m�n.

Step 3. Utilize the IVIFGEHWA operator:

~ri =
�

[uki ; �u
k
i ]; [f i;

�fi]
�

= IVIFGEHWA (~ri1; ~ri2; � � � ; ~rin) ; (48)

to derive the collective overall preference val-
ues ~r(i = 1; 2; � � � ;m).

Step 4. Calculate the score function S(~ri) (i =
1; 2; � � � ;m) of the collective overall values
~ri(i = 1; 2; � � � ;m), and then rank all the

alternatives fA1; A2; � � � ; Amg. When two
score functions S(~ri) and S(~rj) are equal, it is
necessary to calculate their accuracy functions
H(~ri) and H(~rj), then we can rank them by
accuracy functions.

Step 5. Rank all the alternatives fA1; A2; � � � ; Amg
and select the best one(s) by score function
S(~ri) and accuracy function H(~ri).

Step 6. End.

5. An application example

In order to demonstrate the application of the proposed
method, we will cite an example about the air quality
evaluation (adapted from [43]). To evaluate the air
quality of Guangzhou for the 16th Asian Olympic
Games held during November 12-27, 2010, the air
quality in Guangzhou for the Novembers of 2006, 2007,
2008, and 2009 were collected in order to �nd out the
trends and to forecast the situation in November 2010.
There are 3 air-quality monitoring stations (e1; e2; e3)
which can be seen as decision-makers, and their weight
is (0:314; 0:355; 0:331)T . There are 3 measured indices,
namely SO2 (C1), NO2 (C2), and PM10 (C3), and
their weight is (0:40; 0:20; 0:40)T . The measured values
from air-quality monitoring stations under these indices
are shown in Tables 2-4, and they can be expressed
by interval-valued intuitionistic fuzzy numbers. Let
(A1; A2; A3; A4) = fNovember of 2006, November of

Table 2. Air quality data from station e1.

C1 C2 C3

A1 ([0.22, 0.31], [0.23, 0.54]) ([0.13, 0.53], [0.20, 0.36]) ([0.12, 0.37], [0.40, 0.56])
A2 ([0.28, 0.41], [0.33, 0.49]) ([0.33, 0.53], [0.20, 0.36]) ([0.12, 0.37], [0.30, 0.46])
A3 ([0.32, 0.41], [0.23, 0.44]) ([0.43, 0.53], [0.16, 0.25]) ([0.23, 0.45], [0.21, 0.37])
A4 ([0.39, 0.47], [0.18, 0.36]) ([0.39, 0.53], [0.27, 0.32]) ([0.28, 0.34], [0.11, 0.23])

Table 3. Air quality data from station e2.

C1 C2 C3

A1 ([0.04, 0.21], [0.35, 0.46]) ([0.10, 0.34], [0.27, 0.45]) ([0.32, 0.37], [0.13, 0.20])
A2 ([0.32, 0.39], [0.27, 0.39]) ([0.03, 0.57], [0.30, 0.36]) ([0.16, 0.25], [0.14, 0.19])
A3 ([0.26, 0.37], [0.21, 0.40]) ([0.23, 0.43], [0.06, 0.15]) ([0.21, 0.35], [0.11, 0.29])
A4 ([0.30, 0.43], [0.19, 0.35]) ([0.28, 0.43], [0.31, 0.34]) ([0.39, 0.46], [0.01, 0.17])

Table 4. Air quality data from station e3.

C1 C2 C3

A1 ([0.25, 0.27], [0.23, 0.40]) ([0.17, 0.27], [0.26, 0.40]) ([0.21, 0.30], [0.17, 0.32])
A2 ([0.25, 0.29], [0.33, 0.39]) ([0.18, 0.46], [0.43, 0.50]) ([0.06, 0.21], [0.28, 0.30])
A3 ([0.22, 0.27], [0.27, 0.31]) ([0.13, 0.37], [0.16, 0.20]) ([0.11, 0.24], [0.14, 0.19])
A4 ([0.30, 0.48], [0.09, 0.45]) ([0.08, 0.53], [0.20, 0.24]) ([0.32, 0.61], [0.01, 0.09])
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2007, November of 2008, November of 2009g be the set
of alternatives. The rank of air quality from 2006 to
2009 can be found as follows.

5.1. Rank the alternatives by the proposed
method

To obtain the best alternative(s), the following steps
are involved:

Step 1. Normalize the decision-making information.
Since all the measured values are of the same
type, they do not need normalization.

Step 2. Utilize the IVIFGEHWA operator expressed
by Eq. (47) to aggregate all the individ-
ual interval-valued intuitionistic fuzzy decision
matrices Rk = [~rkij ]4�3 (k = 1; 2; 3) into the
collective decision matrix R = [~rij ]4�3. We
can obtain (suppose � = 2, ! = ( 1

3 ;
1
3 ;

1
3 )):

R =

266666666666666666666666664

([0:208; 0:275]; [0:264; 0:462])
([0:141; 0:410]; [0:241; 0:400])
([0:226; 0:350]; [0:207; 0:327])

([0:285; 0:371]; [0:308; 0:420])
([0:241; 0:523]; [0:294; 0:400])
([0:119; 0:295]; [0:228; 0:297])

([0:276; 0:360]; [0:235; 0:378])
([0:311; 0:454]; [0:116; 0:196])
([0:195; 0:366]; [0:148; 0:273])

([0:339; 0:463]; [0:146; 0:383])
([0:295; 0:503]; [0:255; 0:296])
([0:332; 0:490]; [0:023; 0:153])

377777777777777777777777775

:

Step 3. Utilize the IVIFGEHWA operator expressed
by Eq. (48) to derive the collective overall pref-
erence values (suppose � = 2, ! = ( 1

3 ;
1
3 ;

1
3 )),

then we can obtain:

~r1 = ([0:243; 0:426]; [0:225; 0:368]);

~r2 = ([0:313; 0:486]; [0:261; 0:348]);

~r3 = ([0:357; 0:461]; [0:153; 0:258]);

~r4 = ([0:375; 0:525]; [0:092; 0:245]):

Step 4. Calculate the score function S(~ri)(i =
1; 2; 3; 4) of the collective overall values ~ri(i =
1; 2; 3; 4), then we can obtain:

S(~r1) = 0:038; S(~r2) = 0:095;

S(~r3) = 0:203; S(~r4) = 0:282:

Step 5. According to the score function
S(~ri)(i = 1; 2; 3; 4), rank the alternatives
fA1; A2; A3; A4g shown as follows:

A4 � A3 � A2 � A1:

Therefore, the best alternative is A4, i.e. the
best air quality in Guangzhou is November
of 2009 among the Novembers of 2006, 2007,
2008, and 2009.

5.2. In
uence of the parameter � on decision
making result of this example

In order to illustrate the in
uence of the parameter �
on decision making of this example, we use the di�erent
values of � in Steps 2 and 3 to rank the alternatives.
The ranking results are shown in Table 5.

Table 5. Ordering the alternatives by utilizing di�erent
values of �.

� Score function S(~ri) Ranking

� = 0:01

S(~r1) = �0:037

A4�A3�A2�A1
S(~r2) = �0:007

S(~r3) = 0:121

S(~r4) = 0:240

� = 0:5

S(~r1) = �0:036

A4�A3�A2�A1
S(~r2) = �0:006

S(~r3) = 0:120

S(~r4) = 0:238

� = 1:0

S(~r1) = �0:018

A4�A3�A2�A1
S(~r2) = 0:020

S(~r3) = 0:137

S(~r4) = 0:246

� = 1:5

S(~r1) = 0:008

A4�A3�A2�A1
S(~r2) = 0:056

S(~r3) = 0:168

S(~r4) = 0:262

� = 2:0

S(~r1) = 0:038

A4�A3�A2�A1
S(~r2) = 0:095

S(~r3) = 0:203

S(~r4) = 0:282

� = 5

S(~r1) = 0:174

A4�A3�A2�A1
S(~r2) = 0:250

S(~r3) = 0:361

S(~r4) = 0:390

� = 30

S(~r1) = 0:157

A4�A3�A2�A1
S(~r2) = 0:159

S(~r3) = 0:250

S(~r4) = 0:255
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As we can see from Table 5, the aggregation
results using the di�erent aggregation parameter �
are di�erent, but the orderings of the alternatives are
the same in this example. In general, we can regard
parameter � as the attitude of decision makers; the
more the value of parameter � is, the more optimistic
attitude is. In real decision making, we can select the
speci�c parameter � according to real decision making
problem. Of course, we can take the values of the
parameter � = 1 for arithmetic aggregation operator,
or �! 0 for geometric aggregation operator.

5.3. Comparing the proposed method with the
other methods

In order to verify the e�ectiveness of the proposed
method, we can compare it with the method by Yue [43]
because the data of this example came from it. Firstly,
it is easy to see that there are similar ranking results
for two methods. Secondly, the aggregation operators
used by Yue [43] are based on algebraic operations,
and those in this paper are based on the generalized
Einstein operations. Since the generalized Einstein
operations for IVIFNs are with parameter �, the
method proposed in this paper is more general and
more 
exible. In comparison with Einstein operators
proposed by Wang and Liu [34,35], they are only
the special cases of the proposed operators in this
paper. When � = 0 and the upper and lower limits
of the membership and non-membership degrees in
IVIFNs are equal, the generalized Einstein operations
for IVIFNs proposed in this paper can be reduced
to intuitionistic fuzzy geometric aggregation operators
based on Einstein operations introduced by Wang and
Liu [34]. Similarly, When � = 1 and the upper and
lower limits of the membership and non-membership
degrees in IVIFNs are equal, the generalized Einstein
operations for IVIFNs proposed in this paper can be
reduced to intuitionistic fuzzy information aggregation
using Einstein operations introduced by Wang and
Liu [35], i.e. the operators proposed in this paper
are the generalization of those proposed by Wang
and Liu [34,35] by two aspects; one extension is
from intuitionistic fuzzy numbers to interval-valued
intuitionistic fuzzy numbers, the other extension is
from the arithmetic aggregation operators or geometric
aggregation operators based on Einstein operations
to the generalized Einstein operations for IVIFNs.
Obviously, the operators and methods proposed in
this paper are more general. Of course, super�cially,
it is more complicated in calculation. However, in
real applications, we �rst need to assign the speci�c
parameter �; then the calculation will be greatly
simpli�ed; for example, when parameter � = 1 or
�! 0, these operators will be simpli�ed to arithmetic
aggregation operator or geometric aggregation opera-
tor.

6. Conclusion

In this paper, we explored some generalized Einstein
aggregation operators based on IVIFNs and applied
them to the multi-attribute group decision making
problems where attribute values are the IVIFNs.
Firstly, Interval-Valued Intuitionistic Fuzzy General-
ized Einstein Weighted Averaging (IVIFGEWA) oper-
ator, Interval-Valued Intuitionistic Fuzzy Generalized
Einstein Ordered Weighted Averaging (IVIFGEOWA)
operator, and Interval-Valued Intuitionistic Fuzzy Gen-
eralized Einstein Hybrid Weighted Averaging (IV-
IFGEHWA) operator were proposed. Some of their
general properties such as idempotency, commutativ-
ity, monotonicity, and boundedness, were studied, and
some special cases of them were analyzed. Further-
more, a method to multi-criteria group decision making
based on these operators was developed, and the
operational processes were illustrated in detail. Finally,
an illustrative example was given to show the decision
steps of the proposed method and to demonstrate their
e�ectiveness. In further research, it is necessary and
signi�cant to give the applications of these operators
to the other domains such as pattern recognition, fuzzy
cluster analysis, uncertain programming, etc.
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