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Abstract. This paper develops a multi-period portfolio optimization model that utilizes
hedging decisions in a dynamic setting. In this regard, a portfolio of options and underlying
stocks is constructed and di�erent time-varying Greek letters are utilized to mitigate the
market risk. The presented model considers rebalancing decisions during the planning
horizon. It assumes an investor is aiming to maximize his/her wealth at the end of the
planning horizon, while controlling the investor's regret during the planning horizon. The
uncertainty of asset prices is represented in terms of a scenario tree. In addition, a scenario
generation method is presented that characterizes the temporal correlations and dependence
structure of asset returns. Also, it preserves marginal distributions of asset returns. To
investigate the e�ect of hedging strategies, we �rst implement the scenario generation
method on a set of stocks selected from the New York Stock Exchange (NYSE). Numerical
results show the high performance of the scenario generation method. Then, the multi-
period portfolio optimization model is implemented via the generated scenario tree. Results
show that incorporation of options remarkably reduces investor risk. Finally, di�erent
hedging strategies are assessed by imposing bounds on the values of Greek letters and a
discussion about numerical results is presented.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

The traditional single period portfolio selection prob-
lem often fails to be e�cient in long-term investment
problems. This arises from the fact that in real world
applications, transaction costs are not zero; returns
are temporally correlated and the investor can borrow
money to invest [1]. Hence, multi-period portfolio
selection models were developed. These models act
in response to an evolving information structure over
time. Option contracts are �nancial instruments that
are increasingly used by investors and speculators. Due
to their asymmetric and nonlinear payo�s, they can
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protect investor wealth in response to highly negative
variations in �nancial markets. Also, some traders
utilize them as speculative instruments [2].

Merton et al. [3] investigated di�erent investment
strategies involving options over a signi�cant period
of time. Harrison and Pliska [4] and Follmer and
Sondermann [5] were pioneering researchers contribut-
ing to the development of general hedging methods.
Afterward, a remarkable number of studies included
derivatives, especially options, in their portfolio, to
hedge exposure to currency and market risks. The
main studies in this area are [6-19].

Topaloglou et al. [2] extended the previous work
and optimized an international portfolio of stock and
bond indices, as well as currency forward contracts, in a
multi-asset structure and dynamic setting. Topaloglou
et al. [20] used options and currency forward contracts
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to hedge exposures to market and currency risks in a
static manner.

Yin and Han [21] generalized the work of
Topaloglou et al [20] through adaptation of their
method in a dynamic setting.

There are alternative hedging approaches, re-
ferred to as Greek letters, which measure di�erent
dimensions to the risk in an option position. The trader
can manage the Greek letters (Greeks), while ensuring
that all aspects of risk are acceptable. These hedging
strategies make the investor more 
exible in hedging
exposure to di�erent aspects of risk.

Wu and Sen [22] proposed a stochastic program-
ming approach to develop currency option hedging
strategies to address multiple random factors in an
imperfect market. Their study incorporated con-
straints on sensitivity measures, such as Delta and
Gamma. Papahristodoulou [23] formulated a linear
programming model and devised hedging strategies on
all Greek letters.

Horasanli [24] extended Papahristodoulou [23] to
a multi-asset structure to deal with a portfolio of
options and underlying assets. Gao [25] proposed
a linear programming model with some 
exible risk
bounds on all Greek letters. These bounds can be
adjusted by the investor to suit the needs of market
change.

In a recent study, Yin and Han [26] presented a
stochastic programming model for international port-
folio management. Moreover, they used stock options
with overall control on time-varying Greek letters to
achieve an e�cient hedging level. Compared to pre-
vious studies that used Greeks for hedging exposures
to di�erent aspects of risk, their improvement was
twofold. First, they constructed an international port-
folio with a multi-period and multi-currency structure.
Second, they extended previous studies on optimal
options strategies into a dynamic and nondeterministic
framework.

Although Yin and Han [26] incorporated hedging
decisions in the multi-period portfolio selection prob-
lem, there exist some important issues that should
be necessarily addressed. Their study assumed that
options have a one-period time to maturity. Thus,
when the investor takes a long position in a call
or put option, at the next period, he/she has only
the opportunity to exercise the option. Nevertheless,
in real world �nancial markets, derivatives, such as
options, are issued with di�erent maturities that are
often more than one time period. Thus, they can
be traded during their lifetime. Since the time to
maturity of an option a�ects its value, in each time of
rebalancing, the pricing process for all options should
be performed. This makes the problem more complex.
These important features of derivatives were ignored in
previous studies.

In addition, options may impose two types of
transaction cost to investors that are charged when
any option is traded. These types of transaction cost
are �xed and proportional. While the former does not
depend on the price of traded options, the latter does.
To consider both �xed and proportional transaction
costs is a matter of particular importance and strongly
a�ects the obtained results. This strong e�ect will be
discussed later. The �xed transaction cost was ignored
in [26].

Moreover, although Yin and Han [26] used Greeks
in a dynamic and nondeterministic setting, they con-
sidered that the volatility of each asset returns to be a
constant parameter in all scenarios. However, volatility
should be considered a stochastic parameter that is
dependent on scenarios.

In this paper, all these important issues are
addressed in a multi-period portfolio selection setting.
In addition, di�erent from [2,20,21,26] that dealt with
international portfolios, a portfolio with domestic di-
versi�cation is considered. This approach seems to
be more appropriate for risk taking investors, since
it enables them to invest in a wider variety of assets,
rather than a limited set of indices. In addition, those
risks associated with currency exchange rates are not
imposed on investor wealth. Of course, the investor
can assign a part of his/her capital to less risky assets
that have a relatively guaranteed payo�.

In addition, the most recent work in this
area [2,20,21,26] utilized moment matching [27] to
generate scenarios of asset returns. This may have two
main drawbacks. First, the temporal correlations of
data series, e.g. asset returns, are ignored. Second, the
dependence structure of di�erent data series is mod-
elled via a covariance matrix that illustrates the linear
dependence of the data series. This assumption holds
when the time series data are normally distributed.
However, as these studies mentioned, in most cases, the
distributions of �nancial parameters, e.g. asset returns,
are not normal. In this paper, these important issues
of scenario generation are addressed.

Brie
y speaking, this paper considers the dynamic
hedging of options in a multi-period portfolio selection
problem. In fact, we incorporate options with di�erent
maturities into a portfolio that is regularly rebalanced
during the planning horizon. Moreover, in addition
to transaction costs pertaining to trading �nancial
assets, those pertaining to trading, as well as exercising
options, are carefully considered. Furthermore, the
temporal correlations and dependence structure of
return series are modelled in a careful manner.

The remainder of this paper is organized as
follows. Section 2 presents a stochastic programming
model for multi-period portfolio selection with options
and bounds on Greek letters. Section 3 discusses the
presented scenario generation method. In Section 4, a
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practical application of the proposed framework, the
presented model, as well as the scenario generation
method, on the New York Stock Exchange (NYSE)
is provided, and computational results are discussed.
Finally, Section 5 concludes the paper.

2. Multi-period portfolio model

To incorporate hedging decisions in the multi-period
portfolio selection problem, we use a stochastic pro-
gramming paradigm. In addition to determining the
optimal decisions for rebalancing �nancial assets, this
model can make optimal hedging decisions against
future uncertainties to provide overall risk manage-
ment. Greek letters play an important role in hedging
exposure to di�erent aspects of risk. Each Greek
letter measures the sensitivity of an option to a speci�c
variable.

2.1. Model assumptions
We consider an investor that has an initial wealth
and wants to maximize his/her wealth at the end
of a speci�ed period through investment in �nancial
markets. Moreover, he/she is going to control the
bankruptcy risk during the planning horizon. In fact,
this problem has a dynamic structure that involves
portfolio rebalancing decisions at periodic intervals in
response to new information on market conditions. We
assume that borrowing and short selling are not allowed
during the lifetime of the investment. Also, the investor
wants to exploit European style options to mitigate
market risk. We assume that options are issued with
di�erent maturities that are often more than a one time
period. Hence, they can be traded during their lifetime.
Note that when the clock advances one period, the time
to maturity of options decreases one period. Therefore,
the process of option pricing should be performed at the
beginning of each period.

Since transaction costs have a key role in re-
balancing decisions, proportional transaction costs are
charged for trading assets and taking long positions
in call and put options. Also, �xed transaction costs
are charged for taking long positions in call and put
options. The uncertainty of asset returns is represented
in terms of a scenario tree.

In Section 3, we elaborate on the proposed sce-
nario generation method and related concepts.

2.2. Greek letters for call and put options
Generally, Greek letters measure the sensitivity of
option prices to di�erent parameters. Di�erent hedging
strategies can be designed by controlling di�erent
aspects of risk with Greek letters. For a detailed dis-
cussion about Greek letters, one can refer to Hull [28].
We adapt the de�nitions to the problem under consid-
eration.

For a European call option, the �ve basic Greek

letters are de�ned as follows:

�sit�k = N(ds1;it�k); 
sit�k =
N 0(ds1;it�k)
P sit�si

p
�
;

�sit�k = �P
s
it�siN 0(ds1;it�k)

2
p
�

� rke�r�N(ds2;it�k);

�sit�k = k�e�r�N(ds2;it�k);

�sit�k = P sit
p
�N 0(ds1;it�k):

Also, they can be de�ned for a European put option as
follows:

�0sit�k = N(ds1;it�k)� 1; 
0sit�k =
N 0(ds1;it�k)
P sit�si

p
�
;

�0sit�k = �P
s
it�siN 0(ds1;it�k)

2
p
�

+ rke�r�N(�ds2;it�k);

�0sit�k = �k�e�rTN(ds2;it�k);

�0sit�k = P sit
p
�N 0(ds1;it�k);

where � , P sit, k, r and �si denote time to maturity,
price of asset i at time t under scenario s, exercise price
of option, interest rate, and volatility of asset i under
scenario s, respectively. Also:

N(x) =
Z x

�1
1

2
p
�
e� z

2
2 dz;

denotes the cumulative probability distribution func-
tion for a standard normal variable:

d1;it�k =
ln
�
P sit
k

�
+
�
r + (�si )2

2

�
�

�si
p
�

;

and:

d2;it�k = d1;it�k � �sip� :
Moreover, �sit�k, 
sit�k, �sit�k, �sit�k and �sit�k denote
Delta, Gamma, Theta, Rho and Vega of a call option
on underlying asset i at time t, with time to maturity �
and exercise price, k, respectively. Also, �0sit�k, 
0sit�k,
�0sit�k, �0sit�k and �0sit�k denote Delta, Gamma, Theta,
Rho and Vega of a put option on underlying asset
i at time t, with time to maturity � , and exercise
price, k, respectively. We can derive the values of
all Greek letters for the portfolio, as described later
in the mathematical programming formulation. As
mentioned above, in this study, we do not assume
volatility to be constant for all scenarios. In other
words, for each asset in any scenario, a di�erent
volatility, according to the asset prices in that scenario,
is considered. We replace � with �si , which denotes the
volatility of asset i under scenario s.
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2.3. Notations
Let I and S be the set of available assets and scenarios,
respectively. We use the following notations:

Deterministic input data:
W0 Investor initial wealth;
� Proportional transaction cost for sales

or purchases of asset i 2 I;

�0 Proportional transaction cost for
taking long positions in options issued
on asset i 2 I;

�00 Fixed transaction cost for taking long
positions in options issued on asset
i 2 I;

 i0 Initial market price of asset i 2 I;
�t Investor level of risk aversion at time t

(t = 1; � � � ; T );
�t Investor target wealth at time t

(t = 1; � � � ; T );
r Risk free interest rate;
�i0�k Price of call option on asset i 2 I

at t = 0, with time maturity � and
exercise price k 2 Ki;

�0i0�k Price of put option on asset i 2 I
at t = 0, with time maturity � and
exercise price k 2 Ki;

�u Upper risk bound for Delta of the
portfolio;

�l Lower risk bound for Delta of the
portfolio;

�u Upper risk bound for Gamma of the
portfolio;

�l Lower risk bound for Gamma of the
portfolio;

�u Upper risk bound for Theta of the
portfolio;

�l Lower risk bound for Theta of the
portfolio;

Pu Upper risk bound for Rho of the
portfolio;

Pl Lower risk bound for Rho of the
portfolio;

Ku Upper risk bound for Kappa of the
portfolio;

Kl Lower risk bound for Kappa of the
portfolio.

Scenario dependent parameters:
 sit Market price of asset i 2 I at period t

(t = 1; � � � ; T ) under scenario s;

�si;t;�;k Price of call option on asset i 2 I,
with time maturity � and exercise
price k 2 Ki at time period t
(t = 1; � � � ; T � 1 and � = t+ 1; � � � ; T )
under scenario s 2 S;

�0si;t;�;k Price of put option on asset i 2 I,
with time maturity � and exercise
price k 2 Ki at time period t
(t = 1; � � � ; T � 1 and � = t+ 1; � � � ; T )
under scenario s 2 S.

Decision variables:
xsit Amounts of asset i 2 I purchased at

t (t = 0; 1; � � � ; T � 1) under scenario
s 2 S;

xsft Amounts of investment in the risk free
asset at t (t = 0; 1; � � � ; T � 1) under
scenario s 2 S;

ysit Amounts of asset i 2 I sold at t
(t = 1; � � � ; T �1) under scenario s 2 S;

hsit Amounts of asset i 2 I held at t
(t = 0; 1; � � � ; T � 1) under scenario
s 2 S;

vsit�k Amounts of call option on asset i 2 I,
with time maturity � and exercise
price k 2 Ki held at time period t
(t = 0; 1; � � � ; T � 1 and � > t) under
scenario s 2 S;

wsit�k Amounts of put option on asset i 2 I,
with time maturity � and exercise
price k 2 Ki held at time period t
(t = 0; 1; � � � ; T and � > t) under
scenario s 2 S;

usit�k Number of long positions in call
options on asset i 2 I taken at period
t (t = 0; 1; � � � ; T � 1), with time
maturity � (� > t) and exercise price
k 2 Ki under scenario s 2 S;

csit�k Number of long positions in put
options on asset i 2 I taken at period
t (t = 0; 1; � � � ; T � 1), with time
maturity �(� > t) and exercise price
k 2 Ki under scenario s 2 S;

ms
itk Number of long positions in call

options on asset i 2 I, with exercise
price k 2 Ki exercised at time period t
(t = 1; � � � ; T ) under scenario s 2 S;

qsitk Number of long positions in put
options on asset i 2 I, with exercise
price k 2 Ki exercised at time period t
(t = 1; � � � ; T ) under scenario s 2 S;

V st Investor wealth at time t (t = 1; � � � ; T )
under scenario s 2 S;
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�s
t Delta of portfolio at period t

(t = 1; � � � ; T �1) under scenario s 2 S;
�st Gamma of portfolio at period t

(t = 1; � � � ; T �1) under scenario s 2 S;
�s
t Theta of portfolio at period t

(t = 1; � � � ; T �1) under scenario s 2 S;
P st Rho of portfolio at period t

(t = 1; � � � ; T �1) under scenario s 2 S;
Ks
t Kappa of portfolio at period t

(t = 1; � � � ; T �1) under scenario s 2 S.
Auxiliary variables:
Ct Auxiliary variable to make the

objective function linear (t = 1; � � � ; T ).

2.4. Computing values of Greek letters for the
portfolio

Eqs. (1) to (5) can be used to compute the values of
Greek letters:

�s
t =

nX
i=1

TX
�=t+1

X
k2Ki

vsit�k�
s
it�k

+
nX
i=1

TX
�=t+1

X
k2Ki

wsit�k�
0s
it�k;

s 2 S; t = 1; � � � ; T � 1; (1)

�st =
nX
i=1

TX
�=t+1

X
k2Ki

vsit�k

s
it�k

+
nX
i=1

TX
�=t+1

X
k2Ki

wsit�k

0s
it�k;

s 2 S; t = 1; � � � ; T � 1; (2)

�s
t =

nX
i=1

TX
�=t+1

X
k2Ki

vsit�k�
s
it�k

+
nX
i=1

TX
�=t+1

X
k2Ki

wsit�k�
0s
it�k;

s 2 S; t = 1; � � � ; T � 1; (3)

P st =
nX
i=1

TX
�=t+1

X
k2Ki

vsit�k�
s
it�k

+
nX
i=1

TX
�=t+1

X
k2Ki

wsit�k�
0s
it�k;

s 2 S; t = 1; � � � ; T � 1; (4)

Ks
t =

nX
i=1

TX
�=t+1

X
k2Ki

vsit�k�
s
it�k

+
nX
i=1

TX
�=t+1

X
k2Ki

wsit�k�
0s
it�k;

s 2 S; t = 1; � � � ; T � 1: (5)

2.5. Model formulation
In this paper, we are going to maximize investor
expected wealth at the end of the planning horizon,
while controlling the risk of investor bankruptcy during
the planning horizon. Zhu et al. [29] emphasized the
necessity of controlling investor bankruptcy risk in
intermediate periods of a long-term investment, since
it reduces the possibility that due to 
uctuations in
investor wealth, he/she becomes bankrupt. To control
the risk of investor bankruptcy, we use the expected
regret of investor wealth. A comparative discussion
between expected regret and Conditional Value-at-Risk
(CVaR) [30,31], a coherent and most popular risk
measure, was made by Testuri and Uryasev [32]. They
prove that an optimal portfolio in the CVaR sense is
also optimal in the expected regret sense for a given
target, and vice versa. In addition, expected regret can
be well adapted to dynamic stochastic programming
models. Ji et al. [33] minimized the expected regret of
investor wealth during the planning horizon. However,
the main objective of the investor, i.e. maximizing
terminal wealth, was neglected. In this paper, we use
a combination of expected �nal wealth and expected
regret of wealth, not only during the end-of-horizon
period, but also over the entire planning horizon. The
objective function of the proposed model is as follows:

max

0BBB@
SP
s=1

psV sT
TQ
p=1

(1 + rp)
�

SX
s=1

TX
t=1

�t

ps maxf�t � V st ; 0g
tQ

p=1
(1 + rp)

1CCCA : (6)

In fact, the objective function makes a tradeo� between
the present value of the expected terminal wealth (�rst
part) discounted by the risk free interest rate, and the
present value of investor expected regret, with a target
level of �t (second part) during the planning horizon.
The objective function is in line with the de�nition of
robust optimization introduced by Mulvey et al. [34].
The \max" operator in the second part of the objective
function will be linearized with an auxiliary variable,
Ct.
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The set of constraints for the proposed model are
as follows:

xsf0 +
nX
i=1

xsi0 i0(1 + �)

+
nX
i=1

TX
�=1

X
k2Ki

usi0�k�i0�k(1 + �0)

+
nX
i=1

TX
�=1

X
k2Ki

csi0�k�
0
i0�k(1 + �0) = W0

s = 1; � � � ; S; (7)

hsi;t�1 + xsit � ysit +
X
k2Ki

ms
itk �

X
k2Ki

qsitk = hsit

i=1; � � � ; n; t=1; � � � ; T; s=1; � � � ; S; (8)

vsit�k = vsi;t�1;�;k + usit�k i = 1; � � � ; n;
s=1; � � � ; S; t = 0; 1; � � � ; T � 1; k 2 Ki; (9)

wsit�k = wsi;t�1;�;k + csit�k i = 1; � � � ; n;
s = 1; � � � ; S; t = 0; 1; � � � ; T � 1; k 2 Ki; (10)

ms
itk � vsi;t�1;�;k i = 1; � � � ; n; s = 1; � � � ; S;
t = 1; � � � ; T; � = t; k 2 Ki; (11)

qsitk � wsi;t�1;�;k i = 1; � � � ; n; s = 1; � � � ; S;
t = 1; � � � ; T; � = t; k 2 Ki; (12)

xsf;t�1(1 + rt � !) +
nX
i=1

X
k2Ki

qsitkk

+
nX
i=1

 sity
s
it(1� �i) =

nX
i=1

 sitx
s
it(1 + �)

+
nX
i=1

TX
�=t+1

X
k2Ki

usit�k�
s
it�k(1 + �0)

+
nX
i=1

TX
�=t+1

X
k2Ki

usit�k�
00

+
nX
i=1

TX
�=t+1

X
k2Ki

csit�k�
0s
it�k(1 + �0)

+
nX
i=1

TX
�=t+1

X
k2Ki

csit�k�
00

+
nX
i=1

X
k2Ki

ms
itkk + xsft;

s = 1; � � � ; S; t = 1; � � � ; T; (13)

V st =xsft +
nX
i=1

hsit 
s
it

+
nX
i=1

TX
�=t+1

X
k2Ki

vsit�k max( si� � k; 0)
�Q

p=t+1
(1 + rp)

+
nX
i=1

TX
�=t+1

X
k2Ki

wsit�k max(k �  si� ; 0)
�Q

p=t+1
(1 + rp)

s = 1; � � � ; S; t = 0; 1; � � � ; T; (14)

�l � �s
t � �u; �l � �st � �u;

�l � �s
t � �u; P l � P st � Pu;

Kl � Ks
t � Ku;

s = 1; � � � ; S; t = 1; � � � ; T � 1; (15)

xsit = xs
0
it 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 0; � � � ; T � 1;

s; s0 = 1; � � � ; S; (16)

ysit = ys
0
it 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 0; � � � ; T � 1;

s; s0 = 1; � � � ; S; (17)

xsft = xs
0
ft 8s; s0 for which Bst = Bs

0
t

t = 0; � � � ; T � 1; s; s0 = 1; � � � ; S; (18)

usit�k = us
0
it�k 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 0; � � � ; T � 1; � > t;

s; s0 = 1; � � � ; S; k 2 Ki; (19)
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csit�k = cs
0
it�k 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 0; � � � ; T � 1; � > t;

s; s0 = 1; � � � ; S; k 2 Ki; (20)

vsit�k = vs
0
it�k 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 0; � � � ; T � 1; � > t;

s; s0 = 1; � � � ; S; k 2 Ki; (21)

wsit�k = ws
0
it�k 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 0; � � � ; T � 1; � > t;

s; s0 = 1; � � � ; S; k 2 Ki; (22)

ms
itk = ms0

itk 8s; s0 for which Bst = Bs
0
t

i = 1; � � � ; n; t = 1; � � � ; T;
s; s0 = 1; � � � ; S; k 2 Ki; (23)

qsitk = qs
0
itk 8s; s0 for which Bst = Bs

0
t

i = 1; � � � ; n; t = 1; � � � ; T;
s; s0 = 1; � � � ; S; k 2 Ki: (24)

First, the investor's initial wealth is utilized to con-
struct an initial portfolio. The construction of the
initial portfolio is performed regarding Eq. (7). We
assume that the initial wealth can be invested in risk
free and risky assets, as well as call and put options on
risky assets.

Also, we have an inventory equation for all assets.
Eq. (8) ensures the balance for quantities of all risky
assets during the planning horizon. The amount of
exercised call and put options at the current period are
also considered in Eq. (8).

Since we assume that the lifetime of each option
can be more than one period, information about
amounts of call and put options held at all periods
is required. Eqs. (9) and (10) calculate these holding
amounts for di�erent call and put options, respectively.
The investor is able to take long positions on di�erent
call and put options. In other words, di�erent options
can be purchased during their lifetime. This assump-
tion, considered in Eqs. (9) and (10), is in conformance
with real conditions in �nancial markets.

Eqs. (11) and (12) ensure that at each time period,
the amounts of call and put options exercised do not
exceed the holding amounts of these options in the
previous time period.

In the cash balance Eq. (13), the principal and
pro�ts of risk free investment and the funds provided by
exercising put options on hand and selling risky assets
are used to cover the expenditure for the purchase of
risky assets, taking long positions on call and put op-
tions, exercising call options on hand, and investment
in risk free assets. Linear transaction costs are charged
for purchases and sales of risky assets, as well as call
and put options. In addition, �xed transaction costs
are charged for purchases of call and put options.

Eq. (14) computes the portfolio value at the end
of time period t (t = 1; � � � ; T ) under scenario s 2 S.
The portfolio value represents the value of the risk free
asset, the market value of all risky asset holdings, as
well as the value of call and put option holdings.

Eq. (15) sets lower and upper bounds on values
of all Greek letters of the portfolio at time period t
(t = 1; � � � ; T ) under scenario s 2 S. The risk taking
investor can relax bounds on Greek letters and, if the
bounds approach in�nity, the associated constraints
will be redundant. Contrarily, if the bounds approach
zero, the investor will be risk neutral in terms of the
associated Greek letter.

Nonanticipativity constraints are important parts
of the stochastic programming models that should be
necessarily addressed. If two scenarios, s and s0,
are indistinguishable from the beginning to time t,
on the basis of information available at time t, then
the decision rendered for the two scenarios must be
identical from the beginning to time t. Let Bst denotes
a decision part of scenario s 2 S from the beginning to
time t. Eqs. (16) to (24) represent constraints that are
used to satisfy the nonanticipative condition.

In addition, all decision variables are considered
to be nonnegative. The constraints associated with this
assumption, as well as those pertaining to the amount
of holdings in the initial investment, are not mentioned
for reasons of brevity.

2.6. Pricing options on the scenario tree
A key part of incorporating option decisions into
multi-period portfolio optimization problems is the
appropriate valuation of call and put options. We use
the Black-Scholes model for pricing European call and
put options. The option pricing is done according to
the following formulas:

�sit�k =  sitN(a1)� ke�r(��t)N(a2); (25)

�0sit�k = ke�r(��t)N(�a2)�  sitN(�a2); (26)

a1 =
ln( sit=k) + (r + (�si )2=2)(� � t)

�ni
p
� � t ; (27)

a2 =
ln( sit=k)+(r�(�si )2=2)(��t)

�sit
p
� � t =a1��ni p��t;

(28)
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where, �sit�k and �0sit�k denote the prices of call and
put options issued on asset i (i = 1; � � � ; n), with time
to maturity �(� > t), and strike price k 2 Ki at
time period t (t = 0; 1; � � � ; T � 1), under scenario s
(s = 1; � � � ; S), respectively. In addition, N(:) denotes
the cumulative distribution function of the standard
normal distribution.

3. Scenario generation

Scenario generation is a key step in dealing with the
uncertainty of parameters in stochastic programming
models. A good scenario set provides the investor
with realistic future information about the market,
with which he/she can make better investment and
hedging decisions. Although we do not intend to make
a detailed discussion about scenario generation tech-
niques, some explanation regarding previous studies,
at least in the area of portfolio optimization, seem to
be unavoidable.

One popular scenario generation method used
in �nancial applications is moment matching, which
minimizes a distance measure between speci�ed sta-
tistical moments and statistical moments of generated
scenarios. This method was proposed by H�yland and
Wallace [35] and used widely in di�erent studies in the
area of �nance [27,36,37]. Also, some studies used the
moment matching in combination with other methods.
For instance, we can mention vector autoregression
(VAR) [33], K-means clustering [38] and scenario
reduction [39]. Regardless of its advantages, moment
matching has the important drawback of utilizing a
covariance matrix for modelling the dependence struc-
ture of returns. The covariance matrix is a useful tool
for modelling the dependence structure of normally
distributed data, since it only measures the linear
dependence of the data series. Thus, when the data
series are not normally distributed, there is not any
guarantee of appropriately capturing the dependence
structure of the data series with the moment matching
method. This issue is more important for �nancial data
series, since experience shows that �nancial data have
often fatter tails than normal distribution. This feature
is referred to as leptokurtic behavior.

Regardless of the important property of the �nan-
cial data series, some studies either explicitly assume
that they are normally distributed [33] or, without any
discussion about normality, use the special properties
of normal distributions for the data set under consid-
eration [40].

Temporal correlation is another important feature
of the data series that should be modelled properly.
This task is usually performed with time series mod-
els. Numbers of research work on applications of
time series in scenario generation can be found in
the literature, e.g. the VAR method [33,41] and the

hidden Markov model [42]. Generally, in �nancial time
series, a large change tends to be followed by large
changes, and vice versa. This characteristic is referred
to as volatility clustering or heteroskedasticity [43].
Thus, classic time series models often fail to model
temporal correlations of �nancial time series. To deal
with this speci�c feature of �nancial time series data,
the autoregressive conditional heteroskedastic (ARCH)
model of volatility was presented by Engle [44] and
further developed to the Generalized ARCH (GARCH)
model by Bollerslev [45]. A detailed discussion about
conditional heteroskedastic models and their extensions
can be found in Tsay [46]. A limited number of
studies use heteroskedastic time series models. Chen
and Yuen [47], Chen et al. [48] and Chen [49] used
the GARCH-type process and conditional sampling
to generate scenarios of risky asset returns. Yet,
most �nancial scenario generation procedures either
do not consider the temporal correlations of data
series [27,39,50] or use traditional homoskedastic time
series models to capture the temporal correlations of
data series [33,41]. In addition, there are some studies
that use reduction methods to provide an accurate
and computationally tractable set of scenarios. Beraldi
and Bruni [51] presented a reduction method based
on cluster analysis to obtain a set of scenarios in an
e�cacious, computationally e�cient manner.
In this study, a scenario generation method is adopted
that:

1. Uses Johnson transformation [52] to make asset
returns normally distributed. This enables the
decision maker to use especial properties of normal
distributions, e.g. a linear dependence structure of
normal distributions;

2. Utilizes ARMA/GARCH type models to properly
model temporal correlations of asset returns;

3. Utilizes Cholesky decomposition to generate a set
of scenarios, such that the dependence structure of
historical returns is preserved in the set of scenarios;

4. Preserves marginal distributions of historical data
in the set of scenarios.

The steps of the proposed scenario generation method
are as follows:

1. Transform all series of asset prices to asset returns
to provide a stable data set. Eq. (29) transforms
a price series into a return series:

Rit = log
�
Pi;t+1

Pit

�
; (29)

where Pit denotes the price of asset i in period
t, and Rit denotes the return of risky asset i in
period t.
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2. Use Johnson transformation to transform mar-
ginal distributions of random variables, which are
often nonnormal, to standard normal distribution.
This helps to simply model the dependence struc-
tures of di�erent return series.

Johnson transformation has the main ad-
vantage of enabling one to transform nonnormal
data into normal ones without identi�cation of
marginal distributions of the data series. This
makes the proposed methodology more accurate,
since it eliminates the errors associated with �tting
marginal distributions into the univariate data
series.

3. Fit ARMA/GARCH type models to the return
series. In this paper, ARMA/GARCH, ARMA
/EGARCH [53] and ARMA/GJR GARCH [54]
models are �tted to the return series and the
best �tted model is selected based on (AIC) and
Bayesian Information Criteria (BIC) [55]. Here,
Johnson transformation helps to �t time series
models with Gaussian innovations.

4. Determine the variance-covariance matrix of in-
novations generated via �tting ARMA/GARCH
type models in step 3. This helps one to generate
scenarios that preserve the dependence structure
of the historical data series.

The variance-covariance matrix is a symmet-
ric, square matrix composed of a set of blocks.
Each block demonstrates the dependence struc-
ture between two innovation series, based on a
de�nite number of lags. In fact, the size of
each block is (NL + NT ), where NL denotes the
number of positive and negative time lags whose
cross correlation is considered to be signi�cant.
NT denotes the number of periods for which the
scenario generation process is performed. The fol-
lowing matrix demonstrates the general structure
of a variance-covariance matrix for �ve innovation
series:

� =

266664
�11 �12 �13 �14 �15
�21 �22 �23 �24 �25
�31 �32 �33 �34 �35
�41 �42 �43 �44 �45
�51 �52 �53 �54 �55

377775 ;
where, each �ij , i; j 2 f1; 2; 3; 4; 5g, is a sub-
matrix, with the size NL + NT . Each entry of
�ij represents the covariance of the ith and jth
innovation series, based on a time lag equal to
k� l, where k and l represent the row and column
indices in �ij . When the absolute value of k � l
is greater than the maximum de�ned time lag of
signi�cant correlation, the associated entry of �ij
will be zero. For instance, suppose that �ij be an
8� 8 matrix, and, also, let the maximum time lag

of signi�cant correlation be 3. Matrix �ij will be
as follows:

�ij

=

2666666666664

C0
ij C1

ij C2
ij C3

ij 0 0 0 0
C�1
ij C0

ij C1
ij C2

ij C3
ij 0 0 0

C�2
ij C�1

ij C0
ij C1

ij C2
ij C3

ij 0 0
C�3
ij C�2

ij C�1
ij C0

ij C1
ij C2

ij C3
ij 0

0 C�3
ij C�2

ij C�1
ij C0

ij C1
ij C2

ij C3
ij

0 0 C�3
ij C�2

ij C�1
ij C0

ij C1
ij C2

ij
0 0 0 C�3

ij C�2
ij C�1

ij C0
ij C1

ij
0 0 0 0 C�3

ij C�2
ij C�1

ij C0
ij

3777777777775
;

where Cmij denotes the time lag-m covariance of
the ith and jth innovation series:

m 2 f�3;�2;�1; 0; 1; 2; 3g:
Here, we wish to describe how variance-cova-
riance matrix � can be used to generate the cross
correlated innovation series.

Suppose that there is a transformation ma-
trix, M, that makes a vector of independent
standard normal innovations, &, cross correlated,
as Eq. (30):

" = M&; (30)

where:

&nk�1 =
�
&tr1 &tr2 � � � &trn

�tr ;
denotes the vector of independent standard normal
innovations (white noise), and:

"nk�1 =
�
"tr1 "tr2 � � � "trn

�tr ;
denotes the vector of cross correlated innovations
with the symmetric variance-covariance matrix, �.

Taking variance from both sides of Eq. (30),
we get:

� = Mvar(&)Mtr; (31)

where, var(.) denotes the variance of input data.
We know that & is the vector of independent

standard normal innovations. Hence, var(&) is
equal to the identity matrix I. Therefore, Eq. (31)
becomes � = MIMtr, or:

� = MMtr: (32)

The variance-covariance matrix, �, is positive-
de�nite. Thus, it can be decomposed by Cholesky
decomposition, such that:

� = LLtr: (33)

A comparison of Eqs. (32) and (33) leads to
LLtr = MMtr and, consequently, L = M.�
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5. Use Cholesky decomposition on the variance-cova-
riance matrix � to obtain the lower triangular
matrix, M.

6. Construct the vector of innovations, &, of which
the number of coordinates is the same as the
size of the variance-covariance matrix. The �rst
NL coordinates of the vector are historical in-
novations, obtained from �tting the appropriate
ARMA/GARCH type model to the �rst series of
returns. The next NT coordinates of the vector are
standard normal innovations that have been gen-
erated independently. The next NL coordinates
of the vector are historical innovations, obtained
from �tting the appropriate ARMA/GARCH type
model to the second series of returns. Again, the
next NT coordinates of the vector are standard
normal innovations that have been generated in-
dependently. This procedure is repeated for other
return series until the vector of innovations is
completed.

7. Use the lower triangular matrix, M, obtained in
step 5, as well as the vector of innovations, &,
constructed in step 6, to generate cross correlated
innovations via Eq. (30).

8. Use cross correlated innovations, obtained in step
7, and the best �tted ARMA/GARCH type mod-
els, obtained in step 3, to simulate returns of
assets.

9. Use the inverse of the Johnson transformations,
used in step 2, to provide the scenario set re-
garding the original marginal distributions of asset
returns.

10. Repeat steps 6-9 until the preferred number of
scenarios is generated.

11. Use scenario reduction to convert the scenario fan
to a scenario tree that reasonably approximates
the original set of scenarios. In this paper, this
task is performed using the GAMS/ScenRed tool,
which is a prominent, widely used scenario reduc-
tion tool. For a more detailed discussion about the
algorithm of reducing a scenario fan to a scenario
tree, one can refer to Gr�owe-Kuska et al. [56].

Figure 1 shows a schematic representation of the
presented scenario tree generation method.

4. Computational results

In this section, the proposed model is implemented
with �ve stocks selected from the New York Stock
Exchange (NYSE) to assess the performance of di�er-
ent hedging strategies. First of all, the scenarios of
asset returns are generated. Then, the scenario set is
utilized to solve the proposed scenario based stochastic

Figure 1. The schematic representation of the proposed
scenario tree generation method.

programming model and assess the performance of
di�erent hedging strategies.

4.1. Generating scenarios of asset prices
We use the prices of �ve stocks of di�erent sectors,
AT&T, Inc. (T), The Boeing Company (BA), Bank of
America Corporation (BAC), Caterpillar Inc. (CAT)
and Citigroup, Inc. (C), from May 1, 1995 to May 1,
2013. All data are provided from �nance.yahoo.com,
and MATLAB 7.9 and Minitab 16 are used on a
computer with Intel C2D 2 GHz CPU and 2 GB RAM
to generate scenarios of asset returns.

To generate scenarios of asset returns, Eq. (29) is
used to convert asset prices to asset returns. Then,
the Johnson transformation is utilized to transform
marginal distributions of asset returns to the standard
normal distribution. Eq. (34) shows the unbounded
system of the Johnson transformation used in this
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Table 1. Johnson transformations used to make return series normally distributed.

Stock Johnson transformation
p-value

(Anderson-Darling
normality test)

T 0:0138785 + 1:18890� arcsinh ((R� 0:000246482)=0:00637721) 0.391
BA 0:0289165 + 1:38872� arcsinh ((R� 0:000369799)=0:00925504) 0.961

BAC 0:0327179 + 0:911502� arcsinh ((R� 0:000369799)=0:00581721) 0.936
CAT �0:0254359 + 1:42996� arcsinh ((R+ 0:000003624)=0:0104243) 0.968

C 0:00164829 + 0:984505� arcsinh ((R� 0:0000541525)=0:00696959) 0.305

study:

z = 
 + �arcsinh
�
x� �
�

�
; (34)

where z denotes the transformed value, 
 and �
denote shape parameters, and � and � denote loca-
tion and scale parameters. The parameters of these
transformations are optimized by Minitab 16 software.
Table 1 shows the optimum parameters of the Johnson
transformation used to make all return series normally
distributed.

The p-values of Anderson-Darling normality tests
con�rm the appropriate performance of Johnson trans-
formations.

Afterward, ARMA/GARCH, ARMA/EGARCH
and ARMA/GJR GARCH models are used to model
the dynamic behavior of the historical return series.
Then, the best �tted model is selected, based on two
penalized model selection criteria, the Bayesian Infor-
mation Criterion (BIC) and the Akaike Information
Criterion (AIC) [57]. Table 2 shows the best �tted
time series models, as well as their corresponding AIC
and BIC values.

Next, the residuals generated from �tting AR-
MA/GARCH type models that are cross correlated,
but not auto correlated, are used to calculate the
variance-covariance matrix, �. Here, the maximum
number of time lags for signi�cant correlation, NL,

and the number of periods for scenario generation, NT ,
are considered to be 10 and 50 periods, respectively.
Hence, the variance-covariance matrix of innovations �
is a 300� 300 matrix. After constructing the variance-
covariance matrix, �, Cholesky decomposition is used
to provide the lower triangular matrix, M. Then,
regarding step 6 of the scenario generation method, the
vector of innovations, &, is generated and pre-multiplied
by matrix M to make the innovations cross correlated.

Afterward, cross correlated innovations and for-
merly �tted ARMA/GARCH type models, mentioned
in Table 2, are used to simulate transformed returns
of stocks. Finally, simulated returns are transformed
to the return series with marginal distributions of
historical data. This step is performed using the inverse
of Johnson transformations, displayed in Table 1.

We repeat the above procedure providing 1000
scenarios of asset returns. Figures 1 and 2 compare
cross correlations of historical and simulated returns
for two random couples of stocks (T and C, BA and
BAC). Figures 2 and 3 show the identical dependence
structure of historical and simulated return series in
the case of these two couples of stocks. Thus, the
great performance of the scenario generation method
in preserving the dependence structure of the histor-
ical return series is con�rmed. This important issue
matters for other couples of stocks, whose �gures are
ignored for conciseness.

Table 2. The preferred time series models for modeling dynamic behavior of stock returns.

Stock
Selected

ARMA/GARCH
type model

Parameters
(p, q, r, s)

AIC BIC

T ARMA/GJR-GARCH
(Gaussian)

(1,1,1,1) 12175.73 12220.66

BA ARMA/GJR-GARCH
(Gaussian)

(0,0,1,1) 12406.05 12438.14

BAC ARMA/GJR-GARCH
(Gaussian)

(0,0,1,1) 11559.91 11592.01

CAT ARMA/GJR-GARCH
(Gaussian)

(0,0,1,1) 12499.19 12531.28

C ARMA/GJR-GARCH
(Gaussian)

(0,1,1,1) 11833.06 11871.57
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Figure 2. Cross correlations of (historical vs. simulated)
returns (T and C).

Figure 3. Cross correlations of (historical vs. simulated)
returns (BA and BAC).

Figures 4, 5 and 6 compare the estimates of the
Probability Density Function (PDF) for historical and
simulated returns of all stocks.

Although errors of transformation may a�ect the
results of the scenario generation method, Figures 4, 5
and 6 show the great performance of the method in
terms of preserving marginal distributions of the return
series.

After generating the large-sized scenario fan, the
GAMS/ScenRed tool is applied to reduce the set of
scenarios. This task may have two important advan-

tages. First, it can reduce the size of the scenario set
and speed up the calculation process, with a reasonably
good approximation of the original set. Second, it helps
to convert the scenario fan to a scenario tree, which can
be used to solve the presented multistage stochastic
programming model.

4.2. Model implementation
After implementing the scenario tree generation
method, the scenario tree is utilized to implement the
multistage portfolio optimization model with stocks
and options, and assess di�erent hedging strategies.
This task is performed by a GAMS 22.2, CPLEX
solver.

The investor is assumed to have W0 = 100 units
of money and wants to invest during the multi-period
planning horizon. Also, the target wealth in time t is
set as �t = (1 + 0:01t)W0 = 100 + t. Other parameter
values are set as � = 0:005, �0 = 0:01, �00 = 0:1, r =
0:01 and �t = 1 in the computational tests.

4.2.1. The assessment of stochastic modelling of the
problem

In this part, we utilize a prominent measure to assess
the performance of the stochastic model compared to
its deterministic counterpart. This measure is referred
to as Value of Stochastic Solution (VSS). To calculate
this measure, we consider a single-stage problem, in
which, the scenario tree acts like a scenario fan.
Consider the following stochastic program:

max cTx+ E�Q(x; �);

Ax = b;

x � 0;

where, � is a random variable whose realizations corre-
spond to various scenarios.

Here, all random variables are replaced by their
expected values. This is called the Expected Value
problem (EV) and simply de�ned as follows:

Figure 4. Historical vs. simulated returns for BAC (a) and CAT (b).
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Figure 5. Historical vs. simulated returns for T (a) and BA (b).

Figure 6. Historical vs. simulated returns for C.

EV = max
x

z(x; ��); (35)

where, �� = E(�) denotes the expectation of �. Let us
denote an optimal solution to Eq. (35) by �x(��). The
Value of the Stochastic Solution (VSS) measures how
good a decision �x(��) is in terms of Eq. (35). The
expected result of using the EV Solution (EEV) is
de�ned as follows:

EEV = E�
�
z
�
�x
���
�
; �
��
: (36)

Also, we de�ne the so-called here and now solution as
Eq. (37):

RP = max
x

E�z(x; �): (37)

The value of the stochastic solution is de�ned as
Eq. (38):

VSS = RP� EEV: (38)

We considered di�erent problems with 2, 3, 4, and 5
stocks, and generated single-stage scenario trees with
100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000

scenarios. The parameters of the model were set as
� = 0:005, �0 = 0:01, �00 = 0:01, and r = 0:01.
Table 3 presents EEV, RP, and VSS values of these
problems for an investor with 100 USD initial cash
holding.

The VSS results show that ignoring uncertainty in
the multistage portfolio optimization problem imposes
a remarkable cost to the investor. Also, they show that
when the size of the scenario set is changed, VSS does
not change a lot. Hence, VSS is stable with respect to
the size of the scenario set.

4.2.2. In-sample stability
Di Domenica et al. [58] provided a comprehensive
study regarding the issue of evaluation in scenario
based stochastic programming models. From now on,
we utilize a number of tests to assess the stability
and performance of the proposed scenario generation
method. The initial cash endowment is considered to
be 10000 USD.

Figure 6 shows the in-sample stability [59] of the
scenario generation method. In this regard, di�erent
scenario fans with three time periods are generated and
reduced to scenario trees with the same structures. The
procedure is utilized to generate 10 di�erent scenario
trees. Then, for each set, the stochastic programming
model is solved and the optimum objective value is
computed. As Figure 7 illustrates, optimum objective
values are rather close and do not change a lot.
Thus, the in-sample stability of the scenario generation
method is con�rmed.

In addition to the values of optimal objectives,
the stability of decisions should be assessed for all
scenario trees that have been generated. To assess
the stability of decisions in these scenario trees, the
decisions about asset holdings are recorded for each
node of each scenario tree. Then, for the last stage
of each scenario tree, the average of these holding
decisions is calculated. Table 4 provides a comparison
between the statistical characteristics of these recorded
decisions for all these scenario trees.
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Table 3. Value of Stochastic Solution (VSS) for di�erent sample problems.

Number of
scenarios

2 stocks 3 stocks 4 stocks 5 stocks
EEV RP VSS EEV RP VSS EEV RP VSS EEV RP VSS

100 103.66 106.43 2.78 104.81 107.46 2.66 107.29 110.30 3.01 108.38 111.65 3.27
200 103.38 106.31 2.93 104.50 107.45 2.94 107.09 110.23 3.14 108.61 112.00 3.39
300 103.15 106.21 3.06 104.33 107.38 3.05 106.81 110.07 3.26 108.28 111.78 3.50
400 103.24 106.25 3.01 104.40 107.45 3.05 107.01 110.55 3.53 108.49 111.98 3.49
500 103.16 106.21 3.05 104.37 107.42 3.05 106.95 110.20 3.25 108.42 111.90 3.47
600 103.29 106.30 3.01 104.51 107.51 3.01 107.07 110.28 3.21 108.53 111.96 3.43
700 103.24 106.28 3.04 104.48 107.48 3.01 107.01 110.22 3.21 108.47 111.90 3.43
800 103.33 106.37 3.04 104.58 107.60 3.02 107.14 110.38 3.24 108.60 112.05 3.45
900 103.35 106.36 3.01 104.61 107.60 2.98 107.23 110.43 3.20 108.71 112.13 3.41
1000 103.42 106.41 2.99 104.69 107.66 2.96 107.33 110.52 3.19 108.82 112.22 3.41

Table 4. Statistical characteristics (mean and standard deviation) of decisions on amounts of stock holdings for di�erent
scenario trees.

Scenario tree 1 2 3 4 5 6 7 8 9 10

T Mean 55.10 58.82 57.98 54.62 61.34 59.54 55.46 47.82 52.94 59.91
Standard deviation 4.03 2.37 3.91 3.24 4.22 3.48 2.77 4.25 3.19 3.98

BA Mean 24.73 21.01 19.81 26.05 21.01 22.06 23.53 38.15 24.17 22.40
Standard deviation 2.36 2.01 1.97 2.65 2.32 2.01 3.23 3.55 2.87 2.25

BAC Mean 103.36 105.04 108.76 100.84 103.36 100.96 107.56 80.42 103.36 99.51
Standard deviation 7.93 6.43 6.35 7.01 6.87 6.15 7.23 5.96 6.34 5.76

CAT Mean 26.05 29.41 33.61 26.89 30.25 31.37 26.79 15.78 30.25 32.44
Standard deviation 2.05 1.98 2.33 3.13 2.94 2.87 1.94 2.09 3.06 2.97

C Mean 37.82 36.97 42.02 43.70 40.34 36.88 43.61 59.06 42.81 40.25
Standard deviation 3.42 3.25 4.78 4.53 4.21 3.87 4.43 4.98 4.43 3.76

Figure 7. Di�erent objective values obtained by di�erent
scenario trees.

Table 4 shows that in all scenario trees, except
no. 8, the decisions of holding stocks change in�nitesi-
mally. Thus, it is concluded that the proposed scenario
tree generation method not only possesses the stability
of optimal objectives, but also explains that of optimal
decisions.

4.2.3. The role of options in risk reduction
To assess the role of options in the portfolio of un-
derlying assets, the trade-o� between investor wealth
and expected regret for both hedged and unhedged
portfolios is analysed. As mentioned before, we set the
target wealth of the investor as �t = 100 + t. Also, the
initial cash holding is considered to be 100 USD again.

4.2.3.1. Comparing e�cient frontiers
In order to compare hedged and unhedged portfolios,
we change the investor's target wealth level through
changing the coe�cient of the target. For di�erent
values of this coe�cient, the multistage stochastic pro-
gramming models are solved, and the investor's wealth
and regret for both hedged and unhedged portfolios
are recorded. Using the provided results, the e�cient
frontiers of both hedged and unhedged portfolios are
obtained. Figure 8 compares this trade-o�, in terms
of e�cient frontiers, in both hedged and unhedged
portfolios.

Such a comparison is referred to as a static
one. This arises from the fact that the analyses are
performed with one scenario tree in a special time of
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Figure 8. E�cient frontiers in both hedged and
unhedged portfolios.

the planning horizon. In other words, the role of time
is totally ignored. The comparison shows that for an
arbitrary target wealth for an investor, the hedged
portfolio contains a substantially lower level of risk
compared to the unhedged one. Hence, the important
role of options in mitigating market risk is con�rmed.

4.2.3.2. Investor's risk simulation
To make the decision maker con�dent about the per-
formance of the scenario generation method, as well as
the role of options in reducing investment risk, this
risk is simulated via a large out-of-sample scenario
tree. This should be performed for both hedged and
unhedged portfolios. In this regard, each multistage
stochastic programming model is separately solved.
Then, the �rst stage decisions are �xed, and the large
out-of-sample scenario tree is used to simulate risk
distribution in cases of both models.

Figure 9 presents a comparison between Cumula-
tive Distribution Functions (CDFs) of investor regret
for both in-sample and out-of-sample scenarios. In
both hedged and unhedged portfolios, the distribution

Figure 10. The box plot of investor's regret for both
hedged and unhedged portfolios.

of investor regret, obtained by simulation of decisions,
closely replicates that obtained by solving the original
stochastic programming model. Furthermore, this
�gure shows that inclusion of options in the portfolio
has a substantial in
uence on reducing the imposed risk
to the investor.

To provide a better view of the role of options in
risk reduction, the box plot of the simulated expected
regret is illustrated in Figure 10, in cases of both
hedged and unhedged portfolios. This �gure con�rms
the substantial in
uence of options in mitigating im-
posed risk for the investor.

4.2.4. Assessing hedging strategies via back-testing
simulations

In this paper, the performance of di�erent hedg-
ing strategies is dynamically assessed using di�erent
bounds on Greek letters. In this regard, in the upper
and lower bounds, each Greek letter is set to zero
during the planning horizon. This approach helps us
to dynamically examine Delta neutral, Gamma neutral,
Theta neutral, Rho neutral and Vega neutral strategies,
as well as a totally unhedged one.

Figure 9. Comparison of regret distributions (in-sample solution and out-of-sample simulation).
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None of the static tests can guarantee the ap-
propriate performance of the proposed model, as well
as the scenario tree generation method, in a long-
term planning horizon. They only provide an image
of the performance during a short-term horizon. To
dynamically assess di�erent hedging strategies, back-
testing simulations should be performed in case of all
hedging strategies. In this regard, each model should
be run on a rolling horizon basis, at each successive
month, in the period 06/2012{04/2014 (i.e. for a
total of 23 months). Starting with an initial cash
endowment, in June 2012, each model is executed to
decide the initial portfolio composition. The clock then
advances one period. The realized return of the optimal
portfolio is determined on the basis of the revealed
marketprices of the assets. A new scenario tree is then
generated using the proposed scenario tree generation
approach. With the new scenarios as input, and
using the portfolio composition resulting from previous
decisions as a starting point, the model is solved again.
The process is repeated for each successive period,
and the ex-post realized returns are recorded. Thus,
the back-testing simulations demonstrate the actual
returns that would have been realized had the decisions
of the models been implemented during the simulation
period, 06/2012{04/2014.

Figure 11 shows the ex-post realized returns of
optimal portfolios with di�erent hedging strategies.

Figure 11. The ex-post realized performance of di�erent
hedging strategies in multistage models.

The results clearly illustrate that the totally unhedged
approach performs badly compared to strategies that
use options for hedging exposure to market risk.

Figure 11 illustrates that the theta neutral strat-
egy is the best among all hedging strategies. It arises
from the fact that the market is highly volatile during
the planning horizon. The theta neutral strategy could
appropriately control these volatilities and perform
better than other hedging strategies.

Finally, we compute some measures to compare
the overall performance of di�erent hedging strategies.
Speci�cally, we consider the following measures of
the ex-postrealized returns over the simulation period:
standard deviation, Sharpe ratio and the upside poten-
tial and downside risk (UP) ratio proposed by Sortino
and van der Meeer [60]. This ratio contrasts the upside
potential against as speci�c target (benchmark) with
the shortfall risk against the same target. The U Pratio
is computed as follows. Let rt be the realized return of
a portfolio in month t = 1; � � � ; k of the simulation,
where k is the number of periods in the simulation
period, 06/2012{04/2014. Let �t be the return of the
benchmark (riskless asset) at the same period. Then,
the UP ratio is:

1
k

kP
t=1

max(0; rt � �t)s
1
k

kP
t=1

[max(0; rt � �t)]2
:

The numerator is the average excess return compared
to the benchmark, re
ecting the upside potential.
The denominator is a measure of downside risk, as
proposed in Sortino et al. [61], and can be thought of
as a shortfall risk compared to the benchmark. The
performance measures from the simulation results are
reported in Table 5.

Table 5 shows that the Theta neutral hedging
strategy is the best, in terms of Sharpe ratio, while
it is the 2nd and 3rd best in terms of UP ratio and
standard deviation with slight, insigni�cant di�erences.
These results are in conformance with those obtained
from Figure 10.

5. Conclusions

This paper presents a multi-period portfolio optimiza-
tion model composed of some options and underlying

Table 5. Statistical characteristics of realized monthly returns.

Delta
neutral

Gamma
neutral

Theta
neutral

Rho
neutral

Vega
neutral

Standard deviation 0.265 0.267 0.267 0.271 0.264
Sharpe ratio 0.615 0.597 0.633 0.584 0.587
UP ratio 0.111 0.114 0.112 0.102 0.111
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assets to which the options are issued. In addition,
a new method is presented to generate scenario trees
of asset returns. In fact, scenarios of asset returns
are generated, so that the properties of �nancial
asset returns, e.g. non-constant volatility and non-
normal, heavy-tailed distributions, are considered, and
their temporal correlations, dependence structure and
marginal distributions are also preserved. Di�erent
hedging strategies, referred to as Greek letters, are
implemented and compared via the proposed model.
The study attempts to take real conditions of �nancial
markets into consideration and present a more realistic
model than those previously presented. For instance,
the investor could purchase option contracts during
their lifetime. Furthermore, in addition to transaction
costs considered for trading stocks, �xed and propor-
tional ones are also considered for trading options.

Computational results show the high performance
of the scenario generation method. Moreover, mea-
suring VSS for di�erent scenario sets shows that ig-
noring uncertainty imposes a remarkable cost onto the
investor. Also, the in-sample stability of the scenario
generation method is shown. Then, the important role
of options in mitigating the market risk is con�rmed
through comparing e�cient frontiers and simulating
the investor's expected regret, in cases of both hedged
and unhedged portfolios. Finally, options are utilized
to assess di�erent hedging strategies, referred to as
Greek letters, during the planning horizon. In this
regard, back-testing simulations are used to provide ex-
post realized returns of the portfolio through adopting
di�erent hedging strategies. According to back-testing
simulations, the Theta neutral strategy seems to be the
best, since it can take advantage of the high volatilities
of the market and perform better than other hedging
strategies.
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Appendix A

Johnson transformation

The Johnson system utilizes three families of distribu-
tion to transform variables to standard normal distri-
bution. The standard normal variables are generated
by transformations of the following form:
z = 
 + �ki(x;�; "); (A.1)

where, z is a standard normal variable and ki(x;�; ")
is chosen to cover a wide range of possible shapes.
Johnson suggested the following functions:

k1(x;�; ") = arcsinh
�
x� "
�

�
; (A.2)

k2(x;�; ") = ln
�

x� "
�+ "� x

�
; (A.3)

k3(x;�; ") = ln
�
x� "
�

�
: (A.4)

These functions are referred to as the SU distribution,
SB distribution and SL distribution, respectively.

Consider any of these transformations. For any
�xed positive value of z, points �3z, �z, +z and +3z
determine three intervals with equal length. Any of
these transformations yields four values of x which are
no longer equally spaced. Let x�3z, x�z, xz and x3z
be the values corresponding to �3z, �z, +z and +3z
under any transformation. Let:

m = x3z � xz;
n = x�z � x�3z;

p = xz � x�z: (A.5)

It can be proved that for any SU distribution, mn
p2 >

1, for any SB distribution, mn
p2 < 1 and for any SL

distribution, mn
p2 = 1. This property can be used to

discriminate among the three families.
To select the appropriate transformation, a value

of z is chosen. Then, from the tables of areas for
standard normal distribution, percentages '& , corre-
sponding to & = �3z;�z; z and 3z, are determined.
For each &, percentile x(i), corresponding to '& , is
obtained using the relationship '& = (i � 1=2)=N ,
where N is the number of data points, and x& is set
equal to x(i). Since i is not necessarily an integer,
interpolation may be required. Afterwards, the sample
values of m, n and p are computed with Eq. (A.5) and
the appropriate transformation is selected. Since the
probability that mn

p2 = 1 is zero, if one wishes to use
SL distribution, it will be necessary to allow a tolerance
interval around 1.

After the selection process is completed, the
next problem is to estimate parameters of the chosen
distribution. There exist various parameter estimation
techniques for the Johnson system. Here, a uniform
approach of matching percentiles is introduced. The
estimates are given in terms of the chosen value of
z and the formerly computed values of m, n and
p.

For each family, the formulas are obtained by
starting with a given Johnson distribution and �xed
positive z, and then solving explicitly for the param-
eters in terms of z and the population values of m,
n and p. It should be mentioned that the parameter
values are functions of m, n and p, which, in turn, are
functions of x�3z, x�z, xz and x3z.

For the three families, the estimations are given
by the following formulas:

(a) Johnson unbounded system (SU distribution)

z = 
 + �arcsinh
�
x� "
�

�
: (A.6)

Estimates of the parameters in this case are as
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follows:

� =
2z

arccosh
�
m
2p + n

2p

� (� > 0); (A.7)


 = �arcsinh

0B@ n
p � m

p

2
�
mn
p2 � 1

�1=2

1CA ; (A.8)
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+

p
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p � m
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2
�
m
p + n

p � 2
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(b) Johnson bounded system (SB distribution):

z = 
 + � ln
�

x� "
�+ "� x

�
: (A.11)

Estimates of the parameters in this case are as
follows:

� =
z

arccosh
�

1
2
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(c) Johnson log-normal system (SL distribution):

z = 
 + � ln(x� "): (A.16)

Note that in case of a log-normal system, we have:

n
p

=
p
m
:

Estimates of the parameters in this case are as
follows:
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� ; (A.17)
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