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Abstract. A phenomenological model of visual perceptual dynamics is proposed based
upon the Cellular Automata (CA) which considers the anatomical connections between
visual areas of the macaque brain. Some other important characteristics of neural networks
of the brain are also included in the model, such as the excitatory-inhibitory ratio of neural
populations, synaptic delays, etc. A new form of \geometric mean interaction rules" among
neural populations is also introduced which could be considered more realistic than current
\arithmetic mean-based rules". This computational model is capable of showing interesting
dynamical behaviors, seen in the visual perceptual states of the brain.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

The exploration to understand and somehow control bi-
ological systems, using fundamentals from physics and
mathematics, has a long history [1]. Among biological
systems, the mammalian brain, because of its vastly
complex structure and its perfect and stable function,
has attracted a special attention. Researchers try to
mainly understand and mimic some behavioral and
dynamical aspects of the brain by some appropriate
computational models [1].

Cellular Automaton (CA) is a mathematical tool
to model systems with many simple elements working
together and creating a global evolutionary pattern of
behavior [2]. The CA, �rstly introduced by Stanislaw
Ulam and John von Neumann in 1940s, went under
more systematic study by Stephen Wolfram in 1980s.
A classic CA is created from N cells, each of them
having one of the prede�ned discrete possible states
(e.g. 0 and 1) in each evolutionary time step. Cells take
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e�ect from a pre-de�ned neighborhood around them
and can change their initial state into the next state
based upon an \interaction rule" with respect to their
neighborhood. Nowadays, more generalized versions
of the CA are becoming popular, such as probabilistic
CA, continuous CA, CA with dynamic rules, etc. [3].

Employing CA in the �eld of neuroscience has
shown successful results in the interpretation of some
cognitive aspects of the brain [4-8]. Compared to
other computational models, such as Arti�cial Neural
Networks (ANN), Spiking Neural Networks (SNN),
Coupled Neural Networks (CNNs), and Globally Cou-
pled Maps (GCM), a cellular automaton could be
considered as a more general form since it is capable to
have properties of all the above-mentioned approaches.

We have proposed that an appropriate form of
CA could be used in modeling the visual perceptual
dynamics [9]. In this paper, we show that by consid-
ering the real anatomical connections among the brain
networks and using them carefully in the structure of
CA, a well representative model for visual perception
can be represented, both structurally and dynamically.

It has already been demonstrated that brain
dynamics (which are re
ected in EEG, MEG, and
ECoG signals) are inherently chaotic [10]. As we



Beigzadeh and Hashemi Golpayegani/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2492{2504 2493

perceive di�erent sensory information (i.e. scenes,
sounds, odors, etc.) and recognize di�erent patterns,
these dynamical processes tend to turn into a more
regular pattern. This stage has been referred by
other researchers as: \the transients between gas-like
randomness and liquid-like order" [11]. According
to such paradigm, each stimulus would tend to lead
the system to its own \liquid-like attractor". Liquid-
like attractors, corresponding to each stimulus, are
di�erent from each other. Therefore, after the sensorial
stimuli, the brain dynamics would start a search in its
general chaotic basin of attraction and �nally release
into its appropriate attractor and recognize that special
stimulus.

The proposed computational model tries to main-
tain these attractors and show the possibility of dy-
namical transitions between them by changing the
parameter values of the model or the initial condition.
Since the structure of the proposed model is tried to
be imitated from the structure and connections of the
visual system, those dynamical behaviors produced by
the model could be related to visual dynamics. When
a visual stimulus comes, the \visual pathways" will
interact with that stimuli and will make responses that
create those kinds of global dynamical behaviors.

The most important property of CA in modeling
complex multi-agent systems is its ability to imitate the
\interaction" between those agents to some extent. It
means that in the CA, we are able to de�ne and adjust
di�erent (mostly simple) interaction rules among the
agents. In this way, we can make each agent \bifurcate"
and change patterns of behavior. Interactions among
the neural networks of the brain may result into many
perceptual, cognitive, and motor behaviors.

Connectivity plays an important role in large
networked dynamical systems [1]. That is why in bio-
logical systems (such as brain networks) the structural
(anatomical) and the functional connectivity patterns
are being studied with great interest [12-15]. In mod-
eling approaches, we should �rstly determine the con-
nection pattern and relationships between the elements
and then de�ne how these { anatomically/functionally
{ connected networks could make the dynamical be-
havior of each element and the whole network evolve
in time. In this work, we adopt the real anatomical
connection matrix of the macaque visual system for
our modeling (the work published by Felleman and
Essen [16]).

The remainder of this paper is organized as
follows: In Section 2, we will introduce our proposed
model completely. The main structure of the network
and its elements are illustrated in Section 2.1, and then
in Sections 2.2 through 2.4, more details are discussed
which include: in-layer and between-layer connections,
interaction rules of the CA, and �nally, the way of
considering delays in the network.

Section 3 contains the numerical results and
simulations of the model. The numerical studies are
based on presenting the time series, phase portraits
and bifurcation diagrams, and frequency content and
synchronization patterns of the network, in di�erent
conditions, trying to show the capabilities of the model
to mimic the visual perceptual dynamics (chaotic and
other types of more regular attractors). Finally, in
Section 4, we will have the conclusion and more
discussions about the whole proposal.

2. The proposed model

In this section, we introduce our model of visual
perception using anatomical connectivity matrix on
a cellular automaton platform. This model tries to
mimic the dynamical behaviors that happen during
visual perceptual states. As mentioned before, we
are going to use an anatomical connectivity matrix
of the macaque visual cortex in our modeling, which
has been extracted from the study of Essen and
Felleman [16]. The result of their study on macaque
visual cortex was a 35�35 connection matrix (see
Appendix A) corresponding to di�erent cortical areas
in the occipital, temporal, parietal, and frontal cortex
of the macaque. This 35�35 connection matrix was
then modi�ed into a simpler 30�30 one by Sporns
(this connection matrix could be downloaded from:
https://sites.google.com/site/bctnet/datasets) [17] in
which the uncertain and not-connected pathways has
been omitted. In the new modi�ed and simpli�ed
connection matrix, each element could be equal to 0
or 1. Zero values denote a \no-connection" situation,
and non-zero ones correspond to a valid connection
between two nodes. This connection matrix has shown
to have the \small world" properties which is necessary
for the brain to show many of its functional properties,
such as synchronization [18].

The building blocks of our model are chosen to
be of a well-known dynamical model: the logistic map
(Eq. (1)), in order to represent \netlets" (populations
of 100-1000 excitatory and inhibitory neurons). Netlets
were introduced by Hrath in 1970 to describe the
activation of an excitatory-inhibitory population of
neurons in the cortex [19-20]. Later, this concept
was used in a computational model for visual cortex
by Pashaie and Farhat [21]. In their approach, each
netlet is supposed to work as a Complex Process-
ing Element (CPE) which is modeled by the logistic
map:

X(n+ 1) = pX(n) (1�X(n)) : (1)

The reason for using logistic map as the model of a
netlet's dynamics is discussed here. It has been shown
that the expectation value of netlet activity could be
modeled by Eq. (2) [19-20]:
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In this formulation, �n is the activation of an isolated
netlet at time step n, and < �n+1 > is its expected
value at time step n + 1. Parameter h stands for the
fraction of inhibitory neurons in the netlet, �+ (and
��) is the average number of neurons in the netlet
with a�erent connections from a given excitatory
(inhibitory) neuron in the netlet. Parameter �0 is the
minimum number of excitatory and inhibitory inputs
necessary to trigger a neuron which has received m
inhibitory inputs, and �nally, M is the total number
of inhibitory connections [21].

Graphs of <�n+1> versus �n for a netlet with the
same amount of excitatory and inhibitory connections
\�+ = �� = 10" and \h = 0:3" are shown in
Figure 1(a). It can be seen that the shapes of
these curves could be considered very similar to the
plots of the well-known logistic map, for normalized p
parameters between 0 and 1 (Figure 1(b)).

2.1. The main structure of the network and its
elements

Based on the anatomical connections described before,
our model is considered to have 30 layers, each corre-
sponding to one of the areas in the occipital, temporal,

parietal, and frontal cortex (in summary, in the visual
system) of the macaque brain (see Appendix A). There
are N dynamical agents corresponding to N netlets in
each layer. The generalized form of coupled logistic
maps would be:

xl;m(n+ 1) = pl;mxl;m(n) (1� xl;m(n)) ;

l = 1; :::; 30; m = 1; :::; N;

pl;m = f (neighbors of element xl;m); (3)

in which xl;m(n) corresponds to the activation of
element m in layer l, at time step n, and pl;m, the
coupling factor, is a function of its neighbors' activities.

Note that the parameter p (the environmental
parameter) is the main source of changing dynamics
(and creating bifurcations) in the conventional logistic
map (Eq. (1)) which can make period-1, period-2 ...
and chaotic attractors (see the bifurcation diagram of
Figure 2). Therefore, it is clear that if we want to model
the \interactive" e�ects of \the environment" on each
agent of the network, we have to change the value of
pl;m in an appropriate manner for each agent (based
on the activities of the other a�ecting agents on it).

2.2. Inter-layer and intra-layer connections
The relationships between layers are determined by the
connection matrix C (Appendix A). In this way, if two
layers are connected to each other, the value of C is
considered to be 1, and if they are not anatomically
connected, the corresponding C element will be consid-
ered to be 0. But, the connected areas may a�ect each
other not equally. So, we have to attribute a weight or

Figure 1. (a) Fraction of the active nodes of a netlet, with the same amount of excitatory and inhibitory connections, at
the moment n+ 1 as a function of active nodes at the previous moment. Di�erent curves correspond to di�erent numbers
of presynaptic spikes that are necessary to elicit a postsynaptic spike. (b) Group of quadratic functions employed in the
generation of the logistic map (in the form of xn+1 = 4�xn(1� xn)). The curves in this �gure are quadratic functions that
are plotted for di�erent values assigned to the bifurcation parameter � (adopted from [21]).
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Figure 2. The bifurcation diagram of the conventional
logistic map X(k + 1) = pX(k)(1�X(k)), due to the
bifurcation parameter, p.

a strength parameter to those connections in the form
of a weight matrix W . These weights are considered
to be random values between 0 and 1. Since we have
not inserted any learning algorithm in this model yet,
these weights are considered to be �xed during the CA
evolution.

We also tried to make the model closer to the
reality by considering both excitatory and inhibitory
connections between the agents. It is well-known that
the balance between excitatory and inhibitory neurons
in the cortex is almost 70-30% [22], or 80-20% [23-
24], respectively. Therefore, among all connections,
80% were considered to be excitatory and 20% to be
inhibitory.

It also should be emphasized that although the
number of inhibitory connections is less than that of
the excitatory ones, the inhibitory synapses play a very
important role in the behavior of the brain. That is why
we considered the amplitudes of the inhibitory weights
to be larger than those of the excitatory ones (in the
order of 7-8 times larger) to take their importance into
account. The same concept has also been reported in
other related works [1].

2.3. Interaction rules
As it was discussed earlier, the most important part of
CA based modeling is the determination of interaction
rules among the agents. We mentioned at the end
of Section 2.1 that if we want to simulate the e�ect
of environment on each logistic-type agent, we would
better change the value of pl;m of element m in layer l.

Based on the bifurcation diagram of Figure 2,
in the conventional logistic map (Eq. (1)), if p >
3:56 (for example p = 4), chaos is observed (which
can be interpreted as a model of chaotic bursts seen
in the active state of neural populations), and if
p = 1, a stable period-1 behavior is achieved which

can be related to the fully recognizing state of the
netlet [21].

This was used by Lopez et al. to construct their
interesting interaction rule among the logistic-type
agents in the modeling of bi-stability in the brain [4].
Lopez used two linear relationships in order to simulate
the excitatory and inhibitory forms of interaction as
follows:

Lopez interaction rules [4]. For agent i of the N ele-
ments in a network, we have xin+1 = �pixin(1 � xin), in
which the value �pi is the e�ect of other Ni neighboring
elements on xin. This net-e�ect could be excitatory
or inhibitory. This function is selected to be a linear
function depending on the actual \local mean value",
Xi
n of the neighboring signal activity, and expanding

the interval pi 2 [0; 1] into �pi 2 [0; 4] in the form below:(
�pi = pi(3Xi

n + 1) Excitation coupling
�pi = pi(�3Xi

n + 4) Inhibition coupling
(4)

in which Xi
n = round( 1

Ni

PNi
j=1 x

j
n) is inherently a

Boolean operator comparing 1
Ni

PNi
j=1 x

j
n with threshold

0.5 (therefore, the value of Xi
n could only be equal to 0

or 1).
In this way, the values of (3Xi

n+1) and (�3Xi
n+

4) will always be either 1 or 4, based on the mean ac-
tivities of the neighbors and their interaction type (i.e.
excitation or inhibition). Therefore, the interaction
of neighbors could make the target agent become silent
(when �pi = 1�pi) or become active in a bursting pattern
(when �pi = 4 � pi). Di�erent dynamical behaviors for
each element could be reached by changing the value of
pi between [0,1] as the bifurcation parameter.

Most of the researchers, like Lopez, have used those
rules in a \fully excitatory or fully inhibitory" network
with random or regular connections. But, here, we have
considered our model to be more realistic, structurally
in four aspects:

1. Having 80% excitatory and 20% inhibitory netlets
(based on physiological data), instead of fully exci-
tatory or fully inhibitory networks;

2. Using the anatomical connections which, compared
to a completely ordered or a fully random network,
have a more similar connectivity pattern to the
brain and have proved to have small world prop-
erties [18,25];

3. Adopting a weighted matrix as inter-layer and
intra-layer coupling strength among netlets, instead
of considering all connections to be identical;

4. Considering some time delays among netlets (see
Section 2.4) based on synaptic delays.
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However, the most important and novel di�erence
of our proposed model, compared to other similar
models of neural dynamics, is the way we de�ne
\interaction rules" among those agents in the evolution
of our CA:

The proposed interaction rules. We use a modi�ed
version of the idea of coupled logistic maps in a com-
pletely di�erent framework, which we think is a more
realistic one, using a \multiplicative relationship" and
a \geometric mean" instead of the popular \additive
relationship" and \arithmetic mean", to model the total
e�ect of the neighbors on each agent.

For an element xin in a network of N coupled
logistic-type agents, we have:

xin+1 = �pi � xin � (1� xin):

The net e�ect of excitatory-inhibitory connections from
the neighbors is re
ected in the value of �pi in the form
of:

�pi=pi
�

(Necx+Ninh)
q

�Necx
j=1 Xi

j;exc ��Ninh
j=1 Xi

j;inh

�
: (5)

This is a \geometric mean" among the neighbors!
We will discuss later that the geometric mean

could be a more realistic form of interaction in our
model. We borrow a modi�ed version of the de�nition
of excitation and inhibition from the work of Lopez [4]:(

Xi
j;exc =

�
3(xin > the) + 1

�
Excitation coupling

Xi
j;inh =

��3(xin > thi) + 4
�

Inhibition coupling

Therefore, instead of using the very popular threshold
value \0.5" in the Boolean operator like this:

round(xjn) = (xjn > 0:5):

We suggest using two di�erent \adaptive" threshold
values of the and thi for excitatory and inhibitory
synapses, respectively. This could be generally more
realistic, because there is no reason that all synapses
have the same threshold of th = 0:5 to start activation.
Besides, we do this comparison for \each neighbor"
independently, compared to the work of Lopez in which
the \arithmetic mean" of the neighbors was compared
to the threshold.

The output values of Xi
j;exc (and Xi

j;inh) for each
neighbor could be equal to 4 or 1 (1 or 4) based on the
values of xjn, the, and thi, and also the prede�ned type
of the connections (excitatory or inhibitory). There-
fore, by selecting pi 2 [0; 1], we will have �pi 2 [0; 4].

We believe that the geometric mean is a more re-
alistic interaction rule than the arithmetic mean in
our application. Here, we are going to discuss this

issue. Consider we want to a�ect a logistic-type
agent (change its dynamical behavior) by changing its
environmental parameter, p. Consider this element has
Ninh inhibitory and Necx excitatory neighbors. If we
use an arithmetic model of interaction, we simply have
to use the-weighted-sum of all excitatory-inhibitory
e�ects as follows:

Xi
n =

������ 1
Necx

NecxX
j=1

wjxjn � 1
Ninh

NinhX
j=1

wjxjn

������ : (6)

And use it in a suitable coded form in the logistic equa-
tion, like Eq. (4). But this form of mean value fades
or degrades the independent e�ect of each individual
neighbor on the target element xi. However, when a
multiplicative interaction in the form of a geometric
mean is used, each neighbor is compared to its own
threshold value and after that, it could a�ect the target
directly. This e�ect could be studied, independently of
others without being faded or degraded by them, since
all of them take part in the �nal production as:

Xi
n = (Necx+Ninh)

q
�Necx
j=1 Xi

j;exc ��Ninh
j=1 Xi

j;inh:

Another potential advantage of this form of coupling
is its capability to create complex behaviors of the
neural populations because of its \nonlinearity", as the
whole system is highly nonlinear (compare this with the
simpler linear weighted sum of Eq. (6)).

2.4. Time delays
Timings of the activation and inactivation of neurons
play a very important role in the overall dynamics
of the whole system [26]. This is mainly because
of the synaptic delays. On one hand, most of the
computational neuroscientists discard delays as some
unimportant thing that only complicates modeling.
From a mathematical point of view, a system with de-
lays is not �nite -but in�nite- dimensional which poses
some mathematical and simulation di�culties [26]. On
the other hand, others argue that an in�nite dimen-
sionality of spiking networks with axonal delays is not
a disadvantage, but an immense advantage that results
in an unprecedented information capacity. Izhikevich
even claims that there are some stable �ring patterns
that are not possible without those delays [26]. Neither
are we going to neglect the intrinsic role of the delays
in the neural system.

In the original form of netlets' activation function
(Eq. (2)), for which we used logistic equation as the
model, the time has been quantized in units of the
synaptic delay � , and it is assumed that the neurons can
�re only at times which are integral multiples of [20].
Therefore, each discrete time step in the logistic map
refers to the continuous time interval of � . Hence,
the discrete value of n corresponds to t = n� in the
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continuous time scale. But what is the value of �
itself?

Some researchers argue that the synaptic delays
and the refractory periods generally are found to be
close to 0.5 ms and 1 ms, respectively [20]. Another
report about this quantity is of the order of 1-3 ms [1].
But the report of Izhikevich from the synaptic delays
seems more realistic, since it covers a broader interval
and talks mainly about the neocortex: \A careful
measurement of axonal conduction delays in the mam-
malian neocortex showed that they could be as small
as 0.1 ms and as large as 44 ms, depending on the type
and location of the neurons" [26].

In our work, we considered the speci�c value of
� � 10 ms as the \mean" time interval between two ac-
tivations. This value is important and mainly adopted
because we are going to use the time delays present
\between" processing layers of the visual system in our
model. The latencies between the processing layers of
the ventral pathway in the visual system have been
reported in [27,28] and could be seen schematically
in Figure 3. We used this platform in order to
estimate the other latencies between the layers of our
model.

It should be emphasized here that although our
model is a behavioral and functional one, we are trying
to use as much structural and physiological data as
possible, because in any complex system, the structure
could not be separated from the function. Based upon

Figure 3. Latencies between the layered structure of the
ventral pathway (from retina to STPa) in milliseconds
(adopted from [28]).

the above discussion and by using the data in Figure 3
and the connection matrix of macaque visual cortex,
we estimated the other between-layer latencies in the
form of discrete time steps of our logistic-type model
(see Table 1).

By using the above updating rules for each ele-
ment of our cellular automata, we are now ready to
simulate the proposed model and validate some of our

Table 1. Travel time from retina to di�erent visual processing layers of our model (�rst row: in mili-seconds, second row
(k-steps): in the discrete time interval, normalized to the time unit � = 10 ms). The bold columns contain the exact values
from Figure 3; other columns are estimated based on the bold ones: (a) Occipital cortex, (b) temporal cortex, and (c)
parietal and frontal cortex.

(a)

Occipital

From retina to: V1 V2 V3 V4 VIA V4 VOT V4L MT

ms 30 40 42 43
40-50

43 45 46 46 48

k-steps 3 4 4 4 4 5 5 5 5

(b)

Temporal

From retina to: FST PITd PITv CITd CITv AITd AITv STPp STPa TF TH

ms 50 50
50-60

55
50-60

60
50-70

65
50-70

70
60-90

80
60-90

75 90
70-100

100 100

k-steps 5 5 6 6 7 7 8 8 9 10 10

(c)

Parietal Frontal

From retina to: MSTd MSTI PO PIP LIP VIP DP 7a FEF 46

ms 100 100 100 100 100 100 100 100 100 100

k-steps 10 10 10 10 10 10 10 10 10 10
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Table 2. The simulation framework and the selected values of parameters.

Parameter Value Parameter Value

Number of layers 30 Connection weights Random values in
the [0,1] interval

Connection matrix
between layers

30�30 C, from
macaque visual cortex

Inhibitory to excitatory
weights ratio

7-8

Number of netlets
in each layer

N = 5 Mean synaptic delays
(in-layer delays)

10 ms

Ratio of excitatory to
inhibitory synapses

4 Between layers
latencies

Based on Table 2

p Identical for all agents,
changing from 0 to 1

Interaction rule Geometric mean
thi 0.05
the 0.8

statements about the applicability of such a model in
mimicking the visual perceptual dynamics.

3. Simulation results

The summary of our selected values of parameters and
the global framework of modeling are shown in Table 2.
Under these situations, the whole model is capable
of showing di�erent kinds of dynamical behaviors and
attractors depending on di�erent perceptual situations.

In our �rst experiments, we supposed that all
agents in all layers were in the form of Eq. (3), in which
pl;m = �pi from Eq. (5), and they all had the same value
of parameter pj = p (see Eq. (5)). Then, we studied
di�erent behaviors of the CA using the bifurcation
diagram due to parameter p. After that, di�erent
values of pl;m were studied in the model. The output
value selected for this model is considered to be \the
mean activation of the whole network in each iteration"
as an estimation of cortical electrical activities recorded
by the EEG or ECoG electrodes [11]. We also study
the synchronization and desynchronization properties
of the netlets using correlation values in di�erent
environmental situations [11,29]. The detailed results
are presented in the following sub-sections.

3.1. Di�erent dynamics, bifurcation diagram
The bifurcation diagram of CA under the conditions
described in the previous sub-section is presented in
Figure 4. Here, all of the agents are considered
to have the same value of p. The network starts
from some random initial conditions and evolves to
its attractor after 500 iterations. We use the last
200 samples as the attractor (i.e. omit the �rst 300
samples as the transient part). CA update is performed
synchronously. It can be seen from the bifurcation
diagram that the system is capable of showing di�erent
dynamical states which any of them could be inter-
preted as one of the widespread perceptual states of
the visual system.

Figure 4. Bifurcation diagram of the CA as a function of
control parameter, p (threshold values are set to thi = 0:8,
the = 0:05). The values of p are scanned with 0.05 steps
from p = 0 to p = 0:7 in order to save time and with 0.01
steps from p = 0:71 to p = 0:99, in order to observe more
details. The CA is evolved for 500 iterations for each value
of p, and the �nal 200 samples are plotted (i.e. 300
samples are considered as transient). The bifurcation
diagram is plotted for random initial conditions.

In Figure 5(a), the CA shows a period-1 behavior
around p = 0:7. This period-1, or �xed point behavior,
could be representative of a state in which the visual
system settles into a �xed attractor, i.e. recognizes
a stimulus. Figure 5(b), on the other hand, shows
a period-2 situation for p = 0:83 which can be a
model of bi-stable perception. Bi-stability and multi-
stability, in general, is an interesting phenomenon
studied in the literature with great interest in recent
years [4,30,31].

For example, a bi-stable perception can happen in
the visual system of a person, while he/she is looking
at the simple shape of Figure 6. In this shape, the
perceptual dynamics switch between the image of \two
faces" and the image of \a vase" in the middle part.
Any of these perceptions can be modeled as one of
the stable states in the period-2 region of CA. The
perceptual system of the brain switches between these
two stable points in a periodic way which represents
the period-2 solution. The more complex situation of
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Figure 5. Di�erent dynamical behaviors of the CA for 500 iterations from the initial condition (for threshold values of
thi = 0:8 and the = 0:05). Top plot: the time series (by omitting �rst 300 samples as the transient part), Bottom plot: the
phase portrait (i.e. x(k + 1) versus x(k)): (a) Period-1 for p = 0:7; (b) period-2 for p = 0:83; (c) period-4 for p = 0:86; (d)
two-part non-periodic attractor for p = 0:89; and (e)-(f) chaotic attractors for p = 0:93 and p = 0:95, respectively.

period-4, which is indicative of a 4-stable situation,
occurs for p = 0:86 (Figure 5(c)).

But the most interesting behaviors can be seen
in Figure 5(d)-(f) as the non-periodic cases. It can be
seen in Figure 5(d) that for p = 0:89, a two-part non-
periodic attractor appears which could be interpreted
as a \blur" bi-stable perception of a stimulus, or a 2-
tori quasi periodic response when our visual system has

not reached a single decision about a stimulus and is
searching around two possible answers!

Figure 5(e) and (f) show a chaotic attractor. We
can interpret this attractor as the baseline behavior
of the brain, when it has not been encountered with
a new stimulus. This baseline is the main dynamical
state of the brain, from which it could be attenuated
due to an external stimuli (scene, odor, etc.). Hence,



2500 Beigzadeh and Hashemi Golpayegani/Scientia Iranica, Transactions D: Computer Science & ... 22 (2015) 2492{2504

Figure 6. A bi-stable perceptual situation could occur by
the visual system in the observation of this simple shape:
a vase or two faces? This bi-stability could be modeled by
the period-2 behavior of the CA model.

in the presence of an external stimulus, this attrac-
tor changes into one (or some) ordered attractor(s),
called liquid-like quasi-attractors, corresponding to
that speci�c stimulus [10,11]. Then, it again comes
back to this baseline chaotic attractor in order to
be ready to interact with the next and next changes
in the environment. The real chaotic dynamic of
the brain could be interpreted as the searching state
of the brain in its basin of attraction, coming into
and going beyond the chaotic and non-chaotic attrac-
tors.

It could be seen in Figure 7 that the frequency
content of this chaotic signal is comparable with the
1
f� , � � 2 spectrum that is seen in the normal EEG
signal [8].

3.2. A more realistic situation
In the previous part, like many other related
works [4,21], we assumed that all of the agents have
the same bifurcation parameter p (that is 8jpj = p
in Eq. (5), which then would be used in Eq. (3)

in the form of pl;m � �pj). Indeed, this could
not be the real situation; there is no reason for all
neural populations to have the same value of p in
general. Rather, the dynamical state and properties
of each neural population may be di�erent from the
others. Hence, a more realistic approach in modeling
is to consider each agent to have its own value of p
which is not necessarily equal to those of the other
agents.

In order to do that, we considered some ran-
dom values for parameter p of each agent (p 2
[0; 1]). The result could resemble the behavior of
real EEG signals in the form of its spectra and
the synchronization-desynchronization patterns of 150
agents. This can mimic the functional relationships
and synchrony among di�erent neural populations of
the visual system (Figure 8). We should emphasize
that we are not talking about the synchronization of
the whole network; rather we are talking about the
occurrence of some \transient synchrony" among \a
number of neural populations", not all of them. These
partial synchronization-desynchronizations of neural
populations maintain the whole dynamical behavior of
the brain.

The synchronization pattern is calculated be-
tween each agent and the mean activation of the
network (the ensemble), in a window size of 50 samples,
for a total size of 450 iterations (by the \xcorr" Matlab
function) [29].

4. Conclusion

A model of visual perceptual dynamics based on
cellular automata was introduced. The model is a
behavioral and phenomenological model which tries to
take into account as much physiological and anatomical
considerations as possible, such as anatomical connec-
tion matrix of macaque visual cortex, netlet dynam-
ics, excitatory-inhibitory synapses with appropriate
ratio and weights, in-layer delays and between-layer

Figure 7. (a) EEG spectra for di�erent EEG electrodes, recorded in a visual task. (b) The spectra of the chaotic output
signal of CA, for p = 0:95, which could be considered to have a 1

f� form, comparable with the normal EEG.
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Figure 8. (a) The time evolution and the phase portrait of the chaotic output signal of CA with di�erent values of
parameter p for each agent (values are selected randomly between 0-1). (b) The spectra of part (a). (c) The
synchronization-desynchronization pattern of all agents during the evolution of CA in 450 steps, in terms of correlation
coe�cient measure using a 50 step window.

latencies. This model is one of the most complete
models proposed for neural dynamics which considers
anatomical connections in combination with a CA
approach using chaotic maps.

One of the most important advantages of us-
ing CA for our modeling was cellular automaton, a
modeling tool capable of modeling large scale complex
systems which gives the ability to study the system
from microscopic to mesoscopic and macroscopic levels.
It also makes it possible to de�ne and tune the appro-
priate interaction rules in order to reach the desired
behavior for the whole system.

We introduced a new interaction rule based upon
the \geometric mean" value (a nonlinear synaptic func-
tion) and multiplicative relationship among the agents.
We claim that it can be more realistic than the previous
arithmetic mean and linear interaction rules, because
it gives the possibility of changing and studying each
neighbor, individually, without being degraded by the
others. We also used adaptive thresholds in our
synaptic decision makings. We should clarify here
that the meaning of \adaptability in thresholds" in
our paper is that we did not limit ourselves to use

only the popular threshold of 0.5. We would rather
choose di�erent values of threshold for excitatory and
inhibitory synapses which are not necessarily equal
to 0.5.

It was shown that the proposed model was capable
of showing di�erent dynamical behaviors seen in visual
perceptual framework, from a �xed stable attractor
to bi-stable, multi-stable, and chaotic behaviors. The
chaotic signal was shown to have a 1

f� form of fre-
quency spectrum comparable with the spectrum of a
normal EEG. We also showed that the synchronization-
desynchronization pattern of the agents in their evolu-
tion could resemble - visually - the real patterns seen
among EEG electrode signals during visual tasks.

The future works on this model should consider
the e�ects of learning and seeing di�erent scenes on
the model parameters, based on a suitable learning
approach such as STDP. It may also be developed
by considering two-dimensional CAs instead of current
one-dimensional form, for each layer. Besides, some
visual perceptual de�cits, such as face recognition prob-
lems, seen in the Autism disorder may be behaviorally
modeled by this model in the future.
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Appendix A

Table A.1 is a connectivity matrix for interconnections
between areas in the macaque visual cortex. Each
row shows whether the area listed on the left sends

outputs to the areas listed along the top. Conversely,
each column shows whether the area listed on the top
receives input from the areas listed along the left. (Y)
symbols indicate a pathway that has been reported in
1 or more full-length manuscripts. Small plus symbols
indicate pathways only in abstracts or unpublished
studies. Stars (*) indicate pathways explicitly tested
and found to be absent. Blanks indicate pathways
not carefully tested. Question marks (?) denote path-
ways whose existence is uncertain owing to con
icting
reports in the literature. \NR" and \NR?" indicate
nonreciprocal pathways, i.e. connections absent in
the indicated direction, even though the reciprocal
connection, has been reported. Shaded boxes along the
diagonal represent intrinsic circuitry that exists within
each area: These are not indicated among pathways
tabulated in the following table, adopted from [16],
and reproduced in order to make the resolution better.
Green rows and columns are those which are omitted
and make the �nal matrix a 30�30 one.

Table A.1. The 35�35 connectivity matrix of Felleman and Essen [16].
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