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Abstract. In this paper, a method using an evolutionary algorithm to automatically
set-up the color-feature model of an omnidirectional vision system will be introduced. The
mentioned method, in addition to avoiding the issue of over-reliance on lighting conditions
when the soccer robot is performing image processing, can also very e�ectively speed up the
parameter setup procedure of the robot vision system. Hence, when the robot is moving
in the soccer �eld, it can �nish target object detection and self-localization in real time. In
order to verify the e�ectiveness of the mentioned method, tests have been conducted under
di�erent bad lighting conditions, and the experimental results show that the soccer robot
can always set up the parameters of the vision system. It can also set up the color-feature
model that is applicable to the operational environment at that moment and detect target
objects such as goals and the �eld. Meanwhile, through relative location between detected
target objects and the robot, self-localization and path planning can be �nished.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

The design of intelligent robots has become one of
the developmental focuses of international academic
research and industry application in recent years,
and some advanced industrialized countries have even
treated robot competitions as a strategic means to
promote domestic creativity teaching. Currently, there
are two robot-soccer associations, RoboCup and FIRA,
devoting to the promotion of robot soccer games [1,2],
and each year, international cup robot soccer games
and international forums are held regularly for the
exchange of research results. The robot soccer game
is interdisciplinary integrated research work covering
arti�cial intelligence, automatic control, image process-
ing, mechanism design, sensor systems and electronic
communication. The holding of robot soccer games can
internationally promote and stimulate the exchange
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and development of technology related to arti�cial
intelligence, the strength design of mechanisms and
multi-sensor system applications. In order to allow
robots the means to play soccer in the soccer �eld in-
dependently, from a practical design aspect, the robot
must be able to, from image analysis results, decide the
movement direction of the robot body. Meanwhile, it
must be able to implement functions such as path plan-
ning, avoiding obstacles and dynamic object tracking.
Moreover, cooperative strategies among several soccer
robots, such as assisting, defending and ball passing,
should also be considered. The design process can not
only e�ectively enhance the students' implementation
capability, but can also help the incubation of creativity
and a collaborative spirit. Hence, its importance has
received more and more attention from both academia
and industry.

The design of a vision system is core technology
for a robot. Although academia has spent several
decades studying human vision systems, the related
functions and principles of the human eye still cannot
be fully understood. Hence, the use of machine vision
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to simulate human vision is a pretty tough challenge.
After a robot has used a vision system to complete the
image analysis of the peripheral environment, based on
recognition and judgment, the robot can then make a
correct response. For video input amounts of 30 images
per second, if massive features need to be found and
compared for each image, it is not di�cult to imagine
that there is a huge amount of image and operational
data hidden behind the vision system of the robot. Not
only this, during the processing process, if situations
such as optical source conditions or vision angles
change, or if the sudden disappearance or emergence of
objects in the environment are encountered, a exible
response is needed. That is, when the visional system
of a robot is facing environmental changes, its image
processing must be very robust. Only when the robot
can process environmental uncertainty correctly can its
utility goal be reached.

In the �eld of the robot soccer game of the
FIRA association, the appearance of target objects is
distinguished by speci�c colors. Here, the robot is
black, the soccer �eld is a green background painted
with white lines, the soccer ball is orange, and the gates
at both sides of the �eld are, respectively, yellow and
blue. Therefore, if the robot is to have the capability
of identifying the target object in the soccer �eld, the
simplest method is to use the color information of the
target object as a feature. After the image is acquired
by the omnidirectional camera at the top of the robot,
the image information will be transmitted through
the YUV color system, and then converted into the
RGB color system to be used by the subsequent image
analysis module. Digital images, using the RGB color
system, could be easily and signi�cantly a�ected by
optical beam changes. Hence, before performing image
analysis, we will �rst use the look-up table method
to perform color space transformation from RGB to
HSV, so as to reduce the inuence of brightness on
the color of the object [3]. After completing image
transformation, we need to set up the upper and lower
limit values of the color of each target object, and set up
the color-feature model. Using the setup color feature
model, we can then detect and extract target objects,
such as balls and gates, from di�erent input images.
The process is shown in Figure 1.

Figure 1. The setup process of the color-feature model of
the FIRA robot system.

In the current architecture of FIRA medium-
sized soccer robots, the participant must, based on the
lighting condition of the operation site, manually set
up, one by one, the color range value of each robot on
all the target objects in the soccer �eld, in order to
set up a color-feature model that can meet the needs.
Such a model construction method, based on the trial
and error method, is very tedious and time-consuming.
In fact, in the current rules, even in the indoor game,
the luminance of the game site still allows a di�erence
within 300 lumens. Hence, the light source within the
environment of the game site is not uniform and consis-
tent. As the robot moves in the soccer �eld constantly,
the gray levels and hues of the omnidirectional image
acquired will change accordingly, too. Hence, over-
simpli�ed video processing architecture cannot satisfy
the current situation. It is estimated that several
years in the future, the game of a medium-sized soccer
robot group will be all in natural light instead of a
stable indoor lighting source, and this will bring more
stringent challenges to the vision system design of the
robot.

The evolutionary computing technique is an op-
timal solution search mechanism that is constructed
based on a biological evolutionary concept. All kinds
of di�cult combinatorial optimization problems can be
solved by its use. After almost 30 years of e�ort, evo-
lutionary computing has its own unique research �eld,
which includes Evolution Strategy (ES), Evolutionary
Programming (EP), Genetic Algorithm (GA), Simu-
lated Annealing (SA), PSO [4], and Ant Colony Opti-
mization (ACO). All these computing techniques have
respective advantages and disadvantages: Take GA, for
example, it has advantages such as a parallel multi-
point search and easy integration with other methods.
However, the convergence speed at solving problems
is not so good. Although SA has better convergence
characteristics, parallel implementation is di�cult [5].
Some scholars try to use the swarm intelligent behavior
of natural phenomena to develop a hybrid optimization
algorithm [6,7], so that complementary e�ects, among
di�erent methods, can be achieved. PSO, among lots of
algorithms, has characteristics such as less parameter
settings, robustness and high convergence speed [8].
Currently, in academia, much research has applied PSO
in image processing, with larger amounts of computing
data, in pattern recognition or video processing [9-12],
and all results prove that it has a good performance on
complicated problems.

In the present paper, we have presented a de-
sign method for a robot evolutionary vision system
based on PSO, which allows the robot to, before the
operation, follow the light source environment, and
make automatic evolutions for the needed color-feature
model. Hence, it can replace the traditional time-
consuming method based on trial and error for all
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Figure 2. FIRA medium-sized soccer robot: (a) Hardware architecture; and (b) actual appearance.

kinds of parameter setup. Eventually, the robot can
be more robust to cope with future ever complicated
and changing game environments.

2. Introduction of FIRA medium-sized soccer
robot system

The architecture of FIRA medium-sized soccer robots
can be divided into a top layer omnidirectional vision
system, a motor drive module and a bottom layer om-
nidirectional moving mechanism. Figure 2(a) and (b)
show its appearance.

2.1. Omnidirectional vision system
A Medium-sized soccer robot uses an omnidirectional
camera to construct a vision system to acquire images
in the peripheral environment. The output NTSC
analog signal, after A/D conversion into a digital signal
and after image processing and analysis, will be able to
display the information of the environment. Robots
equipped with omnidirectional cameras, during the
game process, do not need to rotate the camera specif-
ically to know the peripheral images of 360 degrees,
which e�ectively enhances its detection capability and
change-coping speed within the environment. The
horizontal vision of an omnidirectional camera is 360
degrees, and the vertical vision is -10 degrees to 55
degrees, which are shown in Figure 3(a). Since an
omnidirectional mirror has its image formed through
optical reection of the peripheral image, which leads
to serious distortion on the actually observed image,
its image formation is of concentric divergence, and an
object that has longer distance from the robot body
itself will receive more serious distortion, as shown in
Figure 3(b).

Figure 3. Omnidirectional visional system: (a)
Appearance of omnidirectional visional camera; and (b)
omnidirectional image.

2.2. Motor drive module and omnidirectional
moving mechanism

This study has used an Altera Nios II Development
board to construct a motor drive module to control
the rotation of the motor. The four-wheeled omni-
directional chassis structure allows the robot to make
360 degrees omnidirectional movements on the ground.
Thus, the mobility of the robot is e�ectively enhanced.
Figure 4 shows the relationship between the four-
wheeled chassis design structure and velocity vectors,
and the four-wheeled movement equation is represented
in Eq. (1) [13-15]:2664v1

v2
v3
v4
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where vi is the moving velocity of the ith wheel; _xm
is the moving speed of the robot on the xm axis; _ym
is the moving speed of the robot on the ym axis; _'
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Figure 4. The correlation between the four-wheeled
omnidirectional chassis structure and velocity vectors.

is the rotational angular velocity of the robot; L is
the distance from the omnidirectional wheel to the
omnidirectional movement robot chassis center O; R
is the radii of the omnidirectional wheel; and _�i is the
rotational angular speed of the ith wheel.

3. Using PSO to construct the vision system

3.1. Particle swarm optimization
Since Kenney and Eberhart developed the PSO in 1995,
it is regarded as an evolutionary computation technique
to solve many optimal problems. Based on imitation
of simpli�ed social models, PSO can be considered
a swarm-based learning scheme, like �sh schooling
and bird ocking. According to the natural foraging
behavior of bird ocking, birds �nd food by ocking
(not by each individual). In the PSO learning process,
each single solution is a bird, referred to as a particle.
This PSO learning algorithm simulates the swarm-like
behavior of natural creatures. The individual particles
y gradually towards the positions of their own and
their neighbors' best previous experiences in a huge
search space. From this study, it shows that the
PSO is given more opportunity to \y" into desired
areas to get better solutions. Therefore, PSO can
discover reasonable solutions much faster than other
evolutionary algorithms. Like GA, the PSO needs
to de�ne a proper �tness function that evaluates the
quality of every particle's position. The position,
called the global best (gbest), is the one which has
the highest �tness value among the entire swarm.
The location, called the personal best (pbest), is the
one which has each particle's best experience. Based
on every particle's momentum, and the inuence of
both personal best (pbest) and global best (gbest)
solutions, every particle adjusts its velocity vector at
each iteration. The PSO learning formula is described

as follows [4,9]:

Vi;m(t+ 1) = �:Vi;m(t) + c1 � rand( )

� (pbesti;m(t)�Xi;m(t)) + c2 � rand( )

� (gbestm(t)�Xi;m(t)); (2)

Xi;m(t+ 1) = Xi;m(t) + Vi;m(t+ 1); (3)

where m is the dimensional number; i denotes the ith
particle in the population; V is the velocity vector; X is
the position vector; � is the inertia factor; and c1 and c2
are the cognitive and social learning rates, respectively.
Note that these two rates control the relative inuence
of the memory of particles and the neighborhood.

3.2. Using PSO to automatically set up a
color-feature model

As shown in Figure 1, soccer robot uses the color
information of the target object to recognize the object.
Hence, before each driving of the robot, we have to
follow the lighting conditions at that time within the
HSV color space and aim at each target object to set up
a suitable color-feature model. The HSV color system
is formed by information, such as Hue, Saturation and
Value, and its advantage is in separating the brightness
component from the color information. Hence, the
inuences of lighting change can be reduced. When
these three basic attributes are used to describe the
color, it can better �t human sensory recognition,
compared to the RGB color system. After completing
construction of the color feature model, the soccer
robot can use it to analyze the image, and the speci�c
target object meeting the threshold condition can then
be recognized.

In this paper, we have used PSO to realize an
evolutionary vision system, so that the robot can follow
the lighting condition of the environment it is in to
make automatic evolutions of the color-feature model
it needs. The architecture is shown in Figure 5. Before
the start of a game, when both the ball and the robot
are settled at �xed positions, at this moment, the soccer
robot can, through the PSO algorithm, set up the
needed color-feature model to complete the parameter
setup procedure before the game.

3.2.1. Encoding of the particle
To achieve the goal of using the PSO algorithm to
make the automatic evolution of a color-feature model,
we �rst have to generate an initial population, and
the encoding value of each particle in the population
represents the solution parameters of a di�erent color-
feature model. Evaluation of the capability to success-
fully extract the target objects is its adaptability to
the environment. The encoding form of the particle is
shown in Figure 6. According to practical operational
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Figure 5. An evolutionary visional system architecture diagram based on the PSO algorithm.

Figure 6. The encoding form of particle.

experience, we have found that under most conditions,
when the upper limit values of parameters, such as the
saturation and value of the color-feature model, are
�xed at maximal values (i.e. Smax = 100, Vmax = 100),
it facilitate extraction of the target objects. Therefore,
in this research, we have set up the encoding values of
the particles as the set of the upper and lower limit val-
ues of Hue, and the lower threshold values of saturation
and value; that is, X = fHmax;Hmin; Smin; Vming, and
0 5 H 5 360, 0 5 Smin < 100, and 0 5 Vmin < 100.

3.2.2. Fitness function evaluation
The �tness function, in the PSO algorithm, is an
index used to assess the �tness of a particle to its
environment. In this paper, we have used the target
object image extracted from an optimal color-feature
model using experience value as a template. Then, it

is compared, one by one, to the target object image
extracted by each particle in the PSO population, to
calculate the similarity between each other. Hence,
the corresponding �tness value can then be obtained.
Eqs. (4) and (5) have explained the method, using
implementation of the operation of image subtraction
to assess the di�erence of two target object images:

d(fTemplate; fobtained)

=
MX
i=1

NX
j=1

jfTemplate(i; j)� fobtained(i; j)j ; (4)

Fitness =
1

d(fTemplate; fobtained) + eps
; (5)

where \eps" represents an extremely small value, and
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fTemplate is the standard extracted result of the target
objects.

The color-feature model of the soccer robot should
be set up completely, according to the lighting condi-
tions, before the game. After the ball and the soccer
robot are settled, the robot will then start to perform
the automatic setup procedure of the color-feature
model. In the setup method, each particle in the PSO
algorithm represents a di�erent color-feature parameter
set. Then, the parameter set, aiming at the acquired
image, can obtain the extracted result, fobtained, for
the target object. This result will then be compared to
the standard extracted result, fTemplate, which is stored
in advance in the robot. Then, an evaluation value of
superior or inferior performance can be obtained. After
the �nishing of the iteration procedure, the optimal
solution can be used to obtain the applicable color-
feature model under that lighting condition. Figure 7
illustrates the use of the image subtraction method for
assessing the �tness value of the particle. In this �gure,
the encoding value of each particle corresponds to the
extraction judgment condition of one set of the target
object. After the subtraction is made between the
extracted target object image and the sample image,
the di�erence pixels are represented by red. When the
red block is larger, it means the error is larger, hence,
the particle should have a smaller �tness value. On the

contrary, when the red block is smaller, it means the
�tness value is larger.

After completing all particle �tness value assess-
ments, the next thing is to follow Eqs. (2) and (3)
to correct the position and movement velocity of all
the particles in the population. The search direction
will, in the iterative process, gradually approach the
position of global optimum.

4. Implementation results and discussions

Figure 8(a) is an omnidirectional image obtained un-
der ideal lighting conditions, and Table 1 shows the
parameter values of the color-feature model setup
using trial and error. Using the extraction rules in

Table 1. The parameter values of the color-feature model
under ideal lighting conditions.

Ball Goal (yellow) Goal (blue) Field

Hmax 24 100 244 164
Hmin 343 54 153 97
Smax 100 100 100 100
Smin 69 55 68 68
Vmax 100 100 100 100
Vmin 13 23 16 18

Figure 7. The calculation of the di�erence among images to get the �tness function assessment result.

Figure 8. Omnidirectional image under ideal lighting conditions: (a) The original image; (b) the extraction result of
target objects; and (c) the recognition result.
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Figure 9. Target objects detection result after lighting conditions change: (a) Brighter lighting condition; (b) the
extraction result of the target objects; and (c) the recognition result.

Figure 10. Target objects detection result after lighting conditions change: (a) Darker lighting condition; (b) the
extraction result of the target objects; and (c) the recognition result.

Table 1, we can obtain the extraction results of target
objects, such as the ball, the goals and the �eld, as in
Figure 8(b). After con�rming the block position of the
target objects, from information, such as distance and
relative angle of the center point pixel of the acquired
image (Figure 8(c)), we can then calculate the actual
distance and relative position of the target object in
the soccer �eld.

Since the lighting conditions of the soccer �eld
usually change, along with the game time or game site,
usually, when the lighting conditions are changed, the
originally setup color-feature model will have di�culty
in detecting the target object successfully. Figure 9(a)
and Figure 10(a) show, under somehow brighter and
darker lighting conditions, cases when the color-feature
model of Table 1 is used to undertake target object
detection. It is clear that most target objects can no
longer be extracted successfully, and the results are as
shown in Figure 9(b)-(c) and Figure 10(b)-(c). In the
example of Figure 9, only the ball and the �eld can
be successfully detected, and all the blue and yellow
gates cannot be detected. Figure 10 is an example
of the failed detection of a yellow gate, and the blue
gate and �eld block in this case cannot all be fully
acquired.

In order to avoid the inuence of lighting condi-
tion changes on the vision system of the soccer robot,
and the subsequent failure of analysis of the peripheral
environment using preset judgment conditions, in this
research, we have used the PSO algorithm to set up a
color-feature model dynamically. Hence, we can cope
with the change in lighting conditions to perform the
parameter adjustment of the model. In the experiment,

Table 2. The parameter values of the color-feature model
obtained under brighter lighting condition.

Ball Goal
(yellow)

Goal
(blue)

Field

Hmax 74 100 258 150

Hmin 290 36 180 95

Smax 100 100 100 100

Smin 5 58 46 43

Vmax 100 100 100 100

Vmin 86 52 41 52

we have set up the number of particles of PSO to be
equal to 20, the iteration number = 50, and c1 = c2 =
1:5.

After the robot and all the target objects on
the soccer �eld are placed in their �xed positions,
Table 2 shows the obtained evolutionary color-feature
model using PSO under brighter lighting conditions
(Figure 11(a)). Through the extraction condition of
Table 2, we can successfully detect all the target
objects, as shown in Figure 11(b) and (c). After com-
pleting the recognition of the target objects, the soccer
robot can further use a self-localization algorithm to
con�rm the relationship, such as relative location and
distance between the target objects [16] (Figure 11(d)).
Meanwhile, soccer ball shooting is implemented accord-
ing to the path planning result (Figure 11(e)).

As the robot moves to di�erent locations and
under di�erent viewing angles, the image acquired by
the omnidirectional camera will change (Figure 12(a)).
However, through the extraction condition of Table 2,
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Figure 11. The extraction and recognition results of target objects using the color model parameters (Table 2)
constructed by PSO: (a) Brighter lighting condition; (b) the extraction result of the target objects; (c) the recognition
result; (d) the self-localization result; and (e) the path planning result.

Figure 12. The extraction and recognition results of target objects using Table 2 after robot has changed its position
during the walking process: (a) The omnidirectional image obtained at di�erent locations; (b) the extracted result of
target objects; (c) the recognition result; (d) the self-localization result; and (e) the path planning result.

we can still detect all the target objects, which are as
shown in Figure 12(b)-(c). Figure 12(d) shows the
self-localization result, and Figure 12(e) is the path
planning result.

Based on the same procedures, we have con�rmed
the model construction capability of PSO under a
darker environment, which is shown in Figure 13(a).
The parameter values obtained from the color-feature
model are listed in Table 3. Figure 13(b)-(e) show
the results of target object extractions, self-localization
results, and path planning. Here, we can �nd that the
evolutionary vision system constructed based on PSO,

Table 3. The parameter values of the color-feature model
obtained under brighter lighting condition.

Ball Goal
(yellow)

Goal
(blue)

Field

Hmax 48 110 275 143

Hmin 316 41 220 119

Smax 100 100 100 100

Smin 37 98 98 76

Vmax 100 100 100 100

Vmin 41 13 1 17
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Figure 13. The extraction and recognition results of target objects using the color model parameters (Table 3)
constructed by PSO: (a) Darker lighting condition; (b) the extraction result of the target objects; (c) the recognition
result; (d) the self-localization result; and (e) the path planning result.

Figure 14. The extraction and recognition results of target objects using Table 3 after robot has changed its position
during the walking process: (a) The omnidirectional image obtained at di�erent locations; (b) the extracted result of
target objects; (c) the recognition result; (d) the self-localization result; and (e) the path planning result.

and under di�erent lighting conditions has a very good
�tting capability.

Similarly, if the robot is under such a darker
lighting condition, even after arbitrary movement, its
vision system can still correctly analyze and recognize
the acquired omnidirectional images under di�erent
viewing angles, as shown in Figure 14.

5. Conclusion

In this paper, a method for the automatic setup of
a color-feature model using PSO is introduced. The

method can very e�ciently accelerate the parameter
setup process of the vision system of a FIRA soccer
robot. Meanwhile, it can surmount the over-relying
issue of the current architecture on lighting conditions
when undertaking target object detection. In order
to verify the e�ectiveness of the mentioned method,
we have performed tests with di�erent lighting condi-
tions in the experiment. The results show that the
parameters can be smoothly adjusted in the vision
system of the soccer robot, and the color-feature model
applicable to the operational environment at that time
can then be set up. In addition, we have also displayed,
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in this paper, the self-localization and path planning
function of a soccer robot after it has successfully
detected the target objects. Moreover, the related
experimental results are su�cient to explain that the
evolutionary vision system design method proposed can
indeed be applied in a soccer robot game.
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