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Abstract. The Permutation Flow Shop Problem (PFSP) has been applied to many
types of problems. The PFSP is an NP-hard permutation sequencing scheduling problem.
A local search with simulated annealing scheme involving two phases is proposed in
this investigation for solving PFSP. First, for lowering computation complexity, a simple
insertion local search is applied to generate the solution of the PFSP. Second, two non-
decreasing cooling temperature driven Simulated Annealing (SA), namely, steady SA and
reheating SA are employed to maintain successive exploration or exploitation in the solution
space. The steady SA maintains the same temperature and keeps the same search behavior
and thereby allows the neighbors of the worse solutions to be explored, consequently
increasing the chances of �nding better solutions, while the reheating SA increases the
temperature and exploration ability. The most important feature of the proposed method
is its simple implementation and low computation time complexity. Experimental results
are compared with other state-of-the-art algorithms and reveal that the proposed simple
insertion with steady SA (SI-SSA) method is able to e�ciently yield the best permutation
schedules.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

There are many classes of real-world scheduling
problems, such as job-shop scheduling, open-shop
scheduling, Flow Shop Problem (FSP), task assign-
ment scheduling, real-time scheduling, etc. Generally,
scheduling problems involve the allocation of resources
(such as machines or processors) to execute a set of
activities (such as processes or tasks) satisfying given
constraints and optimizing given criteria. Processes or
tasks usually have time constraints, such as ready time,
execution time, precedence, and deadline. Scheduling
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algorithms must determine a schedule for a set of
processes that satis�es the prerequisite constraints;
FSP is one of these and is currently the focus of
much research since it can be used for �nding near
optimal solutions to many real-world optimization
problems. FSP can be de�ned as the problem of
assigning a set of independent jobs to run on a set
of machines. Each job requires a given �xed, non-
negative processing time on every machine. In this
study, we focus on the Permutation Flow Shop Problem
(PFSP), a special case of FSP, where the processing
order of jobs always is the same on every machine,
that is, all jobs follow the same machine order in
the shop starting from the �rst machine and �nishing
on the last machine. PFSP applications can be
found in a large number of real world environments,
including manufacturing, maintenance, and warehous-
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ing operations, as well as in healthcare. Flowshop
scheduling is common in cyclic scheduling of a no-
wait production line, where multiple parts enter and
leave the line during a cycle. For example, a multi-
degree cyclic scheduling of a permutation owshop
with two robots was investigated by Che and Chu [1].
MPEG-4 macroblock decoding is an application of a
permutation owshop problem for synchronization in
a co-processor system while implementing tasks with
low turnaround time [2]. Maintenance and production
are two functions in various industries which act on
the same resources. In another study [3], a complex
joint production and maintenance scheduling problem
in permutation owshop were also investigated. The
PFSP has been con�rmed to be NP-hard (Taillard) [4].
Its solution search space comprises n! permutations.
Hence, �nding the optimal solution to PFSP problems
with exact algorithms is not feasible in reasonable
time. Instead, many approximation algorithms and
heuristics have been studied to reveal near optimal
solution with less e�ort, such as the slope-index-
based heuristic [5], the CDS heuristic [6], the NEH
algorithm [7], etc. However, all these schemes require
a substantial amount of computational e�ort to �nd
solutions that usually are far from optimal. To
e�ciently obtain high quality solutions, many meta-
heuristics have been introduced for solving PFSP;
in particular Genetic Algorithms (GA) [8-10], Sim-
ulated Annealing (SA) [11], Tabu Search (TS) [12],
Ant Colony Optimization (ACO) [13,14], Arti�cial
Bee Colony (ABC) [15], Particle Swarm Optimization
(PSO) [16,17], etc. Furthermore, meta-heuristics are
often combined with local search; for example GA
mutation [18], ACO with pheromone mutation [19],
construction phase in Iterated Greedy (IG) heuris-
tic [20], and so forth. Other approaches include
linear programming relaxation to handle speci�c job-
lists in a bidirectional ow-shop [21] and priority rules
embedded in the heuristics for solving the sequence
dependent setup time ow-shop problem [22].

Many of these meta-heuristics provide quite ac-
ceptable and close to optimal solutions. However, they
are often either very complex to implement or su�er
from excessive computational complexity. In some
cases, the complexity of the algorithms means that
independent implementations are unlikely to capture
the intended e�ectiveness and e�ciency. Moreover,
other approaches exploit PFSP-speci�c features such
that the schemes do not generalize to other owshop
variants. Consequently, in 2007, Ruiz and St�utzle
proposed the Iterated Greedy (IG) [20] to provide
a simple iterated greedy local search based on the
NEHT heuristic [7] to simplify implementation and
reduce computational complexity. Still, destruction
and construction phases are still needed for each IG
iteration. During the destruction phase, d randomly

chosen jobs are removed from the permutation; d jobs
are then inserted back to �nish a complete permutation
based on the NEHT heuristic during the construction
phase. However, the complexity of NEHT is still
O(n2m) which is time consuming for large instances.
After IG phases, a simulated annealing-like acceptance
criterion with a constant temperature based on Osman
and Potts (1989) is applied. The constant temperature
follows the suggestion of Osman and Potts [23] and
depends on the particular instances in the OR-Library
to be solved.

This study proposes a Simple Insertion with
the Steady Simulated Annealing (SI-SSA) scheme to
re-duce computational complexity and simplify im-
plementation; as such, this method still generalizes
to other ow-shop variants. SI-SSA includes two
steps: a simple insertion local search, and SA with
a novel temperature cooling schedule. The insertion
local search is easy to integrate into trajectory meta-
heuristics, such as simulated annealing, tabu search,
and others. Intrinsically, simulated annealing is a
memory-less operation. Additionally, the acceptance
criterion of the hill climbing in simulated annealing
is modi�ed by adjusting the temperature schedule to
reduce the turbulence of the acceptance probability
for PFSP based on energy deviation instead of energy
di�erence. Furthermore, a threshold for excluding
undesired solutions is also incorporated. The accep-
tance criterion is the key factor of simulated annealing,
which enables it to escape from local minima. As
for the cooling in the simulated annealing approach,
two non-decreasing temperature control mechanisms
are employed to provide an opportunity for continuous
exploration or exploitation; they are named reheating
SA and steady SA, respectively. The reheating SA
increases exploration search ability, and the steady
SA enhances exploitation search ability. Analysis of
the search behavior corresponding to these two cooling
schemes is also provided.

This article is organized as follows: Section 2
introduces the problem de�nition. Section 3 introduces
simulated annealing. Section 4 presents the details of
the SI-SSA scheme for solving PFSP. In Section 5, the
e�ectiveness and e�ciency of SI-SSA is demonstrated
and the results are analyzed and compared to those
of other state-of-the-art schemes. Finally, Section 6
makes the conclusions.

2. Problem de�nition

A well-known scheduling problem with a background
in industrial manufacture is the Flow Shop Problem
(FSP) [4]. In this study, the Permutation Flow Shop
Problem (PFSP) in which the jobs' sequence on every
machine is the same, is addressed. The PFSP can be
de�ned as follows:
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� There are n independent jobs (N = f1; :::; ng) and
m independent machines (M = f1; :::;mg) in the
production system. All n jobs have to be run on
m machines in the same order. Assuming that the
set-up times of all jobs are included in the jobs'
processing time.

� Each job j(j 2 N) must be processed on m
machines, i.e. each job consists of m sub-jobs, oj;k
(k = 1; :::;m). Meanwhile, each job j requires
di�erent processing times pj;i on di�erent machines
i(i 2 M). Moreover, any executing job is not
preemptive.

� PFSP requires all jobs to be processed with the same
processing order � = f�(1); :::; �(n)g from the �rst
machine to the last machine. The permutation �
presents the solution to the PFSP and �(r) indicates
the rth order processing job.

� Obtaining the minimum makespan is the commonly
de�ned objective of the PFSP. The minimization of
the makespan is highly a�ected by the permutation
�.

For example, given 3 jobs, there are 3! possible
permutations; the objective is to �nd the permutation
� that yields the shortest makespan.

3. The simulated annealing algorithm

The well-known Simulated Annealing (SA) trajectory
meta-heuristic was �rst introduced by Kirk patrick
et al. [24]. An important characteristic of SA is to
provide the capability of escaping from local optima. It
is restated that allowing a neighborhood moving step
with a worse solution quality was designed. Movements
to worse neighborhoods o�er a mechanism of diver-
si�cation search through hill climbing. However, the
worse movement in SA is determined by an acceptance
criterion which is relevant to a probability called
acceptance probability. A key component in SA is
its cooling scheduling, which controls the acceptance
probability. Typically, the temperature decreases over
time, and thus the acceptance probability decreases
over time. It is restated that higher acceptance
probability in the early stage and lower acceptance
probability in the latter stage have been implemented
in SA. The rationale of this design is to provide the
diversi�cation search ability at the beginning and to
give intensi5�cation search ability in later stages.

The conventional SA iterates until a termination
condition is met. At iteration t, four steps are
conducted:

� Neighborhood search: A candidate solution St' from
the neighborhoods of St is generated. There are
many local search schemes suggested to generate the
candidate solution St'.

� Energy evaluation: The energy related to the solu-
tion St' is evaluated, wherein E(St') is denoted as
an energy function, and the variance of energy �E
is also obtained.

� Acceptance criterion: The acceptance criterion is
applied; if the variance of energy �E is less than
zero, the St would be replaced by St'. Otherwise,
St' with worse quality can be accepted with an ac-
ceptance probability P . The acceptance probability
P (St; St',Tt) is de�ned in Eq. (1):

P (St; S0t; Tt) = e��E=Tt = e�
E(S0t)�E(St)

Tt : (1)

Here Tt is the cooling temperature of the tth
iteration; it and the acceptance probability decrease
over time. A worse solution is accepted when a
randomly generated probability r is smaller than the
determined acceptance probability (r < P ).

� Cooling strategies: The temperature decrement rule
follows an exponential cooling scheme with cooling
rate, �, as listed in Eq. (2):

Tt+1 = Tt � �; � 2 [0; 1]: (2)

4. Simple Insertion with Steady Simulated
Annealing (SI-SSA)

This section outlines the details of the proposed SI-
SSA approach. The procedures of SI-SSA are provided
�rst. Then, all steps in the procedures are presented
and described in the following sections.

4.1. The Simple Insertion with Steady
Simulated Annealing Algorithm (SI-SSA)

The pseudo-code of the proposed Simple Insertion with
Steady Simulated Annealing (SI-SSA) for PFSP is
summarized in Figure 1.

4.2. Insertion local search
Many local search strategies for PFSP have been
studied and combined with meta-heuristics, especially
for trajectory meta-heuristics. The local search is one
way to implement the neighborhood search, and the
suggested insertion local search is easy to implement.
Suppose an existing job processing order is denoted by
the permutation �. The insertion operation removes
the job at the ith position in �, and then inserts it in
the jth position, where i 6= j, and i; j are randomly
generated [25].

Once a permutation � is obtained as a PFSP
solution, in the case of i < j, the � = f�(1); :::; �(i �
1);�(i); �(i + 1); :::; �(j � 1);�(j); �(j + 1); :::; �(n)g
is the permutation before insertion local search is
applied. The new permutation �0 = f�(1); :::; �(i �
1); �(i + 1); :::; �(j � 1);�(j);�(i); �(j + 1); :::; �(n)g
can be obtained after applying insertion. And, in the
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Figure 1. The pseudo-code of the proposed Simple Insertion with Steady Simulated Annealing (SI-SSA).

Figure 2. Insertion operations for the cases of (a) i < j, and (b) i > j.

case of i > j, the permutation before insertion is � =
f�(1); :::; �(j� 1);�(j); �(j+ 1); :::; �(i� 1);�(i); �(i+
1); :::; �(n)g; after insertion, the new permutation is
�0 = f�(1); :::; �(j � 1);�(i);�(j); �(j + 1); :::; �(i �
1); �(i + 1); :::; �(n)g. Figure 2 shows an example of a
permutation � before insertion local search is applied,
and two permutations �0 after insertion local search
is performed from �. The operation of this simple
insertion local search is listed in step 1.1 of Figure 1.
The insertion operation schematic diagram is shown in
Figure 2.

4.3. Non-decreasing temperature control
In several modi�ed adaptive simulated annealing
strategies, the temperature is not always decreasing,
but is controlled by certain schemes, such as in [19]
which uses a constant temperature. Some studies also
employ reheating, such as Azizi and Zolfaghari [26] in
which the temperature was not associated with the it-
eration. In this study, two non-decreasing temperature
controlling schemes for stage of t + 1 are applied; the
�rst temperature control scheme applied in SA is a
heating temperature control de�ned in Eq. (3). This
scheme is called reheating SA herein as indicated in
the right part of the step 1.5 in the Figure 1.

Tt+1 =

8<:Tt � a; St = S0t
Tt � (1 + �); otherwise

(3)

The rationale of this control is inspired by Azizi and
Zolfaghari [26]. In [26], a reheating mechanism was pro-
posed, but the temperature control was not associated
with the iteration. This simple reheating mechanism,
associated with iteration to increase the search ability
may be preferable for the following reasons. The
acceptance probability is increased due to heating, and,
thus, the exploration area is expanded, i.e. expanding
the search pace. Notably, too wide a search range
resembles a random walk; therefore, a small � value
is suggested for preventing a fully random search. It is
restated that movement toward too worse a solution is
prohibited. The other temperature controlling scheme,
used in SA, is a named steady temperature control
(see Eq. (4)), and is called steady SA in this work as
indicated in the left part of the step 1.5 in the Figure 1.,

Tt+1 =

8<:Tt � a; St = S0t
Tt; otherwise

(4)

The intent of this design is that once a candidate
solution is not accepted (going uphill), that is, St <
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S0t, then the temperature is maintained and hence
the P is kept at a higher value. It is restated that
subsequent exploration ability is preserved for �nding
a lower makespan solution from high makespan solution
neighbors. Otherwise, the temperature is decreased
accordingly for further exploitation. These two non-
decreasing temperature control mechanisms focus on
facilitating enough exploration ability during the solu-
tion search. The acceptance probability used in this
study is based on relative energy change rel = �E =
E(S0t)� E(St)=E(St) [27] as indicated in Eq. (5):

P (St; S0t; Tt) = e�rel �E=Tt : (5)

5. Experimental results

To evaluate the e�ectiveness of the proposed simple
insertion simulated annealing algorithm, the following
simulation instances from the Taillard benchmark [28]
were tested. Taillard generated a set of FSP schedul-
ing problems with di�erent combinations of jobs (n)
and machines (m), n 2 f20; 50; 100; 200; 500g and
m 2 f5; 10; 20g, and there are 10 instances for
each problem size. The processing time of each
job is distributed uniformly in the interval [1,99].
This test suite is available from http://mistic.heig-
vd.ch/taillard/ and http://people.brunel.ac.uk/ mas-
tjjb/jeb/o rlib/�les/owshop2.txt. Before comparing
the performance of the proposed SI-SSA with other
schemes, the e�ciency of the proposed non-decreasing
temperature control mechanisms (steady SA and re-
heating SA) was �rst evaluated. The comparison crite-
rion is computed as the Relative Percentage Deviation
(RPD) as follows:

RPD =
Minsol � Bestsol

Bestsol
� 100%; (6)

where Minsol represents the shortest makespan of the
best solution obtained from the best trial of a speci�c
algorithm and Bestsol is the makespan of the optimal
solution or known upper bound provided by Taillard's
instances. To be more objective, the Average Relative
Percentage Deviation (ARPD) is applied as de�ned
in [20].

ARPD =
TX
i=1

�
Minsoli � Bestsol

Bestsol
� 100%

�
=T; (7)

where Minsoli is the makespan of a solution given by
any of the T repetitions of the compared algorithms.
The parameter settings of this simulation are: T0 = 1,
� = 0:99 and � = 0:001. There are two comparison
bases commonly used, namely, the Taillard benchmark
upper bound data published in 2004 and 2006. The
e�ciency comparison between the proposed steady and

Table 1. Comparison between steady SA, reheating SA
and conventional SA-ARPD (Taillard 2004 upper bound
data [29]).

n=m SA Reheating SA Steady SA

20/5 0.095 0.202 0.089
20/10 0.601 0.459 0.247
20/20 0.548 0.660 0.159
50/5 0.038 0.021 0.025
50/10 0.432 1.853 0.376
50/20 1.511 4.411 1.453
100/5 -0.016 -0.011 -0.014
100/10 0.433 0.479 0.414
100/20 1.110 2.069 1.041
200/10 0.296 0.370 0.349
200/20 1.138 2.785 1.122
500/20 1.029 1.531 1.108
Average 0.601 1.236 0.531

Table 2. Comparison between steady SA, reheating SA
and conventional SA-ARPD (Taillard 2006 upper bound
data [30]).

n=m SA Reheating SA Steady SA

20/5 0.144 0.251 0.138
20/10 0.608 0.467 0.255
20/20 0.553 0.664 0.164
50/5 0.038 0.021 0.025
50/10 0.914 2.343 0.858
50/20 2.088 5.004 2.030
100/5 0.030 0.034 0.032
100/10 0.479 0.525 0.460
100/20 2.147 3.115 2.077
200/10 0.321 0.395 0.374
200/20 2.192 3.856 2.176
500/20 1.362 1.865 1.441
Average 0.906 1.545 0.836

reheating SAs with the conventional SA is based on
both benchmark data as displayed in Tables 1 and 2.
Experiments were on the basis of 100000 solutions
generated. Five test runs (T = 5) were conducted to
calculate ARPD for fair comparison as de�ned in [20].

According to the simulation results, the suggested
SI-SSA with steady SA yielded the smallest RPDs
(0.531% and 0.836%) compared to the other two
temperature controlling schemes. It is restated that
the performance of the proposed SI-SSA with steady
SA is better than the other two SAs. Moreover, the
makespan and temperature evolution of these three
SAs (conventional SA, reheating SA and steady SA)
are displayed in Figure 3; the tests were conducted
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Figure 3. Makespan and SA temperature evolutions for the cases of (a) conventional SA, (b) reheating SA, and (c)
steady SA.

on tai20 20 1 (20/20 case, instance 1) with 100,000
iterations; Figure 3 only shows temperature changes
for the �rst 35,500 iterations.

The conventional SA temperature quickly drops
to 0, and, therefore, the acceptance probability of
escaping from the local optimal for searching the neigh-
borhoods is zero, that is, it quickly becomes unable
to search the neighborhood to �nd better solutions.
Although the reheating SA does not quickly cool,
the temperature increases which cause the acceptance
probability of escaping from local minimum remains
high, and this does bias the search behavior toward
a wider range. On the other hand, the steady SA
maintains the same temperature, keeping the same
search behavior and allowing the exploration of the
neighbors with worse solutions, and therefore increases
the possibility of �nding better solutions. Figure 3
displays the simulation results on Tai 20 20 1 (20/20
case, instance 1). Figure 3(a) shows that the con-
ventional SA algorithm is trapped on local optimal

(makespan=2349) since acceptance probability is al-
most zero all the time due to the temperature quickly
dropping to zero. Figure 3(b) indicates that the
reheating SA algorithm randomly walks about the
solution space due to its high acceptance probability
owing to the increased temperature; hence, it is unable
to �nd good solutions (makespan=2370). Nevertheless,
Figure 3(c) demonstrates that the steady SA algorithm
provides an adequate exploration search ability in
the neighborhood since the acceptance probability is
maintained so as to have high opportunity to obtain
the best solution (makespan=2318).

Therefore, the corresponding search behavior of
the temperature changing process is compliant with the
scheduling results of Tables 1 and 2.

Comparing the top state-of-the-art algorithms
listed in [20], the termination condition was based on
computation time. The comparison was made by using
Taillard's 2004 bench-mark. Each problem instance
was repeated for �ve independent trials (T = 5),
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Table 3. Comparison of di�erent algorithms in [20] on the basis of Taillard 2004 upper bound data-ARPD (%).

n=m This
work

IG
RSLS

HGA
RMA

IG
RS

PACO M M
MAS

SEASA� ILS GA
RMA

GA
REEV

GA
AA

SA
OP

GA
MIT

NEHT GA
CHEN

Sprit

20/5 0.09 0.04 0.04 0.04 0.21 0.04 0.24 0.49 0.26 0.62 0.94 1.09 0.8 3.35 4.15 4.33
20/10 0.18 0.06 0.13 0.25 0.37 0.15 0.88 0.59 0.73 2.04 1.54 2.63 2.14 5.02 5.18 6.07
20/20 0.17 0.03 0.09 0.21 0.24 0.06 0.87 0.36 0.43 1.32 1.43 2.38 1.75 3.73 4.26 4.44
50/5 0.02 0.00 0.02 0.04 0.01 0.03 0.19 0.2 0.07 0.21 0.36 0.52 0.3 0.84 2.03 2.19
50/10 0.13 0.56 0.72 1.06 0.85 1.4 0.76 1.48 1.71 2.06 3.72 3.51 3.55 5.12 6.54 6.04
50/20 1.19 0.94 1.28 1.82 1.59 2.18 2.19 2.2 2.74 3.56 4.69 4.52 5.09 6.26 7.74 7.63
100/5 0.00 0.01 0.02 0.05 0.03 0.04 0.09 0.18 0.07 0.17 0.32 0.3 0.27 0.46 1.35 1.06
100/10 0.15 0.2 0.29 0.39 0.27 0.47 0.65 0.68 0.62 0.85 1.72 1.48 1.63 2.13 3.8 3.01
100/20 0.34 1.3 1.66 2.04 2.09 2.59 1.52 2.55 2.75 3.41 4.91 4.63 4.87 5.23 8.15 6.74
200/10 0.14 0.12 0.2 0.34 0.27 0.23 0.66 0.56 0.43 0.55 1.27 1.01 1.14 1.43 2.76 2.07
200/20 0.36 1.26 1.48 1.99 1.92 2.26 1.43 2.24 2.31 2.84 4.21 3.81 4.18 4.41 7.24 4.97
500/20 0.47 0.78 0.96 1.13 1.09 1.15 1.81 1.25 1.4 1.66 2.23 2.52 3.34 2.24 4.72 12.58
Average 0.27 0.44 0.574 0.78 0.75 0.88 0.94 1.06 1.13 1.61 2.28 2.37 2.42 3.35 4.83 5.09
� SEASA (Chen et al. 2014 [27])

Table 4. Simulation results on the basis of Taillard 2006 upper bound data-ARPD (%).

n=m 20/5 20/10 20/20 50/5 50/10 50/20 100/5 100/10 100/20 200/10 200/20 500/20 Avg
ARPD 0.13 0.18 0.16 0.02 0.59 1.74 0.02 0.21 1.38 0.16 1.41 0.81 0.57

Table 5. RPD(%) interval and Incr lb on the basis of Taillard 2006 upper bound data [30].

m=m Min RPD ARPD Max RPD �RPD Incr lb%
20/5 0.08 0.13 0.14 0.06 2.56
20/10 0.05 0.18 0.37 0.32 9.58
20/20 0.08 0.16 0.27 0.20 20.76
50/5 0.00 0.02 0.04 0.04 0.83
50/10 0.50 0.59 0.67 0.17 2.76
50/20 1.44 1.74 2.01 0.57 10.79
100/5 0.02 0.02 0.03 0.00 1.10
100/10 0.12 0.21 0.33 0.21 1.01
100/20 1.22 1.38 1.56 0.34 5.34
200/10 0.08 0.16 0.24 0.16 0.83
200/20 1.27 1.41 1.50 0.24 3.00
500/20 0.75 0.81 0.87 0.12 1.23
Average 0.47 0.57 0.67 0.20 4.98

rather than using the best trial; the average of the
�ve trials was chosen and all the 10 instances for
every problem case (n=m; n jobs/m machines) were
calculated. The termination condition (on the basis
of computation time) in [20] was \n � (m=2) � 60",
and the algorithm ran on an Athlon XP 1600 +
(1400 MHz) system. The proposed scheme ran on
a core i7 (3.4 GHz) PC. Therefore, the computation
time of this work was \n � (m=2) � 60 � (1:4=3:4)".
The simulation results are listed in Table 3. The
SI-SSA has the smallest average ARPD 0.27%; it
ranks 1st compared to the other algorithms. More-
over, the test on the latest upper bound in Tail-
lard's 2006 benchmark was also conducted, and the
simulation results are displayed in Table 4. The
yielded ARPDs by the SI-SSA are less than 1.19%

(50/20 case in Table 3) and 1.74% (50/20 case in
Table 4) for Taillard 2004 and 2006 benchmark upper
bounds, respectively. Simulation results indicate that
the performance of the proposed SI-SSA is excellent
and competitive on the basis of its generated solution
quality.

Since the upper bound changes over time, the per-
centage increases of the makespan above the minimal
lower bound (Incr lb%) are also provided in addition to
the average deviation (ARPD). As displayed in Table 5,
the average Incr lb% is only 4.98%. Furthermore, the
stability of the proposed scheme was also inspected.
The ARPD intervals (�ARPD=Max ARPD - Min
ARPD) are shown in Table 5. The maximum ARPD
interval is 0.57%. Hence, the SI-SSA scheme is
considered stable.
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6. Conclusions

A strategy named Simple Insertion Simulated Anneal-
ing with Steady SA (SI-SSA) is suggested. In SISA, a
simple insertion local search is applied to generate the
solution of the PFSP to lower computation complexity.
Meanwhile, two non-decreasing cooling temperature
driven Simulated Annealing (SA), named steady SA
and reheating SA, are employed to maintain successive
exploration or exploitation in the solution space to
increase the chance of �nding better solutions. The
advantages of the proposed SI-SSA algorithm can be
summarized as follows:

� This scheme is easy to implement since only a simple
insertion local search is applied. Simple insertion
local search used for constructing PFSP solutions
reduces the time-complexity to O(n) and only one
parameter (�) is required for simulated annealing.

� The steady SA maintains a constant temperature,
keeping the same search behavior, and thus allows
the exploration of the neighbors with worse so-
lutions, thereby increasing the chances of �nding
better solutions so as to escape from local minima.

� The SI-SSA scheme outperforms many complex
meta-heuristics; the averaged ARPD is only 0.27%,
ranking it the 1st as shown in Table 1.

� The maximum ARPDs are less than 1.19% and
1.74% (for the 50/20 case) on the basis of Taillard's
2004 and the latest 2006 upper bounds as shown in
Tables 1 and 2.

� The maximum RPD interval (�RPD) is only 0.57%
as shown in Table 3, indicating that SI-SSA is a
stable algorithm for solving PFSP class problems.
Meanwhile, the average Incr lb% is only 4.98%.
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