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Abstract. In this paper, we compare four ordering policies in a lost sales inventory
model with zero ordering cost, constant lead time, and Poisson demand process. These
ordering policies are 1) base stock policy, 2) full delay policy, 3) simple delay policy and 4)
a recently developed ordering policy called (1; T ) or one for one period policy. Our work
can be considered as an expansion of a previous research which compared the �rst three
policies. We show that, for any �xed value of the ratio of unit lost sales cost over unit
holding cost, there is a speci�c value of lead time demand beyond which the cost of (1; T )
policy is lower than the costs of the other three policies. Furthermore, the superiority
of (1; T ) policy is more signi�cant for low values of the above ratio and becomes more
pronounced as the lead time demand increases.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

In this paper, we consider an inventory system with
a Poisson demand process, constant lead time on
replenishment and lost sales during stock out. There
exist a holding cost per unit per unit time and a lost
sale cost per unit but the ordering cost is zero or
negligible. A common inventory policy for this system
is the one-for-one ordering policy. In this policy which
is also known as the (S � 1; S) or base stock policy,
an order is placed whenever a demand occurs and is
met. This policy is usually applicable in the control
of low demand but important and possibly expensive
items for which the replenishment lead time is relatively
long.

An analytical approach to cost optimization in
backorder assumption can be found in Hadley and
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Within [1]. Iglehard [2] shows that the base stock pol-
icy is optimal in the backorder situations. Karush [3]
models a lost-sales base stock policy as a queuing
system. He assumes that the demand process is Poisson
and calculates the average cost per unit time. He also
proves that the out-of-stock probability is convex in the
base stock level. Convexity has been proven di�erently
by Jagers and van Doorn [4]. An approximation for
the base stock level is presented by Smith [5]. Hill [6]
shows that the base stock policy can never be optimal
in the lost sale case for S � 2. Haji and Haji [7] apply
a new ordering policy in the inventory system with lost
sales, and call it (1; T ) or one for one period policy. In
this new ordering policy, an order of size one is placed
at each �xed interval of time. They show that (1; T )
ordering policy is less costly than base stock policy
for long lead times. They also presented the following
advantages of (1; T ) policy:

1. The safety stock in suppliers is eliminated (cost
reduction).
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2. Cost of the retailer is completely independent of the
lead time.

3. Information exchange cost for the supplier due to
elimination of uncertainty of its demand is elimi-
nated.

4. Inventory control and production planning in sup-
pliers are simpli�ed.

5. It is very easy to apply. Just order 1 unit of product
at each cycle time T .

6. Inventory review costs are eliminated.

Haji et al. [8] apply this new policy in the retailers
of a two echelon inventory system with one warehouse
and a number of retailers with Poisson demand and
in lost sale situations. They compare the result of
their work with the result of Anderson and Melchior [9]
which had used (S � 1; S) policy in retailers and
supplier. Haji et al. [10] consider a two echelon
inventory system in which the retailers use (1; T ) policy
with a common cycle.

Hill [11] introduces two new policies for the lost
sale inventory systems with no ordering cost (derived
from the base stock policy) which may have a lower
cost than the base stock policy. He calls these polices:
simple and full delayed inventory policies. He compares
the cost of these new ordering policies with that of
the base stock policy in a numerical example. In this
paper, besides of re-introducing (1; T ) policy, we use
a numerical example to compare (1; T ) policy with the
other three policies, i.e. standard base stock policy, full
delay policy, and simple delay policy. We show that,
other than the known advantages of (1; T ) policy, for
any �xed value of the ratio of unit lost sales cost over
unit holding cost, there is a speci�c value of lead time
demand were the cost of (1; T ) policy is lower than
the costs of the other three policies. Furthermore, the
superiority of (1; T ) policy is more signi�cant for low
values of the above ratio and becomes more pronounced
as the lead time demand increases.

2. Introducing four policies

In this section, we need the following notations:
� Customer arrival rate at retailer,
L Lead time from supplier to retailer,
h Holding cost rate at retailer,
� Lost sale cost for a unit at retailer,
S Base stock level,
I Inventory average at the retailer,
KB Total cost of the base stock policy,
KBF Total cost of the full delay policy,
KBS Total cost of the simple delay policy,
KT Total cost of the (1; T ) policy,

2.1. (S � 1; S) policy
For the standard base stock policy, with base stock
level, S, whenever a sale occurs, namely a demand is
satis�ed, an order for 1 unit is placed. Iglehard [2]
shows that in the backorder situations and when the
ordering cost is zero, the base stock policy is the
optimal policy. But in the lost sales case the base
stock policy can never be the optimal policy for S � 2
(see [6]). The total cost rate for (S � 1; S) policy with
lost sales is as follows (e.g. see [5]):

KB =h

 
S � �L

 
1� (�L)S=S!PS

j=1(�L)j=j!

!!
+ ��

(�L)S=S!PS
j=1(�L)j=j!

: (1)

It is obvious that KB depends on the lead time L.

2.2. The base stock policy with delay
Hill [11] presents two new policies, which are derived
from the standard base stock policy. These new policies
can improve the base stock policy by imposing a delay,
T 0, between the placements of successive orders. He
calls these policies \Full delay policy" and \Simple
delay policy". Whenever a demand is met, one must
decide whether to place an order or delay it for some
units of time. In the full delay policy T 0 is not a
�xed value but depends on the state of the system and
should be calculated every time the controller decides
to impose a delay, but in the simple delay, policy T 0
is �xed and has a lower bound between two successive
orders.

For applying both policies, the controller should
consider the base stock level which is optimal for the
standard base stock policy as the maximum level of
the inventory position. In the full delay policy, time
zero is considered the time in which a sale occurs. Hill
de�nes a function PSO(t) as the probability that the
system is out of stock at time t+ L if no further sales
occur and no orders are placed during the interval (0; t).
He summarizes detailed operation of this policy in a
procedure. In his procedure to decide whether to place
an order immediately or delay it, one should consider
three values which are PSO(t), the ratio of h=��, and
the inventory position whenever a sale occurs. As Hill
mentions, the full delay policy is slightly complex in
nature and requires a calculation whenever there is
a sale. So he introduces the \simple delay policy".
This policy only considers the times at which the last
order is placed and ignores the values of stocks on
hand and outstanding orders which may be in the
system. Then he calculates a lower bound between two
successive orders, below which it is not worth placing
an order.
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2.3. (1; T ) policy
In the (1; T ) policy, an order of one unit is placed in
each �xed time interval, T . The (1; T ) policy can be
interpreted as a D=M=1 queuing system (see [7]), i.e. a
single channel queuing system in which the inter-arrival
times are constant and equal to T , and the service times
have exponential distribution with mean 1=�. Thus,
the arrival rate of units to the system is � = 1=T , the
service rate is �, and the probability of stock out is:

P0 = 1� �; (2)

where � is the ratio of the arrival rate to the service
rate, i.e. the �ll rate is:

� =
1
�T

; (3)

and the total cost of the retailer is:

KT = HI + ��(1� �); (4)

where:

I =
�

1� � ; (5)

and:

� = e�(1��)=� = e�1=I : (6)

From Eqs. (1), (4) and (5) we have:

1
�T

= I(1� e�1=I): (7)

Haji and Haji [7] proved the convexity of the total cost
function. The optimal values of I and T , i.e. I� and
T �, can be obtained from the following relations:

e�1=I� +
1
I� e

1=I� =
�� � h
��

; (8)

and:

T � =
1

�I(1� e1=I�)
: (9)

It is important to note that based on the above
relations the total cost of the (1; T ) policy is entirely
independent of L.

In the next section, we will compare the four
ordering policies numerically. We will also establish
the notable result that for a �x value of the ratio of
unit lost sales cost over unit holding cost (�=h), the
cost of the (1; T ) policy is lower than the costs of
the other three policies beyond some speci�c value of
lead time demand. Furthermore, the superiority of the
(1; T ) policy is more meaningful for low values of �=h
and becomes more signi�cant as the lead time demand
increases.

Table 1. The optimal cost and optimal ordering cycle of
(1; T ) policy.

��h
2 4 6 8 10

T � 2.0636 1.5565 1.3679 1.3354 1.8804
KT 1.6266 2.4704 3.1116 3.6505 4.1246

3. Comparing four policies

In this section, we numerically compare the (1; T )
policy with the three other policies (standard base
stock policy, simple delay policy and full delay policy).
Following Hill [11], without loss of generality, we
assume that h = 1 and time is normalized so that
� = 1. It reduces the parameters to L and �. We
consider 5 cases for ��=h and seven cases for �L. These
values are:

�
�
h

= 2; 4; 6; 8; and 10;

�L = 1; 2; 4; 6; 8; 10; 12; 14; 16; 18; and 20:

In Table 1, we have obtained the optimal ordering
cycle and optimal cost of the (1; T ) policy according
to Eqs. (3) and (8). As can be seen the (1; T ) policy is
entirely independent of the lead time.

In Table 2, the optimal base stock level of the
(S � 1; S) policy, S�, and the optimal costs of the
three other policies, i.e., base stock policy, KB , full
delay policy, KBF , and simple delay policy, KBS , are
shown. While S� and KB are determined analytically,
as Hill [11] mentions, KBF and KBS can only be
evaluated by simulation. In the �rst example, i.e.
��=h = 2 and �L = 1, the optimal base stock level
is 1; therefore, the standard base stock policy is the
optimal policy (see [6]).

Table 3 shows the percentage of cost reduction
from using alternative policies instead of standard
base stock policy. We denote the percentage of cost
reduction from using the full delay policy, simple delay
policy, and the (1; T ) policy by �KBF , �KBS , and
�KT , respectively. Delay policies always give a lower
cost than the standard (S � 1; S) policy with the same
base stock level, assuming that base stock is greater
than 1 (see [11]). As we can see in Table 3, the (1; T )
policy is more costly than the other policies for low lead
time demands (negative percentage), but except for low
lead time demands, its cost is lower than the costs of the
other three policies. Furthermore, for larger values of
the lead time demands, the cost reduction when using
the (1; T ) policy is much more signi�cant than the cost
reduction when using the delay policies. For example
for ��=h = 4 and �L = 10 the cost reduction from
using (1; T ) policy is equal to 9.40%, which is much
higher than the savings from implementing the delay
policies (2.08% and 0.97%).
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Table 2. The optimal base stock level of standard base
stock policy, its cost, the cost of full delay policy, and the
cost of simple delay policy.

��h
�L 2 4 6 8 10

1

S� 1 2 2 3 3
KB 1.5000 2.0000 2.4000 2.5625 2.6875
KBF { 1.9895 2.3975 2.5413 2.6692
KBS { 1.9878 2.3849 2.5594 2.6842

2

S� 2 2 2 3 3
KB 1.6000 2.2632 2.6842 2.9524 3.1429
KBF 1.5771 2.2248 2.6368 2.9179 3.1092
KBS 1.5785 2.2538 2.6724 2.9478 3.1381

4

S� 2 4 5 5 6
KB 1.6923 2.4854 2.9907 3.3888 3.6403
KBF 1.6744 2.4555 2.9582 3.3430 3.5819
KBS 1.6838 2.4644 2.9718 3.3832 3.6343

6

S� 3 5 6 7 8
KB 1.7213 2.6040 3.1791 3.5908 3.9500
KBF 1.6823 2.5523 3.1215 3.5245 3.8941
KBS 1.7033 2.5910 3.1668 3.5810 3.9458

8

S� 4 6 8 8 9
KB 1.7464 2.6770 3.2980 3.7691 4.1165
KBF 1.6898 2.6306 3.2527 3.7014 4.0273
KBS 1.7204 2.6623 3.2879 3.7645 4.1135

10

S� 4 7 9 10 11
KB 1.7600 2.7266 3.3713 3.8625 4.2646
KBF 1.7164 2.6699 3.3068 3.7802 4.1712
KBS 1.7442 2.7000 3.3628 3.8534 4.2562

12

S� 5 8 10 11 12
KB 1.7689 2.7625 3.4347 3.9553 4.3685
KBF 1.7133 2.7090 3.3740 3.8405 4.2862
KBS 1.7503 2.7342 3.4151 3.9486 4.3673

14

S� 6 9 11 13 14
KB 1.7789 2.7898 3.4881 4.0205 4.4593
KBF 1.7249 2.7507 3.4036 3.9245 4.3704
KBS 1.7580 2.7656 3.4667 4.0147 4.4590

16

S� 6 11 13 14 15
KB 1.7824 2.8109 3.5228 4.0741 4.5269
KBF 1.7479 2.7264 3.4221 3.9591 4.4499
KBS 1.7588 2.7966 3.5101 4.0695 4.5236

18

S� 7 12 14 15 17
KB 1.7876 2.8274 3.5525 4.1270 4.5921
KBF 1.7288 2.7367 3.4176 4.0084 4.4628
KBS 1.7691 2.7964 3.5223 4.1208 4.5896

20

S� 7 13 15 17 18
KB 1.7912 2.8412 3.5799 4.1600 4.6378
KBF 1.7353 2.7407 3.4963 4.0334 4.5040
KBS 1.777 2.8152 3.5518 4.1534 4.6321

Table 3. The percentage of cost reduction when using
alternative policies instead of standard base stock policy.

��h
�L 2 4 6 8 10

1
�KBF - 0.52% 0.10% 0.83% 0.68%
�KBS - 0.61% 0.63% 0.12% 0.12%
�KT� - -23.52% -29.65% -42.46% -53.47%

2
�KBF 1.43% 1.69% 1.77% 1.17% 1.07%
�KBS 1.34% 0.41% 0.44% 0.16% 0.15%
�KT� -1.66% -9.16% -15.92% -23.65% -31.24%

4
�KBF 1.06% 1.20% 1.09% 1.35% 1.60%
�KBS 0.50% 0.85% 0.63% 0.17% 0.16%
�KT� 3.88% 0.61% -4.04% -7.72% -13.30%

6
�KBF 2.27% 1.99% 1.81% 1.85% 1.42%
�KBS 1.05% 0.50% 0.39% 0.27% 0.11%
�KT� 5.50% 5.13% 2.12% -1.66% -4.42%

8
�KBF 3.24% 1.73% 1.37% 1.80% 2.17%
�KBS 1.49% 0.55% 0.31% 0.12% 0.07%
�KT� 6.86% 7.72% 5.65% 3.15% -0.20%

10
�KBF 2.47% 2.08% 1.91% 2.13% 2.19%
�KBS 0.90% 0.97% 0.25% 0.24% 0.20%
�KT� 7.58% 9.40% 7.70% 5.49% 3.28%

12
�KBF 3.14% 1.94% 1.77% 2.90% 1.88%
�KBS 1.05% 1.02% 0.57% 0.17% 0.03%
�KT� 8.04% 10.57% 9.41% 7.71% 5.58%

14
�KBF 3.04% 1.40% 2.42% 2.39% 1.99%
�KBS 1.18% 0.87% 0.61% 0.14% 0.01%
�KT� 8.56% 11.45% 10.80% 9.20% 7.51%

16
�KBF 1.93% 3.01% 2.86% 2.82% 1.70%
�KBS 1.32% 0.51% 0.36% 0.11% 0.07%
�KT� 8.74% 12.12% 11.67% 10.40% 8.89%

18
�KBF 3.29% 3.21% 3.80% 2.87% 2.82%
�KBS 1.03% 1.10% 0.85% 0.15% 0.05%
�KT� 9.00% 12.63% 12.41% 11.55% 10.18%

20
�KBF 3.12% 3.54% 2.34% 3.04% 2.89%
�KBS 0.92% 0.92% 0.79% 0.16% 0.12%
�KT� 09.19% 13.05% 13.08% 12.25% 11.07%

Since the cost of the base stock policy is strictly
increasing by the lead time demand and the cost of the
(1; T ) policy is independent of the lead time demand
(note that time is normalized so that � = 1), for each
�xed value of ��=h there is a speci�c value of lead
time demand, after which the (1; T ) policy has a lower
cost than the standard base stock policy. Table 4
shows this speci�c value for each value of ��=h in
our numerical example. We denote these values of
the lead time demands by �L̂B . For each �xed value
of ��=h, we have also obtained the speci�c value of
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Table 4. Speci�c values of lead time demands after which
(1; T ) policy has a lower cost than the standard base stock
policy, simple delay policy, and full delay policy.

��h
2 4 6 8 10

�L̂B 2.59 3.81 5.23 6.67 8.12
�L̂BS 2.74 4.02 5.45 7.11 8.14
�L̂BF 2.78 4.16 5.86 7.73 8.68

the lead time demand after which the (1; T ) policy
is less costly than the simple delay policy and the
full delay policy, and denoted them by �L̂BS and
�L̂BF , respectively. Notice that, because there are no
mathematical formulas for calculating the total costs
of the delay politics, we resorted to simulation for
obtaining �L̂BS and �L̂BF .

Table 4 also shows that when ��=h takes small
values, the superiority of the (1; T ) policy occurs in the
lower range of the lead time demands.

4. Conclusion

In this paper we considered an inventory system with
a Poisson demand process, constant lead time and lost
sales during stock out. Numerically we compared the
cost of four ordering policies for the case of zero or
negligible ordering cost: 1) the base stock policy, 2) full
delay policy, 3) simple delay policy, and 4) (1; T ) policy.
Hill [11] compared the cost of delay policies with that
of the base stock policy and numerically showed that
when the inventory position S is greater than or equal
to 2 (S � 2) the two delay policies always result in a
lower cost than the base stock policy. We showed that
for �xed value of the ratio of unit lost sales cost over
unit holding cost, the cost of the (1; T ) policy is lower
than the costs of the other three policies after some
speci�c values of lead time demand. Furthermore, the
superiority of the (1; T ) policy is more signi�cant for
low values of the above ratio and becomes more notable
as the lead time demand increases.
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