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Abstract. We propose an e�cient estimator for population median under two-phase
sampling when using two auxiliary variables on the lines of Diana [Diana, G. \A class of
estimators of the population mean in strati�ed random sampling", Statistica, 53(1), pp.
59-66 (1993)] and Jhajj and Walia [Jhajj, H.S. and Walia, G.S. \A generalized di�erence-
cum-ratio type estimator for the population variance in double sampling", Communications
in Statistics-Simulations and Computation, 41, pp. 58-64 (2012)]. The expressions for
mean squared errors are presented, correct to the �rst order of approximation. Both
theoretical and numerical comparisons reveal that the proposed estimator performs better
than the unbiased sample median estimator, ratio estimator, and estimators by Srivastava
et al. [Srivastava, S.K., Rani, S., Khare, B.B., and Srivastava, S.R. \A generalized
chain ratio estimator for mean of �nite population", Journal of the Indian Society of
Agricultural Statistics, 42(1), pp. 108-117 (1990)] and Gupta et al. [Gupta, S., Shabbir, J.,
Ahmad, S. \Estimation of median in two-phase sampling using two auxiliary variables",
Communications in Statistics-Theory and Methods, 37(11), pp. 1815-1822 (2008)].
c
 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Several authors including Kadilar and Cingi [1,2],
Shabbir and Gupta [3], Koyuncu and Kadilar [4,5]
and Diana et al. [6] have developed estimators for
the �nite population mean under di�erent sampling
schemes. However lesser degree of attention has been
paid to estimation of population median. In many
situations, median is a more appropriate measure of
location than mean, particularly when the variable of
interest follows a highly skewed distribution. Common
examples of such variables are salaries, expenditure,
and production quality. Kuk and Mak [7] introduced
median ratio estimator that makes use of the auxiliary
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information. Singh et al. [8] suggested an estimator for
population median under two-phase sampling scheme
using two auxiliary variables. Gupta et al. [9] have
suggested a class of estimators for population median
using two auxiliary variables. Singh et al. [8] and Gupta
et al. [9] estimators are equally e�cient in the sense
of MSE, but Gupta et al. [9] estimator is generally
preferable because of its lower bias in most situations.
Al and Cingi [10] and Singh and Solanki [11] introduced
some classes of median estimators when using single
auxiliary variable. In this paper, we consider a problem
of median estimation and propose an estimator that
makes use of two auxiliary variables under two-phase
sampling scheme.

Consider a �nite population with N units. Let
yi, xi and zi (i = 1; 2; � � � ; N) be the values on the
ith population unit for the study variable y and two
auxiliary variables x and z, respectively. Also let
yi, xi and zi (i = 1; 2; � � � ; n) be the values on the
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Table 1. A matrix of proportions pij(x; y).

y �My y > My Total

x �Mx p11(x; y) p21(x; y) p:1(x; y)
x > Mx p12(x; y) p22(x; y) p:2(x; y)
Total p1:(x; y) p2:(x; y) 1

ith population unit included in the sample of size n
drawn by simple random sampling without replacement
(SRSWOR). Let My, Mx and Mz, respectively, be the
unknown population medians and M̂y, M̂x and M̂z
be the sample medians for y, x and z, respectively.
When population median of the auxiliary variable is
not known, we draw a preliminary large sample of size
n0 according to SRSWOR (i.e. n0 < N) and compute
M̂ 0y, M̂ 0x and M̂ 0z, the sample medians of the study
variable and the two auxiliary variables respectively.
Further, we draw a subsample of size n from the initial
sample of size n0 (i.e. n < n0) by SRSWOR and
compute M̂y, M̂x and M̂z. Let y(1) � y(2) � � � � � y(n)
be the ordered sample values for the study variable y.
Let t be an integer, such that y(t) � My � y(t+1) and
p = t=n be the proportion of the y values that are less
than or equal to My. If Qy(t) denotes the tth quantile
of Y then M̂y = Q̂y(0:5). Kuk and Mak [7] introduced
the following matrix of proportion pij(x; y) in Table 1.

Similarly, we can de�ne the matrices of propor-
tions pij(x; z) and pij(y; z). It is assumed that as
N ! 1, the distribution of the trivariate variables
(x; y; z) approaches a continuous distribution with
marginal densities fx(x), fy(y) and fz(z) of x, y
and z, respectively. Let fy(My), fx(Mx) and fz(Mz)
be the probability density functions at My, Mx and
Mz, respectively. Let �yx = 4p11(x; y) � 1, �yz =
4p11(y; z)�1 and �xz = 4p11(x; z)�1 be the population
correlation coe�cients between variables indicated by
the respective subscripts. Let e0 = (M̂y � My)=My,
e00 = (M̂ 0y�My)=My, e1 = (M̂x�Mx)=Mx, e01 = (M̂ 0x�
Mx)=Mx, e2 = (M̂z�Mz)=Mz and e02 = (M̂ 0z�Mz)=Mz
such that E(ei) = E(e0i) = 0, i = 0; 1; 2.

The following expected values are correct to �rst
degree of approximation (see [12]).

E(e2
0) =

�
1
n
� 1
N

�
1

4fMyfy(My)g2 ;

E(e2
1) =

�
1
n
� 1
N

�
1

4fMxfx(Mx)g2 ;

E(e2
2) =

�
1
n
� 1
N

�
1

4fMzfz(Mz)g2 ;

E(e020) =
�

1
n0 �

1
N

�
1

4fMyfy(My)g2 ;

E(e021) = E(e1e01) =
�

1
n0 �

1
N

�
1

4fMxfx(Mx)g2 ;
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1
n0 �

1
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�
1

4fMzfz(Mz)g2 ;
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1
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� 1
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�
1
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1
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1
N

�
1

f(4p11(y; x)� 1gfMxMyfx(Mx)fy(My)g ;
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�

1
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� 1
N

�
1

f(4p11(y; z)� 1gfMyMzfy(My)fz(Mz)g ;

E(e0e02) = E(e00e2) = E(e00e02) =
�

1
n0 �

1
N

�
1

f(4p11(y; z)� 1gfMyMzfy(My)fz(Mz)g ;

E(e1e2) =
�

1
n
� 1
N

�
1

f(4p11(x; z)� 1gfMxMzfx(Mx)fz(Mz)g ;

E(e01e2) = E(e1e02) = E(e01e02) =
�

1
n0 �

1
N

�
1

f(4p11(x; z)� 1gfMxMzfx(Mx)fz(Mz)g :

2. Some existing estimators

In this section, we discuss some of the existing estima-
tors of population median (My).

The variance of the usual sample median estima-
tor (M̂y) by Gross [13] is given by:

Var
�
M̂y

�
=
�

1
n
� 1
N

�
1

4ffy(My)g2 : (1)

Chand [14] suggested the chain-ratio type estimator for
population median (My) under two-phase sampling. It
is given by:

M̂R = M̂y

 
M̂ 0x
M̂x

! 
Mz

M̂ 0z

!
; (2)
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where Mz is known. The MSE of M̂R, to �rst order of
the approximation, is given by:

MSE
�
M̂R

� �= 1
4ffy(My)g2

"�
1
n
� 1
N

�
+
�

1
n
� 1
n0
�
Myfy(My)
Mxfx(Mx)

�
Myfy(My)
Mxfx(Mx)

�2�yx
�

+
�

1
n0�

1
N

�
Myfy(My)
Mzfz(Mz)

�
Myfy(My)
Mzfz(Mz)

�2�yz
�#

:
(3)

Srivastava et al. [15] suggested the following power-
chain-ratio type estimator:

M̂SR = M̂y

 
M̂ 0x
M̂x

!�1  
Mz

M̂ 0z

!�2

; (4)

where �1 and �2 are constants. The minimum MSE of
M̂SR, to �rst order of the approximation, at optimum
values of �1 and �2, i.e.:

�1(opt) = �yx
Mxfx(Mx)
Myfy(My)

;

and:

�2(opt) = �yz
Mzfz(Mz)
Myfy(My)

;

is given by:

MSE
�
M̂SR

�
min
�= 1

4ffy(My)g2"�
1
n
� 1
N

�
�
�

1
n
� 1
n0
�
�2
yx�

�
1
n0�

1
N

�
�2
yz

#
;
(5)

which is equal to the variance of the di�erence estima-
tor:

M̂D = M̂y + d1

�
M̂ 0x � M̂x

�
+ d2

�
Mz � M̂ 0z

�
;

where d1 and d2 are constants.
Gupta et al. [9] suggested the following estimator

by utilizing the range of the second auxiliary variable
(z), i.e. Rz as:

M̂G = M̂y

 
M̂ 0x
M̂x

!
1 
Mz +Rz
M̂ 0z +Rz

!
2 
Mz +Rz
M̂ 0z +Rz

!
3

;
(6)

where 
i (i = 1; 2; 3) are constants. The minimum MSE
of M̂G, to �rst order of the approximation, at optimum
values of 
i (i = 1; 2; 3), i.e.:


1(opt) =
Mxfx(Mx)
Myfy(My)

�
�yz�xz � �yx
�2
xz � 1

�
;


2(opt) =
Mzfz(Mz)
Myfy(My)

�
�yz�xz � �yx
�2
xz � 1

�
g�1;

and:


3(opt) =
Mzfz(Mz)
Myfy(My)

�
�yx�xz � �yz
�2
xz � 1

�
g�1;

for:

g =
Mz

Mz +Rz
;

is given by:

MSE(M̂G)min �= 1
4ffy(My)g2��

1
n
� 1
N

�
�
�

1
n0�

1
N

�
�2
yz�

�
1
n
� 1
n0
�
R2
y:xz

�
;
(7)

where:

R2
y:xz =

�2
yx + �2

yz � 2�yx�yz�xz
1� �2

xz
:

The expression in Relation (7) is equal to minimum
MSE of Singh et al. [8] estimator, given by:

M̂S = M̂y

 
M̂ 0x
M̂x

!�1  
Mz

M̂ 0z

!�2  
Mz

M̂ 0z

!�3

;

where �i (i = 1; 2; 3) are constants.

3. Proposed estimator

Jhajj and Walia [16] suggested the following estimator
for population mean under two-phase sampling when
using the single auxiliary variable:

�yJW = [�y + � (�y0 � �y)]
�

�x0
�x0 + � (�x0 � �x)

��
;

where � and � are constants.
Diana [17] introduced a family of estimators for

the population mean in strati�ed sampling given by:

�yD = �yst
� �xst

�X

�� �
d+ (1� d)

� �xst
�X

�"��
;

where �, ", � and d are constants. By using these four
parameters one can generate many estimators.

On the lines of Jhajj and Walia [16] and Di-
ana [17], we propose a generalized di�erence-cum-ratio
type estimator for population median under two phase
sampling scheme. The proposed estimator is given by:

M̂P =
h
M̂y +  

�
M̂ 0y � M̂y

�i"
 + (1�  )

M̂x

M̂ 0x

#w1
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"
 + (1�  )

M̂z

M̂ 0z

#w2 "
 + (1�  )

M̂ 0z
Mz

#w3

; (8)

where  and wi (i = 1; 2; 3) are constants.
The proposed estimator in Eq. (8) is di�erent from

the Gupta et al. [9] estimator given in Eq. (6), in the
sense that in the former given in Eq. (8), we measured
M̂ 0y, M̂ 0x and M̂ 0z at �rst phase, whereas in the latter,
in Eq. (6), we measured M̂ 0x and M̂ 0z at the �rst phase
but at the second phase we measured M̂y, M̂x and M̂z.
This idea is discussed in detail by Jhajj and Walia [16]
in estimating the �nite population variance.

Solving Eq. (8) in terms of e0s to the �rst order
of approximation, we have:

M̂P =My[1 + e0 +  (e00 � e0)]"
1 + w1(1�  )f(e1 � e01) + e021 � e1e01g

+
w1(w1 + 1)

2
(1�  )2(e1 � e01)2

#
"

1 + w2(1�  )f(e2 � e02) + e022 � e2e02g

+
w2(w2 + 1)

2
(1�  )2(e2 � e02)2

#
�
1+w3(1� )e02 +

w3(w3 + 1)
2

(1�  )2e022
�
:

Hence, up to the �rst order of approximation:

MSE(M̂P ) �= M2
yE[e0 +  (e00 � e0)

+ w1(1�  )(e1 � e01) + w2(1�  )(e2 � e02)

+ w3(1�  )e02]2:

Squaring and taking expectations, the MSE of M̂P , to
the �rst degree of approximation, is given by:

MSE(M̂P ) �= 1
4ffy(My)g2

"�
1
n
� 1
N

�
+ ( 2 � 2 )

�
1
n
� 1
n0
�

+
�

1
n0 �

1
N

�(
(1�  )2w2

3

�
Myfy(My)
Mzfz(Mz)

�2

+ 2(1�  )w3

�
Myfy(My)
Mzfz(Mz)

�
�yz

)

+ (1�  2)
�

1
n
� 1
n0
�(

w2
1

�
Myfy(My)
Mxfx(Mx)

�2

+ w2
2

�
Myfy(My)
Mzfz(Mz)

�2
)

+2(1�  )2
�

1
n
� 1
n0
�(

w1

�
Myfy(My)
Mxfx(Mx)

�
�yx

+ w2

�
Myfy(My)
Mzfz(Mz)

�
�yz

)
+ 2w1w2(1�  )2

�
1
n
� 1
n0
�

� fMyfy(My)g2
fMxfx(Mx)gf(Mzfz(Mz)g

�
�xz

)#
:

(9)

Setting @MSE(M̂P )
@wi = 0, (i = 1; 2; 3), we have:

w1(opt) =
Mxfx(Mx)(�yz�xz � �yx)
Myfy(My)(1� �2

xz)
;

w2(opt) =
Mzfz(Mz)(�yx�xz � �yz)
Myfy(My)(1� �2

xz)
;

and:

w3(opt) = � Mzfz(Mz)�yz
Myfy(My)(1�  )

:

Substituting the optimum values of wi (i = 1; 2; 3) in
Relation (9), we get the minimum MSE of M̂P , given
by:

MSE(M̂P )min �= 1
4ffy(My)g2

"�
1
n0�

1
N

�
(1��2

yz)

+ (1�  )2
�

1
n
� 1
n0
�

(1�R2
y:xz)

#
: (10)

Note that Jhajj and Walia [16] have shown that MSE
is minimum for  = 1. So, further minimizing Relation
(10) with respect to  (i.e. taking  = 1), we have:

MSE(M̂P ) =1
min
�= 1

4ffy(My)g2
��

1
n0�

1
N

�
(1��2

yz)
�
:

(11)

In Tables 2 and 3, MSE values and Percent Relative
E�ciency (PRE) are given for di�erent values of  , i.e.
0, 0.5, 1, 1.5, 2. For  = 1, the proposed estimator M̂P
performs well.
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Table 2. MSE values of di�erent estimators with respect to M̂y for di�erent values of  .

Estimator Population 1 Population 2 Population 3
M̂y 565443.57 2.22 113343.27
M̂R 840264.22 1.01 180840.61
M̂SR 525744.59 0.87 110225.37
M̂G 506293.76 0.57 109805.56
M̂P

 = 0 506293.76 0.57 109805.56
 = 0:5 360471.28 0.38 75308.90
 = 1 311863.78 0.31 63810.01
 = 1:5 360471.28 0.38 75308.90
 = 2 506293.76 0.57 109805.56

Table 3. PRE of di�erent estimators with respect to M̂y for di�erent values of  .

Estimator Population 1 Population 2 Population 3

M̂y 100.000 100.000 100.000
M̂R 67.294 220.004 62.676
M̂SR 107.551 254.494 102.829
M̂G 111.683 390.314 103.222
M̂P

 = 0 111.683 390.314 103.222
 = 0:5 156.862 587.840 150.504
 = 1 181.311 707.124 177.626
 = 1:5 156.862 587.840 150.504
 = 2 111.683 390.314 103.222

4. E�ciency comparison

In this section, we compare the proposed estimator M̂P
with other existing estimators.

Condition (i)
By Relations (1) and (10), MSE(M̂P )min < Var(M̂y)
if:�

1
n0 �

1
N

�
�2
yz +

�
1
n
� 1
n0
�

�
1� (1�  )2(1�R2

y:xz)
	
> 0:

Condition (ii)
By Relations (3) and (10), MSE(M̂P )min < MSE(M̂R)
if:�

1
n
� 1
n0
�"�

Myfy(My)
Mxfx(Mx)

� �yx
�2

�(1�  )2(1�R2
y:xz)

#

+
�

1
n0 �

1
N

�"�
Myfy(My)
Mzfz(Mz)

� �yz
�2

�(1� �2
yz)

#
> 0:

Condition (iii)
By Relations (5) and (10):

MSE(M̂P )min < MSE(M̂SR)min

if:�
1
n
� 1
n0
��

(1� �2
yx)� (1�  )2(1�R2

y:xz)
�
> 0:

Condition (iv)
By Relations (7) and (10):

MSE(M̂P )min < MSE(M̂G)min

if:�
1
n
� 1
n0
�

(1�R2
y:xz) (2�  ) > 0:

Conditions in Comparisons (i)-(iv) will always be true
for  = 1, and our proposed estimator will perform
better than the estimators Mi (i = y;R; SR;G), as
seen in Table 2.
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5. Empirical study

In this section, we consider three populations to per-
form numerical comparisons of di�erent estimators.

Population 1: Source: Singh [18]
Let Y;X;Z, respectively, be the number of �sh caught
by the marine recreational �shermen in year 1995, 1994
and 1993. The descriptive statistics are given below:

N = 69; n0 = 24; n = 17;

My = 2068; Mx = 2011; Mz = 2307;

fy(My) = 0:00014; fx(Mx) = 0:00014;

fz(Mz) = 0:00013; �yx = 0:1505;

�yz = 0:3166; �xz = 0:1431:

Population 2: Source: Aczel and Sounderpandian[19]
Let Y be the US exports to Singapore in billions of
Singapore dollars, X be the money supply �gures in
billions of Singapore dollars and Z be the local prices
in US dollars.

The descriptive statistics are given below:

N = 67; n0 = 23; n = 15;

My = 4:8; Mx = 7; Mz = 151;

fy(My) = 0:0763; fx(Mx) = 0:0526;

fz(Mz) = 0:00024; �yx = 0:6624;

�yz = 0:8624; �xz = 0:7592:

Population 3: Source: MFA [20]
Let Y;X;Z, respectively, represent the district-wise
tomato production (tonnes) in Pakistan in year 2003,
2002 and 2001.

The descriptive statistics obtained from the pop-
ulation are given below:

N = 97; n0 = 46; n = 33;

My = 1242; Mx = 1233; Mz = 1207;

fy(My) = 0:00021; fx(Mx) = 0:00022;

fz(Mz) = 0:00023; �yx = 0:2096;

�yz = 0:1233; �xz = 0:1496:

We use the following expression to obtain the Percent
Relative E�ciency (PRE) as:

PRE =
Var

�
M̂y

�
MSE

�
M̂i

�
or MSE

�
M̂i

�
min

� 100;

i = y;R; SR;G; P:

The MSE values and percent relative e�ciencies are
given in Tables 2 and 3, respectively.

The estimators Mi (i = y;R; SR;G) are indepen-
dent of  . Based on the results in Tables 2 and 3, it is
observed that the proposed estimator M̂P outperforms
other competing estimators for di�erent values of  .
The ratio estimator M̂R shows poor performances in
Populations 1 and 3 because of weaker correlation
between the study variable and auxiliary variables.

Although Jhajj and Walia [16] have presented
results for various values of  , their numerical results
clearly show that optimal value of  is 1, a fact
observed in this study as well.

6. Conclusion

We propose an improved estimator for population me-
dian on the lines of Jhajj and Walia [16] and Diana [17].
Both theoretical and numerical comparisons with other
estimators show that the proposed estimator (M̂P )
is more e�cient than sample median estimator (M̂y),
ratio estimator (M̂R), Srivastava et al. estimator [15]
(M̂SR) and Gupta et al. estimator [9] (M̂G) for 0 <  <
2. For  = 0; 2, estimators M̂P and M̂G are equally
e�cient. Among di�erent values of  , maximum gain
in precision occurs at  = 1.
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