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Abstract. The cost parameters in economic-statistical models of control charts are
usually assumed to be deterministic in the literature. Considering uncertainty in the cost
parameters of control charts is very common in application. So, several researchers used
scenario-based approach for robust economic-statistical design of control charts. In this
paper, we speci�cally concentrate on the Multivariate Exponentially Weighted Moving
Average (MEWMA) control chart and consider interval uncertainty in the cost parameters
of the MEWMA control chart and develop a robust economic-statistical design of the
MEWMA control chart by using interval robust optimization technique. Meanwhile,
the Lorenzen and Vance cost function is used, and to calculate the average run length
criterion, the Markov chain approach is applied. Then, genetic algorithm for obtaining
optimal solution of the proposed robust model is used and e�ectiveness of this model is
illustrated through a numerical example. Also, a comparison with certain situation of
the cost parameters is performed. Finally, a sensitivity analysis is done to investigate the
e�ect of changing the intervals of cost parameters of the Lorenzen and Vance model on the
optimal solutions. Furthermore, a sensitivity analysis on the other certain cost parameters
of the Lorenzen and Vance model is done.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Control charts are one of the most common tools
of Statistical Process Control (SPC) for monitoring
processes. Designing the control charts is determining
parameters such as sample size (n), sampling interval
(h) and control limits coe�cient (l). Since the design
of a control chart leads to various costs, authors were
interested to design control charts from an economic
perspective. Therefore, some authors have proposed
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cost functions which are a function of sample size (n),
sampling interval (h) and control limits (l). Firstly,
Duncan [1] presented the economic model for She-
whart [2] control charts. Also, Lorenzen and Vance [3]
proposed another economic model for economic design
of control charts. In the economic model of Lorenzen
and Vance, in-control and out-of-control average run
length criteria are used while the economic model of
Duncan is based on the probabilities of Types I and II
of errors. Woodall [4] expressed that economic design
of control charts leads to poor statistical properties.
Hence, several researchers, such as Saniga [5] and
Montgomery et al. [6], proposed economic-statistical
design of univariate control charts.

In most of cases, the quality of a process is
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represented by two or more quality characteristics and
monitored by multivariate control charts such as T 2

Hotelling control chart. Another multivariate control
chart is the Multivariate Exponentially Weighted Mov-
ing Average (MEWMA) control chart that was �rst
introduced by Lowry et al. [7] and has advantages
rather than Shewhart control chart in detecting small
shifts in the mean vector of quality characteristics.

Since the cost parameters in designing the con-
trol charts are not deterministic in some real cases,
using robust optimization approaches in economic-
statistical design of control charts is necessary. By
investigating the literature of robust economic and
economic-statistical design of control charts in the next
paragraphs, robust economic-statistical design of the
MEWMA control chart by using interval robust opti-
mization is not considered. In fact, the main idea of this
paper is robust economic-statistical design of control
charts by using interval robust optimization method.
In this paper, cost parameters are not deterministic
and value of each uncertainty data is taken from an
uncertainty interval. Then, we develop an interval
robust model by using interval robust optimization
method that is applied to optimize nonlinear program-
ming problems. In this paper, we use the Lorenzen
and Vance cost model with considering Taguchi loss
approach and apply the Markov chain approach to
calculate the in-control and out-of-control average run
length criteria.

In the literature of economic-statistical design of
control charts, �rstly Linderman and Love [8] presented
an economic-statistical design of the MEWMA control
chart and obtained the ARL by using simulation
method. Then, Molnau et al. [9] applied the same
proposed model of Linderman and Love [8] by using
the Markov chain approach in determining the ARL.
Furthermore, several researchers presented economic-
statistical model for the MEWMA control chart, such
as Testik and Borror [10] and Niaki et al. [11].
They applied the Lorenzen and Vance cost model for
economic-statistical design of the MEWMA control
chart. For more information about the economic-
statistical design of control charts refer to review paper
by Celano [12]. In all of these researches, the cost
parameters are considered deterministic. However,
in some real applications this assumption is violated.
Hence, we consider uncertainty in the cost parameters
of the Lorenzen and Vance function in this paper.

One of the latest approaches to deal with the
optimization under uncertainty is robust optimization.
The goal of this approach is to �nd a solution which
is robust under uncertainty of input data. This
approach is �rst proposed in the early 1970s and has
recently been extensively studied and extended. Some
robust optimization methods, such as simple weighting
method, considering the probability of occurrence,

regret value and min-max regret model are the most
signi�cant among others. Pignatiello and Tsai [13]
were the �rst ones who proposed the robust idea for
control charts when the process parameters are not
precisely known. In uncertainty case, i.e. when
process parameters are not known, the costs of control
charts can be handled by robust designs. In this case
estimating the cost parameters is very important to
obtain the optimal solution. In their paper, the values
of process parameters can only be estimated with
varying degrees of precision. These parameters were
each investigated at three levels and were considered by
several separate scenarios that these di�erent scenarios
represented di�erent degrees to which the parameter
estimates are known. Keats et al. [14] proposed robust
approach for economic design of control charts with
stressing on limitations and barriers of the economic
design. Actually, they illustrated the importance of
robust design procedures for control charts when the
parameters are uncertainty. In this paper, the cost
model is optimized by using robust optimization.

One of the robust optimization approaches to
design control charts in the literature of the robust
optimization is the scenario-based approach in which
cost parameters are de�ned by di�erent scenarios.
Linderman and Choo [15] proposed the scenario-based
approach for robust economic design of a single process.
They considered three discrete robustness measures
for cost parameters by using several scenarios and
calculated the suitable control chart parameters under
all scenarios. Vommi and Seetala [16] presented an
approach to robust economic design of �X control
charts and obtained the best solution by using genetic
algorithm. In fact, several authors applied scenario-
based approach for robust economic and economic-
statistical design of Shewhart control charts.

Also, another robust optimization approach is
the interval robust optimization. Firstly, Soyster [17]
proposed a linear optimization model to construct a
solution that is feasible for all input data such that
each uncertain input data can take any values from
an interval. This approach, however, tends to �nd
solutions which are over-conservative. An important
step for developing a theory for robust optimization is
taken independently by Ben-Tal and Nemirovski [18-
20], El-Ghaoui and Lebret [21] and El-Ghaoui et
al. [22]. To address the issue of over conservatism,
these papers proposed less conservative models by
considering uncertain linear problems with ellipsoidal
uncertainties to solve the robust counterparts. Then,
Bertsimas and Sim [23,24] suggested a new method
which can �nd a robust counterpart for a linear
problem. Furthermore, by introducing the parameter
which is called the level of conservatism, of solution,
their approach produces solution that has more exible
rather than the conservatism, but it can only be applied
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for robust optimization of linear programming problem.
Soares et al. [25] developed interval robust optimization
approach for linear and nonlinear problems either with
single or multiple objectives. In this approach, an
uncertainty interval is speci�ed, and the set of scenarios
is the Cartesian product of all uncertainty intervals.
For each solution, the �rst step is to �nd the worst
scenario and the second step is to �nd the optimum
solution among the worst scenarios. In fact, there
are the methods for robust modeling with interval
data for linear and nonlinear problems. Generally,
there are two methods for robust modeling of nonlinear
problems with interval data described by Averbakh and
Lebedev [26] and Soares et al. [25]. In this paper, we
apply the combination of the two methods by Averbakh
and Lebedev [26] and Soares et al. [25] for robust
economic-statistical design of the MEWMA control
chart by using interval data for the cost parameters.

The rest of the paper is organized as follows:
In Section 2, �rst the MEWMA control chart is
introduced. Then Lorenzen and Vance cost function
is explained and economic-statistical design of control
charts is described. Also, Taguchi loss function is
presented. Finally, Markov chain approach is explained
in this section. In Section 3, �rst the concept of
the robust optimization approach is explained briey
and then the interval robust optimization method is
stated. Moreover, robust economic-statistical model of
the MEWMA control chart by using interval robust
approach is developed. In Section 4, the Genetic Al-
gorithm (GA) as the optimization method is proposed
for solving the developed robust economic-statistical
model. In Section 5, the performance of the proposed
robust model is evaluated through a numerical example
and then a comparison with certain cost parameters is
performed. In Section 6, a sensitivity analysis on the
interval range of uncertainty in the cost parameters of
the developed model is presented. Also, e�ects of some
cost parameters of Lorenzen and Vance cost function
on the best solution of robust economic-statistical
model of the MEWMA control chart are studied. Our
concluding remarks are given in the �nal section.

2. Economic-statistical design of MEWMA
control chart

2.1. The MEWMA control chart
The univariate EWMA control chart is �rst introduced
by Robert [27]. Suppose Xi to be ith sample of a
quality characteristic with mean and variance of � and
�2, respectively. The EWMA statistic is as follows:

Zi = r(Xi � �) + (1� r)Zi�1; (1)

where 0 < r � 1 is the smoothing parameter and Z0 =
0. So, the mean of Zi is 0 and variance of Zi is:

�2
Zi =

(
r
�
1� (1� r)2i�

2� r
)
�2: (2)

The advantage of the EWMA control chart is that
the statistic of this chart considers the e�ect of the
previous samples. Hence, researchers introduced a
similar control chart for multivariate processes named
as MEWMA control chart. In the multivariate case,
consider a process with p quality characteristics. Let X
to be a p-dimensional vector of quality characteristics
that has a multivariate normal distribution Np �
(�;�) with the mean vector � and the covariance
matrix �. The statistic of MEWMA control chart
proposed by Lowry et al. [9] is calculated by:

Qi = ZTi ��1
z Zi; (3)

where Zi is calculated by Eq. (1) as a vector, Z0 = 0,
and the variance-covariance matrix of the Z vector is
computed as:

�Z =
�

r
2� r

�
�X: (4)

The MEWMA control chart signals an out-of-control
state when Qi > l, where l is a prede�ned upper control
limit. The two main parameters of the MEWMA
control chart (l and r) are determined such that a
particular in-control average run length (ARL0) is
achieved.

2.2. Economic cost function
Most of researches of economic and economic-statistical
design of control charts used either the Duncan [1] or
Lorenzen and Vance [3] cost function. In this paper,
we use the Lorenzen and Vance [3] cost function for
economic-statistical design of the MEWMA control
chart. In this economic model, the total cost in a
cycle involves sampling, searching and repairing costs
and the cost due to producing nonconforming items.
Expected total cost per time unit is computed by
dividing the expected total cost in a cycle by the
expected cycle time. In this cost model, it is assumed
that the process has been started from an in-control
state and the time to the occurrence of an assignable
cause has an exponential distribution by the mean
of 1=�. The Lorenzen and Vance cost function is
calculated by Eq. (5) as shown in Box I, where:

C0 Cost per hour due to nonconforming
items produced by an in-control
process;

C1 Cost per hour due to nonconforming
items produced by an out-of-control
process;

a Fixed cost per sample;
b Cost per unit sampling;
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F Cost per false alarm;
W Cost to locate and repair the assignable

cause;
E Time to sampling and charting one

item;
T0 Expected search time when signal is a

false alarm;
T1 Expected time to detect an assignable

cause;
T2 Expected time to repair the process;
ARL0 Average run length of an in-control

process;
ARL1 Average run length of an out-of-control

process;
S Expected number of samples taken

when process is in-control;
� Expected time of occurrence of

assignable cause;
1 1 if production process continues

during search and 0 if production
process stops during search;

2 1 if production process continues
during repair and 0 if production
process stops during repair.

Moreover, expected number of samples when pro-
cess is in-control (S) and expected time of occurrence
of assignable cause (�) are computed as:

S =
e(��h)

1� e(�h) ; (6)

and:

� =
1� (1 + �h)e(��h)

�
�
1� e(��h)

� : (7)

The Average Run Length (ARL) is the expected
number of successive samples taken until the sample
statistic falls outside the control limits. When the
process is in-control, higher value of ARL0 is more
preferable. So, for an out-of-control process the lower
value of ARL1 is more preferable. In this paper, we

obtain the ARL of the MEWMA control chart by using
Markov chain approach which is proposed by Runger
and Prabhu [28].

2.3. Economic-statistical design
Design of the MEWMA control chart includes de-
termination of four parameters including the sample
size (n), the sampling interval (h), the upper control
limit (l) and the smoothing parameter (r). Economic
design of the MEWMA control chart leads to poor
statistical properties. However, in economic-statistical
design for attaining suitable statistical properties, sev-
eral statistical constraints are added to the economic
model. Indeed, in economic-statistical design of the
MEWMA control chart, the cost function is minimized
by considering constraints, such as lower bound of in-
control ARL and also upper bound of out-of-control
ARL. In the other words, by using economic-statistical
design of control charts, statistical properties can be
improved, however, the total cost increases a bit. This
economic-statistical model of control charts satis�es
both economic and statistical limitations simultane-
ously. In this paper, we use the economic-statistical
model for the MEWMA control chart. To obtain
the four parameters of the MEWMA control chart
including n, h, l, and r, the Lorenzen and Vance cost
function as an objective function is minimized. An
upper bound for ARL1 and a lower bound for ARL0
are considered as constraints.

This model is de�ned as follows:

minimize C(n; h; l; r);

subject to:

ARL0 � ARLL; ARL1 � ARLU ;

h and l > 0; 0 < r � 1;

n : positive interger: (8)

2.4. Taguchi loss function
In this paper, we used Taguchi loss function for
incorporating external costs in the cost model. Taguchi

E(C) =
C0
� + C1 [�� + nE + h(ARL1) + 1T1 + 2T2] + SF

ARL0
+W

1
� + (1� 1)

h
ST0

ARL0

i� � + nE + h(ARL1) + T1 + T2

+

h
(a+bn)
h

i� � 1
� � � + nE + h(ARL1) + 1T1 + 2T2

�
1
� + (1� 1)

h
ST0

ARL0

i� � + nE + h(ARL1) + T1 + T2

: (5)

Box I
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loss function is used for representing economic loss
due to the deviation of quality characteristic from its
target. The multivariate loss function is developed for
the multivariate quality characteristics by Kapur and
Cho [29], and we used this loss function in this paper.
The multivariate loss function is de�ned as:

L(y1; y2; � � � ; yp) =
pX
i=1

iX
j=1

kij(yi � ti)(yj � tj); (9)

where kij is a constant that depends on the correlation
between yi and yj and the rework and wasting costs. If
yi and yj are independent, then kij is equal to zero.
Also, ti and tj are the target values of yi and yj
quality characteristics, and p is the number of quality
characteristics. Furthermore, the expected external
costs of each product for the in-control process (J0)
and the out-of-control process (J1) are derived from
the following equations, respectively:

J0 =
pX
i=1

kii
�
(�0i � ti)2 + �2

i
�

+
pX
i=2

i�1X
j=1

kij [(�0i � ti)(�0j � tj) + �ij ] ; (10)

J1 =
pX
i=1

kii[(�1i � ti)2 + �2
i ]

+
pX
i=2

i�1X
j=1

kij [(�1i � ti)(�1j � tj) + �ij ]; (11)

where �i and �2
i are the mean and variance of yi,

respectively, and �ij is the covariance of �i and �j .
Suppose the in-control and out-of-control production
costs are C0 and C1, respectively and the production
rate in an hour is PR. Hence, the C0 and C1
parameters of the Lorenzen and Vance function can
be calculated as follows, respectively:

C0 = J0PR+ C0; (12)

C1 = J1PR+ C1: (13)

2.5. The Markov chain approach
There are several approaches in the literature for
computing ARL of the MEWMA control chart, such
as integral equation approach, simulation approach and
Markov chain approach. In this paper, we use Markov
chain approach because the Markov chain approach
is more precise rather than the simulation approach
and is simpler than the integral equation approach. In
addition, the simulation approach leads to increasing
the variance of ARL criterion and is time consuming.

Calculating the ARLs' of the MEWMA control
chart by Markov chain approach was �rst proposed by
Runger and Prabhu [28]. Computing the in-control and
out-of-control ARL of the MEWMA control chart by
using the Markov chain approach is explained in the
Appendix.

3. Proposed model: Robust
economic-statistical design of the MEWMA
control chart by using interval robust
optimization method

In the interval robust optimization under uncertainty,
we obtain design parameters (n, l, h, r) such that the
cost function is minimized by considering the worst-
case. In other words, we minimize the maximum
cost due to uncertainty in the cost parameters. In
this section, we briey explain about the concept
of the robust optimization as well as interval robust
optimization and then we develop a model for robust
economic-statistical design of the MEWMA control
chart.

One of the latest methods for optimizing problem
under uncertainty of parameters is robust optimization.
Robust optimization is an approach which optimizes
the worst case of problem under uncertainty. The main
steps of the robust optimization method are as follows:
In the �rst step, feasible solutions are obtained. In
the second step, optimal solutions are selected among
the feasible solutions. There are di�erent methods in
robust optimization approach. One of these methods
is interval robust optimization method. In the interval
robust optimization method, uncertain data are de�ned
by lower and upper bounds as an interval. There
are some methods for robust modeling with interval
data for linear and nonlinear problems. The most
common method for robust modeling of linear discrete
problem is stated by Bertsimas and Sim [23,24]. Also,
there are two methods for robust modeling of nonlinear
problems with interval data described by Averbakh
and Lebedev [26] and Soares et al. [25]. We use the
combination of these methods for robust economic-
statistical design of the MEWMA control chart.

3.1. Robust economic-statistical model of the
MEWMA control chart

Uncertainty in the parameters of the cost model is
a very common problem in designing control charts.
In this paper, the uncertainty in the cost parameters
is characterized by interval data. To model robust
economic-statistical design of the MEWMA control
chart with uncertain data, we use the interval robust
optimization approach and suppose the vector of the
design parameters for the MEWMA control chart is
x = (n l h r). In this robust approach, the main goal is
minimizing the worst-case with uncertain interval data.
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In economic-statistical design of the MEWMA
control chart, we consider two statistical constraints
including lower bound for in-control ARL (ARL0)
and upper bound for out-of-control ARL (ARL1). In
other words, the proposed model is the combination
of economic-statistical design with the robust model
by considering interval data for cost parameters. Note
that the total cost of robust economic-statistical de-
sign may be higher than certain model of economic-
statistical design of the MEWMA control chart. The
robust economic-statistical model for the MEWMA
control chart with using the robust optimization of
nonlinear problems is explained in the next subsection.

3.2. Proposed model
Suppose that the cost parameters of the Lorenzen and
Vance model (C0; C1; F;W ) are taken from the interval
data as follows:

C0 2 [C�0 ; C+
0 ]; C1 2 [C�1 ; C+

1 ];

F 2 [F�; F+]; W 2 [W�;W+]:

Note that the above intervals data are not symmetric.
Since the cost parameters are considered as uncertain
parameters and we optimize the worst case of the costs,
then only the upper bound value and the certain value
of the cost parameters are considered. Hence, the lower
bounds of the intervals are considered equal to the
value of the parameters in certain situation. In the
proposed interval robust optimization model, the cost
parameters are taken from the above interval such that
the problem remains feasible and the solutions obtained
do not be far from the optimal solutions.

First, we consider the parameters C0; C1; F and
W as decision variables in the following optimization
model to �nd the worst case of the cost function under
the presence of the uncertain parameters:

max
C0

�
+ C1(�� + nE + h(ARL1) + 1T1 + 2T2)

+
SF

ARL0
+W;

subject to:

C�0 � C0 � C+
0 ; C�1 � C1 � C+

1 ;

F� � F � F+; W� �W �W+: (14)

Then, the dual problem of above optimization model is
written as:

min� C�0 y1 + C+
0 y2 � C�1 y3 + C+

1 y4 � F�y5

+ F+y6 �W�y7 +W+y8;

subject to:

�y1 + y2 � 1
�
;

�y3 + y4 � �� + nE + h(ARL1) + 1T1 + 2T2;

�y5 + y6 � S
ARL0

; �y7 + y8 � 1;

y1; y2; y3; y4; y5; y6; y7; y8 > 0: (15)

Finally, the proposed interval robust model for robust
economic-statistical design of the MEWMA control
chart by using the dual problem of optimization model
as Eq. (15), is obtained by Eq. (16) which is shown in
Box II.

4. Optimization method

One of the algorithms to solve economic-statistical
design of control charts is the Genetic Algorithm (GA).
The GA algorithm is a global search and optimization
tool in biological system [30]. This algorithm is
di�erent from the other optimization tools because it
considers many points in a search space simultaneously,
works directly with a set of parameters characterized
as strings of chromosomes instead of parameters them-
selves. In addition, it uses the probabilistic rules for
the search of solutions. Since the cost function in the
economic-statistical model is nonlinear, to solve the
model in Eq. (16), the GA algorithm is more suitable
than the classical optimization tools. In addition, the
GA has been applied in many economic and economic-
statistical designs of control charts, such as Chou et
al. [31], Chen and Yeh [32], Kaya [33] and Niaki et
al. [11]. These are the reasons that we used the GA for
solving the robust optimization problem.

The steps of the GA algorithm used in this paper
are explained as follows.

4.1. Generation
Each setting of the MEWMA parameters including n,
h, l and r composes a chromosome including four genes
and each gene represents a decision variable. A sample
of a chromosome is shown in Figure 1. In this step, 30
chromosomes are generated randomly and the objective
function of each chromosome is computed. Also,
out-of-control average run length (ARL1), in-control
average run length (ARL0) for each chromosome are
calculated. The generated chromosomes are considered

Figure 1. Representation of one chromosome as an
example.
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min
�C�0 y1 + C+

0 y2 � C�1 y3 + C+
1 y4 � F�y5 + F+y6 �W�y7 +W+y8

1
� + (1� 1)

h
sT0

ARL0

i� � + nE + h(ARL1) + T1 + T2

+

h
(a1+a2n)

h

i� � 1
� � � + nE + h(ARL1) + 1T1 + 2T2

�
1
� + (1� 1)

h
sT0

ARL0

i� � + nE + h(ARL1) + T1 + T2

;

Subject to :

�y1 + y2 � 1
�
; �y3 + y4 � �� + nE + h(ARL1) + 1T1 + 2T2; �y5 + y6 � S

ARL0
;

�y7 + y8 � 1; ARL0 � ARLL; ARL1 � ARLU ; h and l > 0; 0 < r � 1;

n : positive integer; y1; y2; y3; y4; y5; y6; y7; y8 > 0: (16)

Box II

as initial population. Then, using cross-over and
mutation operators, new populations will be produced.

4.2. Cross-over operator
For cross-over operation, a pair of chromosomes is
selected to produce together new children. In each
pair, two similar genes are randomly replaced with each
other by the probability of Pc = 0:8. As an example,
the �rst and the third genes of each chromosome are
�xed, and the second and the fourth genes are replaced
with each other.

4.3. Mutation operator
The mutation step in each loop is performed with
probability of Pm = 0:3. In this operation, a gene
in chromosomes is randomly mutated by regenerating
from the length of the feasible range of n, l, h and r that
lengths of the genes are 20, 20, 2 and 1, respectively.

4.4. Evaluation
In step of evaluation, the objective values of the
chromosomes (C) and constraints (ARL0, ARL1) that
are the outputs of the previous step are compared and
sorted. At the end of this step, the thirty chromosomes
with the lower cost values are exported to the �rst step
to repeat the procedure.

4.5. Stopping rule
The stopping rule applied in the proposed GA is the
number of iterations which is �fty. When the algorithm
stops, the chromosome with the minimum cost value in
the last iteration is selected as the best optimal solution
and its elements are considered as the best values of the
parameters.

Because, the values of ARL0 and ARL1 should
be large and small in the proposed robust model,

respectively, we use the penalty function approach for
the GA algorithm in order to evaluate whether the
solutions exceed from both constraints of the model. To
do that, we �rst calculate the value of capacity variable
by using violation measure of constraints as follows:

capacity = maxf0; (ARLL �ARL0)g
+ maxf0; (ARL1 �ARLU )g: (17)

Then the value of objective function will be calculated
by using the following equation:

Objective function=Objective function�ecapacity:
(18)

In the other words, if the value of ARL0 is smaller than
its corresponding lower bound (ARLL) or the value
of ARL1 is more than its corresponding upper bound
(ARLU ), the value of capacity variable is the sum of
the di�erence of ARL0 from ARLL and the di�erence
of ARL1 from ARLU ; thus this penalty function is
applied and the solutions that violate at least one of
the constraints are removed.

5. Numerical example

In this section, a numerical example is presented to
illustrate performance of the proposed interval robust
optimization approach for robust economic-statistical
design of the MEWMA control chart. This example
is extracted from the paper by Niaki et al. [11]. The
radius d1 and the weight d2 of the automobile pistons
are the two important correlated quality characteristics
that must be monitored by the MEWMA control chart.
The correlation matrix is as follows:
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� =
�
0:00254 0:00073
0:00073 0:00079

�
:

In this example, the �xed cost and the variable cost
of sampling are 0.5 and 0.1, respectively. Also, it
takes approximately 0.05 hours to take and analyze
each observation. The time between occurrences of
the successive assignable causes follows an exponential
distribution with an average of 100 hours. It takes
2 hours to detect an assignable cause. The cost
of investigating a false alarm is 50, and the cost of
corrective actions is 25. The hourly cost of operating
in the in-control state is 10 and in the out-of-control
state is 100. Numerical data of this example is briey
presented as follows:

� = 0:01; E = 0:05; T0 = 0;

T1 = 2; T2 = 2; 1 = 2 = 1;

C0 = 10; C1 = 100; F = 50;

W = 25; a = 0:5; b = 0:1;

PR = 100; � =
�
0:0505 0:0282

�
;

K =
�

1500 �1000
�1000 8000

�
:

We compute the ARL of the MEWMA control chart
by using Markov chain method. For practical use,
as Runger and Prabhu [28] suggested, the number of
states when the process is in-control, m, is considered
equal to 25. Also, the parameters m1 and m2, in
the out-of-control state (de�ned in the Appendix), are
considered equal to 5. In fact, the parameters of
m, m1 and m2 are the input parameters in Markov
chain algorithm for in-control and out-of-control ARL
computation.

When the mean of process shifts, the value of non-
centrality parameter is obtained as follows:

� =
�
�T��1�

�0:5 = 1:32:

Also, we use Taguchi loss function to incorporate the
external costs to the Lorenzen and Vance cost function.

The external costs, J0 and J1, are obtained by using
Eqs. (10) and (11), respectively, as follows:

J0 = K11�2
1 +K22�2

2 +K12�12 = 9:4765;

J1 =K11 � (�2
11 + �2

1) +K22 � (�2
21 + �2

2)

+K12 � (�21 � �11 + �12) = 18:2578:

Using Eqs. (12) and (13), we have:

C0 = (100)(9:4765) + 10 = 957:65;

C1 = (100)(18:2578) + 100 = 1925:78:

Finally, we apply the GA algorithm to �nd the best
solution of the proposed interval robust economic-
statistical model. In this example, robust economic-
statistical design of the MEWMA control chart in
Eq. (16) is used. In this model, the lower bound
of ARL0 (ARLL) is assumed to be equal to 200 and
the upper bound of ARL1 (ARLU ) is assumed to be
equal to 2. The upper and lower bounds of decision
parameters are de�ned as:

1 � n � 20; 1 � l � 20;

0 < h � 2; 0 < r � 1:

In this example, the cost parameters of the Lorenzen
and Vance cost model (C0; C1; F;W ) are uncertain and
are taken from interval data as follows (case (a)):

C0 2 [957:65; 1025]; C1 2 [1925:78; 2000];

F 2 [50; 55]; W 2 [25; 30]:

This robust economic-statistical model is solved by
the GA algorithm and optimal values of design pa-
rameters are reported in Table 1. In addition, the
results of economic-statistical design of the MEWMA
control charts, when the values of cost parameters are
deterministic, are extracted from Niaki et al. [11] and
reported in Table 1.

The results in Table 1 show when the values
of cost parameters of the Lorenzen and Vance cost

Table 1. Optimal values of robust economic-statistical design of the MEWMA control chart (case (a)).

Model Cost ARL50 ARL1 n l h r

Robust ES (case (a))
(proposed model)
(uncertain data)

1073.1 695.68 1.639 8 9.777 0.372 0.674

Economic-statistical
Niaki et al. [14]
(certain data)

1007.3 246.17 1.356 11 11 0.484 0.802
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Table 2. Optimal values of robust economic-statistical design of the MEWMA control chart by expanded interval data
rather than case (a).

Model Cost ARL0 ARL1 n l h r

Robust ES (b)

(proposed model)
1177.93 636.65 1.032 10 5.15 0.85 0.775

Robust ES (c)

(proposed model)
1305.6 530.42 1.36 9 11.44 0.635 0.216

function are taken from uncertain interval, the total
cost increases 6.52% rather than the situation when the
cost parameters of Lorenzen and Vance cost function
are described with certain data. Also, in uncertain
situation, the in-control ARL and out-of-control ARL
increase with respect to the certain situations.

Table 2 reports the results of robust economic-
statistical design of the MEWMA control charts when
the values of cost parameters are taken from the longer
intervals data (case (b)). In case (b), the value of the
cost parameters of the Lorenzen and Vance cost model
(C0; C1; F;W ) are taken from the interval data with
larger ranges, with respect to case (a) as follows:

C0 2 [957:65; 1125]; C1 2 [1925:78; 2150];

F 2 [50; 60]; W 2 [25; 35]:

In case (c), the value of the cost parameters of the
Lorenzen and Vance model (C0; C1; F;W ) are taken
from the interval data with larger ranges, with respect
to case (b), as follows:

C0 2 [957:65; 1250]; C1 2 [1925:78; 2300];

F 2 [50; 65]; W 2 [25; 40]:

Table 2 shows the total cost increases when the interval
data of the cost parameters are expanded. In other

words, increasing in uncertainty interval of the cost
parameters leads to increasing in the optimal total cost
of robust model. Also, the in-control ARL decreases
when the uncertainty in the interval data of the cost
parameters increases.

6. Sensitivity analysis

In this section, �rst we present sensitivity analysis
on the uncertainty interval of cost parameters. We
increase the length of uncertainty intervals of cost
parameters and evaluate the e�ect of increasing in
uncertainty of input parameters on total cost of robust
economic-statistical design of the MEWMA control
chart. Furthermore, we present sensitivity analysis
on some cost parameters of Lorenzen and Vance cost
function that are not considered uncertain, and study
the e�ect of these parameters on the best solution
of robust economic-statistical model of the MEWMA
control chart.

Sensitivity analysis on the solution of the robust
economic-statistical model of the MEWMA control
chart under di�erent values of upper bound of uncer-
tainty interval for cost parameters C0; C1; F and W
are done, and the results are summarized in Tables 3
to 6, respectively. In other words, to study the e�ect
of the changing interval data of the cost parameter

Table 3. Sensitivity analysis of robust economic-statistical model of the MEWMA control chart under di�erent
uncertainty intervals for C0 and the expected value approach.

C0 Cost ARL0 ARL1 n l h r

Interval data
[957.65, 1025] 1073.1 695.68 1.63 8 9.77 0.37 0.67
[957.65, 1035] 1080.6 621.45 1.49 6 11.73 0.43 0.52
[957.65, 1045] 1089.3 537.65 1.36 4 13.37 0.46 0.43

Expected value 957.65 1007.75 635.45 1.71 3 8.97 0.36 0.68

Table 4. Sensitivity analysis of robust economic-statistical model of the MEWMA control chart under di�erent
uncertainty intervals for C1 and the expected value approach.

C1 Cost ARL0 ARL1 n l h r

Interval data
[1925.78, 2000] 1073.1 695.68 1.63 8 9.77 0.37 0.67
[1925.78, 2010] 1074.1 917.69 1.16 11 11.81 0.52 0.44
[1925.78, 2020] 1074.9 1024.6 1.1 12 6.2 0.6 0.24

Expected value 1925.78 1070.58 822.74 1.032 10 7.445 0.88 0.71
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Table 5. Sensitivity analysis of robust economic-statistical model of the MEWMA control chart under di�erent
uncertainty intervals for F and the expected value approach.

F Cost ARL0 ARL1 n l h r

Interval data
[50, 55] 1073.1 695.68 1.63 8 9.77 0.372 0.674

[50, 60] 1074.5 838.77 1.52 6 11.19 0.42 0.73

[50, 65] 1075.7 1056.4 1.4 12 9.8 0.5 0.804

Expected value 50 1071.4 709.44 1.44 6 13.2 0.54 0.43

Table 6. Sensitivity analysis of robust economic-statistical model of the MEWMA control chart under di�erent
uncertainty intervals for W and the expected value approach.

W Cost ARL0 ARL1 n l h r

Interval data
[25, 30] 1073.1 695.68 1.63 8 9.77 0.372 0.67

[25, 35] 1073.9 904.66 1.47 8 9.43 0.5156 0.73

[25, 40] 1074.5 1210.8 1.4 10 8.2 0.59 0.79

Expected value 25 1072.08 587.65 1.39 7 11.84 0.465 0.23

C0, the parameter C0 is taken from di�erent interval
data in Table 3 and the cost parameters C1; F and W
are taken from the same de�ned interval data of case
(a) in the previous section. Table 3 shows that with
increasing in uncertainty interval of the parameter C0,
the optimal total cost of interval robust optimization
approach (cost) increases. Also, the optimal sampling
interval (h) and optimal control limit (l) increase when
the uncertainty interval of the parameter C0 increases.
The results show that the in-control ARL and out-of-
control ARL decrease when the uncertainty interval of
the parameter C0 increases.

Also, for studying the e�ect of changing interval
data of the cost parameter C1, the parameter C1 is
taken from di�erent interval data in Table 4 and the
cost parameters C0; F and W are taken from the same
de�ned interval data of case (a) in the previous section.
Results given in Table 4 show that with increasing in
uncertainty interval of the parameter C1, the optimal
total cost of robust model (cost) increases a bit. Also,
the optimal sampling interval (h) increases when the
uncertainty interval of the parameter C1 increases.
Moreover, the in-control ARL increases and out-of-
control ARL decreases when the uncertainty interval
of the parameter C1 increases.

In addition, to evaluate the e�ect of changing
interval data of the cost parameter F , the parameter
F is taken from di�erent interval data in Table 5 and
the cost parameters C0; C1 and W are taken from the
same de�ned interval data of case (a) in the previous
section. Also, to investigate the e�ect of changing
interval data of the cost parameter W , the parameter
W is taken from di�erent interval data in Table 6, and
the cost parameters C0; C1 and F are taken from the
same de�ned interval data of case (a) in the previous
section.

The results of sensitivity analyses on the solu-

tions of the robust economic-statistical model of the
MEWMA control chart under di�erent intervals for the
cost parameters F and W in Tables 5 and 6 shows
that with increasing interval data of the parameters
F and W , the optimal total cost of interval robust
optimization approach (cost) increases a bit. Also,
the optimal sampling interval (h) increases when the
uncertainty intervals of parameters F and W increase.
Moreover, the results show that the in-control ARL
increases and out-of-control ARL decreases when the
uncertainty intervals of the parameters F and W
increase.

Note that increasing in the uncertainty interval
of the parameter C0 has the most e�ect on the total
cost of developed interval robust model with respect
to the other uncertain parameters C1, F and W . In
other words, increasing the uncertainty interval of the
parameter C0 has the most e�ect on increasing in the
total cost, i.e. with increasing 1% in the interval data of
the cost parameter C0, the total cost of the developed
model increases 0.7% while with increasing 1% in the
interval data of the cost parameter C1, the total cost
of the developed model increases 0.17%. Furthermore,
with increasing 1% in the interval data of the cost
parameter F , the total cost of the developed model
increases 0.014% and also with increasing 1% in the
interval data of the cost parameter W , the total cost
of the developed model increases 0.004%.

Moreover, the results of the expected value ap-
proach on the solutions of the proposed robust model
for the cost parameters (C0; C1; F;W ) are reported
in Tables 3 to 6. In the expected value approach,
the midpoint of interval data is used as the input
parameter for calculating the total cost. This value
is the same value of the parameter in certain situation
when interval data is symmetric. In this paper, the
lower bounds of the intervals are considered equal to
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Table 7. Sensitivity analysis of robust economic-statistical model of the MEWMA control chart under di�erent values for
the �xed cost (a) and variable cost of sampling (b).

a b Cost ARL0 ARL1 n l h r

0.5 0.1 1073.1 695.68 1.63 8 9.77 0.37 0.67
0.3 1075.1 786.75 1.75 9 10.43 0.79 0.71

0.7 0.1 1073.9 1120.2 1.2 10 12.3 0.5 0.54
0.3 1075.8 827.31 1.67 5 10.72 0.46 0.36

the value of the parameters in certain situation (refer
to the interval data de�nition in paragraph 2 of Section
3.2). Therefore, the lower bounds of the intervals data
are the same value of input parameter for calculating
the total cost by using the expected value approach.
In other words, in this approach for example, the
parameter F is taken from the lower bound of the
interval data in Table 5 and the cost parameters C0; C1
and W are taken from the same de�ned interval data
of case (a) in the previous section. The results show
the total cost decreases in the expected value approach
versus the interval data approach.

Finally, we investigate sensitivity analysis on the
�xed cost (a) and the variable cost of sampling (b)
of Lorenzen and Vance cost function that are not
considered uncertain in the robust economic-statistical
model of the MEWMA control chart. The results are
given in Table 7.

The results in Table 7 show that with increasing
in the �xed cost and the variable cost of sampling, total
cost of proposed robust economic-statistical model
increases a bit. In addition, the variable cost of
sampling (b) has more e�ect on the total cost rather
than the �xed cost of sampling (a). Also, results show
that with increasing in the �xed cost of sampling (a),
value of in-control ARL increases and value of out-
of-control ARL decreases while with increasing in the
variable cost of sampling (b), value of out-of-control
ARL increases.

7. Conclusion

In this paper, by using the interval robust optimization
approach, the robust economic-statistical model of the
MEWMA control chart for monitoring the mean vector
of a process was developed. The proposed interval
robust model was solved by the genetic algorithm.
The results showed that the total cost of robust
economic-statistical model of the MEWMA control
chart increases when the cost parameters of Lorenzen
and Vance cost model are taken from uncertain interval
rather than the certain data. The performance of the
proposed robust model was illustrated by a numerical
example, and a comparison with certain situation was
done. In addition, a sensitivity analysis was performed
to study the e�ects of changing uncertainty interval

of cost parameters on total cost and parameters of
the MEWMA control chart. Furthermore, the e�ects
of increasing deterministic cost parameters on the
best solution were investigated. The obtained results
showed that increasing in the uncertainty interval of
the parameter C0 has the most e�ect on the total cost
of developed interval robust model with respect to the
other uncertain parameters C1, F and W . Hence, if
we determine interval data of the parameter C0 with
more precise in real application, the optimal solution
achieved under uncertainty is close to the optimal
solution obtained under certain data. In addition,
the results of sensitivity analysis expressed that the
variable cost of sampling has more e�ect on the total
cost of the developed model rather than the �xed cost
of sampling. Note that the uncertainty in the other
parameters of the Lorenzen and Vance cost function
including the time parameters (T 's) could be occurred.
Hence, the proposed model can be developed to model
uncertainty in these parameters as a future research.
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Appendix

The in-control and out-of-control ARL of the
MEWMA control chart

In this appendix, computing the in-control and out-of-
control ARL of the MEWMA control chart is explained
based on the paper by Runger and Prabhu [28]. In
the Markov chain approach, assumes that S(r) is
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a p-dimensional sphere with radius r and Z is a
p-dimensional random vector with standard normal
distribution. Then, the p-dimensional random vector
rZ=kZk has uniform distribution on S(r) (kZk is the
size of vector Z) and the uniform random variable
on S(1) is denoted by U . The p-dimensional random
vector Z is partitioned to a (p�1)-dimensional random
vector and a random variable in which the partitions
are independent and the shift only a�ects the random
variable. So, S(UCL) is divided to m + 1 spherical
shells as the size of each shell is:

g = 2(UCL)=(m+ 1): (A.1)

So, transition probability from state i (i = 1; 2; � � � ;m)
to state j (j is non-zero), p(i; j), is calculated by the
Eq. (A.2) (qt is each point in the sphere that is shown
by the center point of each shell):

p(i; j) =P (qt in state jjqt�1 in state i)

=Pf(j � :5)g < rXt + (1� r)Zt�1

< (j + :5)gjqt�1 = gig; (A.2)

where, Xt is a p-dimensional vector and follows a
spherical distribution. Now, Zt�1 and igU have similar
distribution by condition qt�1 = gi and therefore:

p(i; j)=Pf(j�0:5)g<rXt+(1�r)igU <(j+0:5)gg:
(A.3)

Since U and Xt are independent spherical random
vectors, by using a non-central chi-squared distribution
with p degrees of freedom and the non-centrality
parameter c = [(1 � r)ig=r]2, transition probability,
p(i; j), is calculated:

p(i; j)=Pf(j�0:5)2g2=r2<�2(p; c)<(j+0:5)2g2=r2g:
(A.4)

For state j = 0 we have:

p(i; 0) = Pf�2(p; c) < (0:5)2g2=r2g: (A.5)

Finally, the average run length of the MEWMA control
chart in the in-control state is calculated as follows:

ARL = sT(I�O)�11; (A.6)

where, s is a (m + 1)-dimensional vector in which the
component related to the starting state of the chain is 1
and the other components are 0; O is a (m+1)�(m+1)
matrix of transitional probability from state i to state
j; and 1 is a (m+ 1)-dimensional vector of all 1s. For
estimating the out-of-control ARL, the weighted vector
(Zt) is �rst partitioned to a (p�1)-dimensional random
vector with mean zero and a random variable shown as:

qt = kZtk = (Z2
t1 + ZTt2Zt2)1=2: (A.7)

In state of out-of-control, kZt2k has mean zero and can
be estimated using the method explained above. To
model Zt1, the part that is between -UCL and UCL
is divided to the 2m1 + 1 states with the length g1 =
2UCL=(2m1 + 1). The states are labeled as h� for
� = 1; 2; � � � ; 2m1+1, and state hm1+1 has center point
zero. Since in the out-of-control state � = �e, Zt2 is a
(p� 1)-dimensional spherical with mean zero, the (p�
1) hyper planes are orthogonal to e and pass through
the center point of each h�, then each hyper plane is
divided to the m2 +1 states that the width of each shell
is g2 = 2UCL=(m2+1) and the width of the �rst shell is
g2=2. The shells are labeled as v� for � = 0; 1; � � � ;m2
and v0 has zero center point. Each point in S(UCL)
is based on the distance in the direction of e and its
radius distance that is perpendicular to e belongs to a
h� and a v� . The pair (�; �) is accepted for a state in
the Markov chain if its related point is inside S(UCL).
In other words, (�� (m1 + 1))2g2

1 + �2g2
2 < UCL2.

The transition probability of Zt1 from state i to
j, h(i; j), is as follows:

h(i; j) =P (Zt1 in state jjZt�1;1 in state i)

=P (�UCL + (j � 1)g < rXt1

+ (1�r)Zt�1;1<�UCL + jgjZt�1;1 = ci)

=P [(�UCL + (j�1)g�(1�r)ci)=r��<Xt1

� � < (�UCL + jg � (1� r)ci)=r � �];
(A.8)

where for i = 1; 2; � � � ; 2m1 +1, ci = �UCL+(i�0:5g).
The transition probability of kZt2k from state i to state
j, v(i; j) is obtained similar to the in-control state by
replacing p by p� 1 as follows:

v(i; j) =Pf(j � 0:5)2g2=r2 < �2(p� 1; c)

< (j + 0:5)2g2=r2g: (A.9)

Since Zt1 and Zt2 are independent, the transition
probability of the bivariate Markov chain (Zt1; Zt2)
from state (ix; iy) to (jx; jy) is as follows:

p[(ix; jx); (jx; jy)] = h(ix; jx)v(iy; jy): (A.10)

So, the average run length of the MEWMA control
chart in the out-of-control state is calculated as follows:

ARL = sT(I�O)�11; (A.11)

where, s is the �rst vector of the chain and 1 is a vector
of all 1s, O is a (2m1 +1)(m2 +1) matrix of transitional
probability from state i to state j. For an in-control
state we let � = 0 in the above bivariate Markov chain
to estimate the in-control ARL.
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