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Abstract. A convergent product is an assembly shape concept integrating functions and
sub-functions to form a �nal product. To conceptualize the convergent product problem, a
web-based network is considered in which a collection of base functions and sub-functions
con�gure the nodes, and each arc in the network is considered to be a link between two
nodes. The aim is to �nd an optimal tree of functionalities in the network, adding value
to the product in the web environment. First, an algorithm is proposed to assign the
links among bases and sub-functions. Then, numerical values, as bene�ts and costs, are
determined for arcs and nodes, respectively, using a mathematical approach. Also, customer
value corresponding to the bene�ts is considered. Finally, the Steiner tree methodology is
adapted to a multi-objective model optimized by an augmented "-constraint method. An
example is worked out to illustrate the proposed approach.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Convergence in electronic and communication sectors
has enabled the addition of disparate new functionali-
ties to existing base functions (e.g., adding mobile tele-
visions to a cell phone or Internet access to a personal
digital assistant, PDA). An important managerial issue
for such Convergent Products (CPs) is determination of
new functionalities adding more value to a given base.
For example, a manufacturer of PDAs may wonder
whether it would be a good idea to add satellite radio
to it (i.e., a new functionality incongruent with the
base), or whether it would be better to add electronic
Yellow Pages (i.e., a new functionality congruent with
the functions of a PDA). In addition, determining the
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signi�cance of the base being primarily associated with
utilitarian consumption goals (e.g., a PDA), or with
hedonic ones (e.g., an MP3 music player), is important.

A convergent product is similar to product as-
sembly, where di�erent parts of a product combine to
con�gure a �nal product. Thus, the designer (modeler)
of an assembly, as a convergent product, should be
able to specify important features a�ecting the �nal
product. These features may, in turn, help optimize
the manufacturing process.

The paradigms of digital convergence place more
emphasis on the strategic gravity of convergent prod-
ucts that are formed by adding new functions to
an existing base product [1]; multiple functions are
integrated together in one device, rather than delivered
separately, to work better. Representative examples
of this shifting trend include the Apple iPhone and
the Microsoft Xbox. Such convergent products have
created new business opportunities for companies to
gain or maintain a competitive edge, bringing about
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immense changes in a wide array of industries [2].
Consequently, design of Convergent Product Concepts
(CPCs) has likewise become an integral part of business
concerns [3]. This is of particular importance in today's
business environment, where markets shift rapidly,
technologies proliferate unceasingly, and thus business
life cycles tend to be shorter.

The systematic design of a CPC needs to address
the following analytic issues; �rst, being the type of
data to be employed. The concept design aims to
incorporate customer need into the design specs [4].
A deeper understanding of the fuzzy front end could
help �rms to be more successful in their e�orts to
develop new products [5]. Lee et al. [6] proposed
a systematic approach for the design of CPCs based
on online community information using data mining
techniques.

For instance, the ability of the assembly mod-
eler to furnish information regarding interferences and
clearances between mating parts is particularly useful.
Such information would enable the designer to elimi-
nate interference between two mating parts, where it
is impractical to provide for an interference based on
physical assembly requirements. This activity can be
accomplished within the modeling program, thereby,
averting any loss of productivity that might occur
due to interference on the shop oor. Also, the
knowledge of mass properties for the entire assembly,
particularly the center of gravity, may permit the
designer to redesign the assembly based on equilibrium
and stability considerations. In the absence of such
information, the presence of an elevated center of
gravity and the attendant instability would only be
detected after physical assembly on the shop oor.
Three-dimensional exploded views generated by the
assembly modeler can help designers verify whether
obvious violations of the common Design For Assembly
(DFA) guidelines are present, such as the absence of
chamfers on mating parts.

Corresponding analyses can be achieved within
the framework of the assembly modeler. Additionally,
the assembly model may be imported into third-party
programs that can perform kinematic, dynamic, or
tolerance analyses. Tolerance analysis is quite relevant
to the physical assembly process. With the input of the
assembly model and other user-supplied information,
such as individual part tolerances, tolerance analysis
programs can check the assembly for the presence
of tolerance stacks. Tolerance stacks are undesirable
elements, in the sense that the acceptable tolerances of
individual parts are combined to produce an unaccept-
able dimensional relationship, thereby, resulting in a
malfunctioning or nonfunctioning assembly. Stacks are
usually discovered during physical assembly at which
point, any remedial procedure becomes expensive in
terms of time and cost. Tolerance analysis programs

can help the user eliminate or signi�cantly reduce the
likelihood of stacks being present.

Based on the results of the tolerance analysis,
assembly designs may be optimized by modifying in-
dividual part tolerances. Note, however, that toler-
ance modi�cations have cost implications; in general,
tighter tolerances increase production costs. Engineer-
ing handbooks contain tolerance charts indicating the
range of tolerances achieved by manufacturing pro-
cesses such as turning, milling, and grinding. Designers
use these tables as guides for rationally assigning part
tolerances and selecting manufacturing processes.

A more e�ective methodology for optimizing
product assembly and a convergent product is the tree
model, whereas, the optimization decision is based on
a decision tree. One useful tree for assembly modeling,
as a multiple optimization tool, is the Steiner tree.

The Steiner Tree Problem (STP) is a much
actively investigated problem in graph theory and
combinatorial optimization. This core problem poses
signi�cant algorithmic challenges, and arises in several
applications where it serves as a building block for
many complex network design problems. Given a
connected undirected graph G = (V;E), where V
denotes the set of nodes and E is the set of edges, along
with weight Ce associated with each edge, e 2 E, the
Steiner tree problem seeks a minimum-weight subtree
of G that spans a speci�ed subset, N � V , of terminal
nodes, optionally using subsetN = V �N of the Steiner
nodes. The Steiner tree problem is NP-hard for most
relevant classes of graph (see [7]).

The Steiner problem in graphs was originally
formulated by Hakimi [8]. Since then, the problem
has received considerable attention in the literature.
Several exact algorithms and heuristics have been pro-
posed and discussed. Hakimi remarked that a Steiner
Minimal Tree (SMT) for X in a network, G = (V;E),
can be found by enumerating minimum spanning trees
of subgraphs of G induced by supersets of X. Lawler [9]
suggested a modi�cation of this algorithm, using the
fact that the number of Steiner points is bounded by
jXj � 2, showing that not all subsets of V need to be
considered. Restricting NP-hard algorithmic problems
regarding arbitrary graphs to a smaller class of graphs
will sometimes, yet not always, result in polynomially
solvable problems.

Two special cases of the problem, N = V and
N = 2, can be solved by polynomial time algorithms.
When N = V , the optimal solution of STP is obviously
the spanning tree of G and, thus, the problem can be
solved by polynomial time algorithms such as Prim's
algorithm. When N = 2, the shortest path between
two terminal nodes, which can be found by Dijkstra's
algorithm, is exactly the Steiner minimum tree.

A survey of Steiner tree problems was given by
Hwang and Richards [10], Alvarez-Miranda et al. [11]
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and Fu and Hao [12]. Several exact algorithms have
been proposed, such as the dynamic programming
technique by Dreyfuss and Wagner [13], Lagrangean
relaxation approach by Beasley [14] and brand-and-
cut algorithm by Koch and Martin [15]. Duin and
Volgenant [16] presented some techniques to reduce
the size of the graphs for the Graphical Steiner tree
Problem (GSP). Another approach for the GSP is
using approximation algorithms to �nd a near-optimal
solution in a reasonable time.

Some heuristic algorithms have been developed,
such as the Shortest Path Heuristic (SPH) by Taka-
hashi and Matsuyama [17], the Distance Network
Heuristic (DNH) by Kou et al. [18], the Average
Distance Heuristic (ADH) by Rayward-Smith and
Clare [19] and the Path-Distance Heuristic (PDH) by
Winter and MacGregor Smith [20]. Mehlhorn [21]
modi�ed DNH to arrive at a more e�cient algorithm.
Robins and Zelikovsky [22,23] proposed algorithms
improving the performance ratio.

Recently, metaheuristics have been considered
to propose better methods for �nding near opti-
mal solutions. Examples are the Genetic Algorithm
(GA) [24,25], GRASP [26] and Tabu search [27].
Although these algorithms have polynomial time com-
plexities, in general, they are enormously costly on
large scale input sets. To deal with the cost issue, some
parallel metaheuristic algorithms have been proposed,
such as parallel GRASP [28], parallel GRASP using a
hybrid local search [29] and parallel GA [30].

To produce a new product or promote an existing
one, with the idea of using convergent products, and
the development of a mathematical model keeping base
functions and adding sub-functions in satisfying the
objectives, has not been considered in the literature.
In this paper, by applying the Steiner tree, a multi-
objective mathematical model is developed to consider
the promotion of convergent products to satisfy three
objectives of cost, bene�t and customer value. The
results are some new products with more utility for
both the buyer and the producer.

Here, making use of the Steiner tree, a multi-
objective mathematical model is developed for the
convergent product. The remainder of our work is
organized as follows. In Section 2, the proposed model
is described and some useful network algorithms are
given. Section 3 presents the mathematical model
and a solution algorithm. Section 4 works out an ex-
perimental study to illustrate the proposed algorithm.
Section 5 concludes the paper.

2. The proposed model

In our proposed product digital network, a group of
functionalities are considered for a product. Customers
view their opinions for classifying the functionalities

into base functions and sub-functions. We make use of
this classi�cation in developing our model. The clas-
si�cation procedure is as follows. First, the customer
chooses a product in a list of products being produced
in a company. The functionalities of the product are
viewed in a web page. Then, the customer clicks either
function or sub-function for any of the functionalities.
Consequently, the customer clicks the \classify" button
and observes the classi�ed functionalities in a separate
web page. This process is shown in Figure 1.

The aim in designing such a web based system
is to obtain the con�guration of products having
functions and promoting or adding the corresponding
subfunctions as value added purposes of sale.

Here, we weigh all functionalities (both base
functions and sub-functions) considering di�erent sig-
ni�cant attributes a�ecting the value of a product.
Therefore, we consider the following mathematical
notations.

Mathematical notations

i and j Index for functions and sub-functions,
i = 1; :::;m and j = m+ 1; :::;m+ n;

k Index for attributes, k = 1; :::; p;
Fijk The score of triplet comparison

of functions (or sub-functions)
with functions (or sub-functions)
considering di�erent attributes.

The three-dimensional comparison matrix, F , is
shown in Figure 2. Note that customers �ll in this
matrix using numerical values, Fijk 2 [0; 1].

This matrix is normalized to remove the scales.
The normalized values are shown by F norm

ijk . A thresh-
old value of � is considered in such a way that fij =Pp

k=1 F
norm
ijk

p � � are chosen to be assigned as links. fij
is a value that customers consider for arc(i; j). These
links con�gure a network called a puri�ed network, as
shown in Figure 3.

Now, using the puri�ed network, we characterize
the arcs. To do this, two processes of leveling and
clustering are performed. For leveling, we set the base
functions at level zero, sub-functions with one outlet to
the previous level at level 1, and so on. Thus, an l level
network is con�gured. Here, Algorithm 1 is proposed.

Algorithm 1. Leveling to con�gure a leveled network.
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Figure 1. Classi�cation process.

Figure 2. Three-dimensional comparison matrix.

Figure 3. A puri�ed network.

The nodes of leveled network are associated with
given costs. We are looking for the bene�t each link
provides. Here, a clustering approach is considered.
Clusters are formed as follows: At each level, all sub-
functions linked to a single parent are grouped in a
cluster. Therefore, clusters consisting of di�erent nodes
are con�gured. These clusters are being con�gured as
a new network. The leveling and clustering processes
are shown schematically in Figure 4. Later, we
apply the Steiner tree methodology to optimize this
network.

Algorithm 2 is proposed for clustering. Here,
the clustered network is used to con�gure a tree (the
Steiner tree), keeping the base functions and optimizing
three objectives of minimal cost, maximal pro�t and
the maximum of total values that customers consider
for existing arcs in the convergent product value adding
process. In a traditional Steiner tree approach, the
aim is usually to �nd a tree having a minimal arc
total cost. Here, we extend the approach by looking
for a tree having the base functions and meanwhile

Algorithm 2. Clustering of levels in a leveled network.
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Figure 4. Leveling and clustering processes.

minimize cost, and maximize bene�t and customer
total value. In fact, the model structure's closeness to
the Steiner tree model justi�es modeling the problem
with the proposed approach. Next, we formulate our
adapted proposed Steiner tree model. In the proposed
network, node i (function or sub-function, i) have two
costs:

ci1: software cost,

ci2: hardware cost.

Each arc is accompanied with a bene�t, pii0 ,
attained by nodes i and i0. Regarding the solution ap-
proach, using the Steiner tree in the proposed network,
and the NP-hardness of the problem, we use leveling
and clustering processes to reduce the complexity of
the problem. In clustering, it is not acceptable for
any node to be included in more than one cluster
at any level. To guarantee this, for each level, l, a
zero/one mathematical program is developed in order
to properly appropriate nodes to clusters with the aim
of minimizing the total cost.

Next, we give the zero/one mathematical program
and the puri�cation procedure for each level.

The zero/one mathematical program for
level l:

min T =
X
i2nl

X
j2mli

(�ijcij1 + �ijcij2)zij

X
j2mli

zij = 1; i = 1; :::; nl

zij =

(
1; if node i is in cluster j
0; otherwise

where, �ij ; �ij 2 [0; 1], 8i; j and:
mli : Set of indices of clusters at level l

where node i is included;
nl : Set of indices of di�erent nodes at level

l;
cij2 : Hardware cost of node i in cluster j

(cij2 = ci2, for all i and j);
cij1 : Software cost of node i in cluster j

(cij1 = ci1, for all i and j);
�ij : The software reduction cost coe�cient

of node i in cluster j;
�ij : The hardware reduction cost coe�cient

of node i in cluster j.

Purifying bene�ts, costs and customers total
value at level l:

To determine the cost for each cluster at level l, we use:

cjl =
X
i2nl

(�ijcij1 + �ijcij2)�X
8i;i0

pii0 ;

with cij1, cij2 and nl as de�ned above, �ij ; �ij 2 [0; 1],
8i; j and:
cjl : Cost of cluster j at level l;
�ij : The software reduction cost coe�cient

of node i in cluster j;
�ij : The hardware reduction cost coe�cient

of node i in cluster j;
pii0 : The bene�t of an arc connecting node

i in cluster j to node i0 in cluster j.

Also, to adjust the combined arc bene�ts in
clusters, the following equation is used:

pjj0 = (1 + jj0)
X
8i;i0

pii0 ; 8i; i0; j; j0;

where:
pjj0 : The adjusted arc bene�t connecting

cluster j to cluster j0;
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pii0 : The bene�t of an arc connecting node
i in cluster j to node i0 in cluster j0;

jj0 : The added value con�gured from nodes
in clusters j and j0.

Also, to adjust the combined arc customer total
value in clusters, the following equation is used:

fjj0 = (1 + jj0)
X
8i;i0

fii0 ; 8i; i0; j; j0;

where:
fjj0 : The adjusted arc customer total value

connecting cluster j to cluster j0;
fii0 : The customers total value of an arc

connecting node i in cluster j to node
i0 in cluster j0;

jj0 : The added value con�gured from nodes
in clusters j and j0.

Algorithms 1 and 2 are transformed into Algo-
rithm 3 using the aforementioned considerations. Also,
each node should be in only one cluster at level l. The
node having a minimal cost is chosen for level l. Then,
instead of using the zero/one mathematical program
for level l, we can use Step 3 of Algorithm 3. This
leads to a reduction of computations by avoiding the
need to use the zero/one programs.

3. Mathematical formulation and solution
method

Here, �rst, the mathematical model for the considered
problem is proposed and then the solution approach is
stated.

Algorithm 3. Leveling and clustering in the network.

3.1. Mathematical formulation
We �rst recall the undirected Dantzig-Fulkerson-
Johnson model for the Convergent Product Steiner
Tree Problem (CPSTP) proposed in [31]. Let xij and
yi be binary variables associated with links (i; j) 2 E,
and clusters i 2 V , respectively. Variable yi is 1 if
cluster i belongs to the solution, and is 0 otherwise.
Similarly, variable xij is 1 if link (i; j) belongs to the
solution, and is 0 otherwise. For S � V , de�ne E(S) as
the set of links with both end nodes in S. Assume that
terminals are the set, N . The mathematical model can
then be written as:

Maximize
X

(i;j)2E
pij :xij ; (1)

Maximize
X

(i;j)2E
fij :xij ; (2)

Minimize
X
i2V

ci; yi: (3)

such that:X
(i;j)2E

xij =
X
i2V

yi � 1; (4)

X
(i;j)2E(S)

xij � X
i2S�fkg

yi;

8k 2 S � V; 8S : jSj � 2; (5)

yh = 1; 8h 2 N; (6)

xij 2 f0; 1g; 8i; j 2 E; (7)

yi 2 f0; 1g; 8i 2 V: (8)

The objectives are to maximize the aggregated bene�ts,
minimize the aggregated costs and maximize the aggre-
gated customer total value. Constraint (4) guarantees
that the number of clusters in a solution is equal to the
number of links minus one, and Constraints (5) are the
connectivity constraints. The number of constraints in
(5) equals 2jV j � jV j � 1. As a result, the number of
variables and constraints are increased exponentially,
with respect to the number of clusters. Constraints
(6) impose the terminal clusters to exist in the tree.
Relations (7) and (8) show the variable types.

3.2. Multi-objective solution method
Decision making issues can rarely rely on a single well
de�ned criterion. Although the multiple facets of a
decision process can be aggregated into a single objec-
tive function, this simpli�cation involves arbitrary rules
that can hardly adequately capture the complexity
of real world decision making issues. Thereby, the
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interest in multi-criteria decision making has contin-
ually grown during the past decades, as attested by
the number of books and surveys on the topic (e.g.,
see [32-35], among others). It comes as no surprise
that more and more publications address combinato-
rial issues, given that many real world applications
involve discrete decisions or events. The reader is
referred to [36] for a review of the literature on
Multi-Objective Combinatorial Optimization (MOCO)
problems. Among exact methods to �nd the Pareto
front of MOCO problems, weighted sum scalariza-
tion is the most popular according to [36]. This
method solves di�erent single objective subproblems
generated by a linear scalarization of the objectives.
By varying the weights of this linear function, all
supported non-dominated points can be found. On
the other hand, linear scalarization cannot �nd un-
supported points and is, therefore, ill-suited for non-
convex objective spaces, such as those associated with
MOCO problems. This drawback can be overcome
with the two-phase method of [37] that �nds all
supported points through a weighted sum scalarization
in the �rst phase, while non-supported points are
found during the second phase with problem speci�c
methods. Most algorithms that �nd the exact Pareto
front of MOCO problems are variants of the two-phase
method of [36], although other parametric approaches,
based on weighted scalarizations, can �nd the exact
Pareto front of Bi-Objective Combinatorial Optimiza-
tion (BOCO) problems [38-40]. Besides weighting
sum algorithms, the "-constraint method [32,34] is the
best known approach for solving MOCO problems,
according to [36]. This method generates single ob-
jective subproblems, called "-constraint problems, by
transforming all but one objective into constraints.
The upper bounds of these constraints are given by
the "-vector and, by varying it, the exact Pareto front
can, theoretically, be generated. In practice, because
of the high number of subproblems and the di�culty
in establishing an e�cient variation scheme for the
"-vector, this approach has mostly been integrated
within heuristic and interactive schemes. It can,
however, generate the exact Pareto front in particular
situations.

3.2.1. The ordinary "-constraint method
Consider a MOCO problem with k objective functions,
fi(x); i = 1; :::; k, where x 2 X is the vector of
decision variables, and X is the feasible solution space
determined by the constraints of the MOCO problem.
Without loss of generality, we assume here that all
objective functions are for minimization. In the "-
constraint method, one of the objective functions, as
the main objective function, is optimized using the
other objective functions added as constraints to the
feasible solution space of X, as follows:

Min f1(x)

such that:

f2(x) � "2; f3(x) � "3; :::; fk(x) � "k; x 2 X: (9)

By parametric variation of the right hand side
("2; :::; "k) of the newly added constraints, the Pareto
optimal solutions are obtained. In order to apply
the "-constraint method, the range of at least p � 1
objective functions is needed to determine grid points
for the "2; :::; "k values. The most common approach
is to calculate these ranges from the payo� table by
individually optimizing each objective function. The
mathematical details of computing the payo� table for
a MOCO problem can be found in [41]. The minimum
and maximum values of the ith objective function
are individually calculated using the payo� table and
denoted by fmin

i and fmax
i , respectively. Then, the

range of the ith objective function is determined as
follows:

ri = fmin
i � fmax

i :

The range ri is divided into qi equal intervals. Then,
"i in Relation (1) is set to these qi + 1 grid points by:

"pi = fmax
i � ri

qi
� p; p = 0; :::; qi; i = 2; :::; k;

where p is the grid point number. Using the "-
constraint method, we indeed convert the MOCO
problem into �k

i=2(qi+1) single objective optimization
sub-problems. Each sub-problem has the solution
space, X, which is further limited by its own inequality
constraints for f2; :::; fk. Each sub-problem results
in a candidate solution for the MOCO problem or a
Pareto optimal solution. At the same time, some sub-
problems may become infeasible (the solution space
may be empty) due to the added constraints intro-
duced by f2; :::; fk; such sub-problems are discarded.
A decision maker is then used to select the most
preferred solution out of the obtained Pareto optimal
solutions.

3.2.2. The augmented "-constraint method
The drawback of the ordinary "-constraint method is
the e�ciency of its Pareto solutions. In other words,
there is no guarantee for the solutions of the ordinary
"-constraint method to be e�cient, and ine�cient solu-
tions may be generated. If there is another Pareto so-
lution that can improve at least one objective function
without deteriorating the other objective functions, the
obtained solution is said to be ine�cient. In view of
the fact that all the objective functions are supposed
to be minimized here, without loss of generality, a
greater value for objective functions is more desirable.
In fact, the ordinary "-constraint method mostly gives
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solutions as f2 = "2; :::; fk = "k. Although all
constraints of Relation (9) are satis�ed, the solutions
may be ine�cient. In order to overcome this drawback
using the augmented "-constraint method, at �rst,
the inequality constraints of the objective functions in
Eq. (9) are transformed into equality constraints by
introducing positive surplus variables, known also as
slack variables [42]. Then, the main objective function
is augmented by the sum of the surplus values. So, the
augmented "-constraint problem can be formulated as:

Min f1(x)� � � (s2 + s3 + :::+ sk);

such that:
f2(x) = "2 � s2; f3(x) = "3 � s3; :::; fk(x) = "k � sk;

x 2 X; si � 0; i = 1; :::; k; (10)

where � is a small number usually between 10�3 and
10�6 [43]. The equality constraints of the objective
functions in Eq. (10) are equivalent to the inequality
constraints in Eq. (9). However, in the ordinary "-
constraint method, the slack variables, si, are mostly
set to zero by generating solutions as fi = "i. On the
other hand, in the augmented "-constraint method, the
main objective function is augmented to include the
sum of the slack variables. This mechanism prevents
generation of ine�cient solutions. It can mathe-
matically be proven that the augmented "-constraint
method only generates e�cient solutions. The proof
can be found in [43].

Algorithm 4 shows the payo� table determina-
tion process using lexicographic optimization, and
Algorithm 5 presents an improved augmented "-
constraint [44-46].

A owchart is added to imply the stages of
product development by the convergent product idea
in Figure 5.

Algorithm 4. Determining the pay-o� table using lexico-
graphic optimization.

Algorithm 5. The augmented "-constraint with lexico-
graphic optimization method.

Figure 5. A owchart of the convergent product process.

4. Experimental study

Here, the case study of a Portable Multimedia Player
(PMP) is presented to illustrate the proposed ap-
proach. PMP is a typical example of a convergent
product which is capable of storing and playing digital
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media. Although the initial use of PMP appeared to
be in viewing images, and playing music and videos
stored in various devices, a variety of functions have
now been developed due to the rapid development of
information and communication technologies. Repre-
sentative examples are navigation, Digital Multimedia
Broadcasting (DMB), sur�ng, online communication,
and so forth. The afore-designed web base system
has been adapted to the PMP device by some web
designers. In the proposed web base system, 100
customers were asked to state their opinions of their
favorite PMPs. They announced their views by clicking
on the options given by the R&D group.

For this case, we consider the internet lecture, an
electronic dictionary and sur�ng as functions or base
functions, and battery duration, portability, speed,
storage device, audio quality, video quality and input
devices as sub-functions. Also, in this example, we
consider size, touch screen, speaker type, resolution and
RAM as attributes.

For simplicity, we use the notations given in Ta-
ble 1 to show the convergent product and the proposed
network.

The information given by the users as stated
above are collected in a three dimensional matrix. The
values of attributes for functions and subfunctions are
given in Table 2.

Note that the tables related to all three attributes
are con�gured, and their arithmetic means are shown
as the �nal functions, sub-functions and an attribute
comparison matrix.

Our threshold value is considered to be 0.561,
which is the mean of the data given in Table 2. There-
fore, the threshold matrix is shown in Table 3, and the
corresponding network is con�gured as Figure 6.

Table 3. Threshold comparison matrix for all the
attributes.

Attributes B1 B2 B3 S1 S2 S3 S4 S5 S6 S7

B1 0 1 1 1 0 1 0 0 0 0
B2 - 0 0 0 0 1 1 1 0 0
B3 - - 0 1 0 0 1 1 0 0
S1 - - - 0 1 1 1 0 1 1
S2 - - - - 0 0 0 0 1 1
S3 - - - - - 0 1 1 1 1
S4 - - - - - - 0 0 1 0
S5 - - - - - - - 0 1 1
S6 - - - - - - - - 0 1
S7 - - - - - - - - - 0

Figure 6. Con�gured threshold network.

Then, the leveling process (the zero-th and the
�rst steps of Algorithm 3) is performed and the leveled
network is con�gured as Figure 7. The clustered
network (the second and the third steps of Algorithm
3) is shown in Figure 8.

The cost vectors, the bene�t matrix, customer
total value matrix and matrices, � = [�ij ], � = [�ij ],

Table 1. Notations for convergent product in the proposed network.

B1= internet
lecture

B2= electronic
dictionary

B3= sur�ng
S1= battery

duration
S2= portability

S3= storage
device

S4= audio
quality

S5= video
quality

S6= speed S7= input device

Table 2. Three-dimensional comparison matrix for all the attributes.

Attributes B1 B2 B3 S1 S2 S3 S4 S5 S6 S7

B1 0 0.59 0.58 0.6 0.53 0.66 0.46 0.52 0.48 0.46
B2 - 0 0.46 0.36 0.46 0.63 0.86 0.58 0.43 0.43
B3 - - 0 0.59 0.56 0.53 0.9 0.63 0.33 0.53
S1 - - - 0 0.58 0.59 0.6 0.53 0.6 0.6
S2 - - - - 0 0.36 0.43 0.43 0.7 0.83
S3 - - - - - 0 0.63 0.6 0.63 0.58
S4 - - - - - - 0 0.46 0.6 0.43
S5 - - - - - - - 0 0.65 0.63
S6 - - - - - - - - 0 0.63
S7 - - - - - - - - - 0
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Figure 7. Con�gured leveled network.

Figure 8. Con�gured clustered network (second and
third steps of Algorithm 3).

are obtained to be:

C1 = (150; 210; 180; 20; 30; 30; 50; 10; 20; 20) ;

C2 = (300; 450; 600; 70; 80; 50; 40; 20; 20; 20) ;

� =

2666666666666664

� � �
� � �
� � �

0:65 � 0:7
� � �
1 0:8 �
� 0:6 0:9
� 0:7 0:65
� � �
� � �

3777777777777775
� =

2666666666666664

� � �
� � �
� � �
0:9 � 0:9
� � �
0:9 0:7 �
� 0:6 0:9
� 0:7 0:6
� � �
� � �

3777777777777775
p =2666666666666664

� 1500 1300 100 � 80 � � � �
� � � � � 70 90 120 � �
� � � 60 � � 100 110 � �
� � � � 50 90 110 � 60 40
� � � � � � � � 70 30
� � � � � � 80 70 40 20
� � � � � � � � 30 �
� � � � � � � � 20 10
� � � � � � � � � 20
� � � � � � � � � �

3777777777777775

f =2666666666666664

� 0:59 0:58 0:6 � 0:66 � � � �
� � � � � 0:63 0:86 0:58 � �
� � � 0:59 � � 0:9 0:63 � �
� � � � 0:58 0:59 0:6 � 0:6 0:6
� � � � � � � � 0:7 0:83
� � � � � � 0:63 0:6 0:63 0:58
� � � � � � � � 0:6 �
� � � � � � � � 0:65 0:63
� � � � � � � � � 0:63
� � � � � � � � � �

3777777777777775
For level 1, using iteration 1 of the while loop in step 3
of Algorithm 3, we obtain:

(�41c411 + �41c412) = 76;

(�43c431 + �43c432) = 77;

(�61c611 + �61c612) = 75;

(�62c621 + �62c622) = 59;

(�72c721 + �72c722) = 54;

(�73c731 + �73c732) = 81;

(�82c821 + �82c822) = 21;

(�83c831 + �83c832) = 18:5:

Therefore, z41 = 1, z62 = 1, z72 = 1 and z83 = 1, with
other variables equal to zero. The con�gured network
up to level 1 is shown in Figure 9.

In Figure 10, the next iteration of Algorithm 3
for clustering is performed, the puri�ed network is

Figure 9. Con�gured clustered network for level 1.

Figure 10. Con�gured clustered network.
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Figure 11. Con�gured clustered network.

obtained, and the �nal network is obtained as shown
in Figure 11.

After purifying the bene�ts, costs and customer
total values for level 2, the �nal cost, bene�t, and
customer total value matrices are formed as follows:

~P =

266666666664

� 1500 1300 100 � � � �
� � � � � 208 � �
� � � � � � 110 �
� � � � 50 132 � �
� � � � � � � 130
� � � � � � 84 135
� � � � � � � �
� � � � � � � �

377777777775
~c =

�
450 660 780 90 110 33 30 34

�

~f =

266666666664

� 0:59 0:58 0:6 � � � �
� � � � � 1:94 � �
� � � � � � 0:63 �
� � � � 0:58 0:72 � �
� � � � � � � 1:99
� � � � � � 0:72 2:72
� � � � � � � �
� � � � � � � �

377777777775
With respect to these matrices, the Steiner tree model
is:

max X =1500x12 + 1300x13 + 100x14 + 208x26

+ 110x37 + 50x45 + 132x46 + 130x58

+ 84x67 + 135x68

max X 0 =0:59x12 + 0:58x13 + 0:6x14 + 1:94x26

+ 0:63x37 + 0:58x45 + 0:72x46 + 1:99x58

+ 0:72x67 + 2:72x68

min Y =450y1 + 660y2 + 780y3 + 90y4 + 110y5

+ 33y6 + 30y7 + 34y8

s.t.
x12 +x13+x14+x26+x37+x45+x46+x58+x67

+x68 = y1+y2+y3+y4+y5+y6+y7+y8 � 1

x14 � y1 x14 � y4

x26 � y2 x26 � y6

x37 � y3 x37 � y7

x46 � y4 x46 � y6

x58 � y5 x58 � y8

x12 � y1 x12 � y2

x67 � y6 x67 � y7

x13 � y1 x13 � y3

x45 � y5 x45 � y4

x68 � y6 x68 � y8

x14 + x26 + x12 + x46 � y1 + y2 + y4

x14 + x26 + x12 + x46 � y1 + y2 + y6

x14 + x26 + x12 + x46 � y1 + y6 + y4

x14 + x26 + x12 + x46 � y6 + y2 + y6

x45 + x58 + x68 + x46 � y4 + y5 + y6

x45 + x58 + x68 + x46 � y4 + y5 + y8

x45 + x58 + x68 + x46 � y4 + y8 + y6

x45 + x58 + x68 + x46 � y8 + y5 + y6

x12 + x26 + x67 + x37 + x13 � y1 + y2 + y3 + y6

x12 + x26 + x67 + x37 + x13 � y1 + y2 + y3 + y7

x12 + x26 + x67 + x37 + x13 � y1 + y2 + y7 + y6

x12 + x26 + x67 + x37 + x13 � y1 + y7 + y3 + y6

x12 + x26 + x67 + x37 + x13 � y7 + y2 + y3 + y6

x14 + x46 + x67 + x37 + x13+ � y1 + y4 + y3 + y6

x14 + x46 + x67 + x37 + x13+ � y1 + y4 + y3 + y7

x14 + x46 + x67 + x37 + x13+ � y1 + y4 + y7 + y6

x14 + x46 + x67 + x37 + x13+ � y1 + y7 + y3 + y6

x14 + x46 + x67 + x37 + x13+ � y7 + y4 + y3 + y6

x14+x45 + x58 + x26 + x12 + x68

� y1 + y2 + y4 + y5 + y6
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x14+x45 + x58 + x26 + x12 + x68

� y1 + y2 + y4 + y5 + y8

x14+x45 + x58 + x26 + x12 + x68

� y1 + y2 + y4 + y8 + y6

x14+x45 + x58 + x26 + x12 + x68

� y1 + y2 + y8 + y5 + y6

x14+x45 + x58 + x26 + x12 + x68

� y1 + y8 + y4 + y5 + y6

x14+x45 + x58 + x26 + x12 + x68

� y8 + y2 + y4 + y5 + y6

x14+x45 + x58 + x68 + x37 + x67 + x13

� y1 + y3 + y4 + y5 + y6 + y7

x14+x45 + x58 + x68 + x37 + x67 + x13

� y1 + y3 + y4 + y5 + y6 + y8

x14+x45 + x58 + x68 + x37 + x67 + x13

� y1 + y3 + y4 + y5 + y8 + y7

x14+x45 + x58 + x68 + x37 + x67 + x13

� y1 + y3 + y4 + y8 + y6 + y7

x14+x45 + x58 + x68 + x37 + x67 + x13

� y1 + y3 + y8 + y5 + y6 + y7

x14+x45 + x58 + x68 + x37 + x67 + x13

� y1 + y8 + y4 + y5 + y6 + y7

x14+x45 + x58 + x68 + x37 + x67 + x13

� y8 + y3 + y4 + y5 + y6 + y7

yh = 1; 8h 2 f1; 2; 3g
xij 2 f0; 1g 8i; j
yi 2 f0; 1g 8i:

Now, we apply Algorithms 4 and 5 for obtaining
the Pareto optimal solutions. After performing Algo-

Figure 12. First Pareto optimal solution.

Figure 13. Second Pareto optimal solution.

rithm 4, we obtain the pay-o� table as follows:

F =

24�3515 �9:17 2187
�899 �9:32 2187
�2910 �1:8 1920

35 :
Then, using Algorithm 5, with q2 = q3 = 10, we
solve 121 linear programming problems, and obtain
the following Pareto optimal solutions:

1. The �rst Pareto optimal solution is Y � = 1920,
X� = 2910 and X 0� = 1:8, with the optimal
network as shown in Figure 12.

2. The second Pareto optimal solution is Y � = 1923,
X� = 3008 and X 0� = 3:11, with the optimal
network as shown in Figure 13.

3. The third Pareto optimal solution is Y � = 1957,
X� = 3143 and X 0� = 5:83, with the optimal
network as shown in Figure 14.

4. The fourth Pareto optimal solution is Y � = 1987,
X� = 3227 and X 0� = 6:55, with the optimal
network as shown in Figure 15.

5. The �fth Pareto optimal solution is Y � = 2067,
X� = 3273 and X 0� = 7:82, with the optimal
network as shown in Figure 16.

6. The sixth Pareto optimal solution is Y � = 2097,
X� = 3357 and X 0� = 8:54, with the optimal
network as shown in Figure 17.

7. The �nal Pareto optimal solution is Y � = 2187,
X� = 899 and X 0� = 9:32, with the optimal
network as shown in Figure 18.

As shown in Figures 12-18, the proposed method
provides di�erent products for producers and con-



R. Hassanzadeh et al./Scientia Iranica, Transactions E: Industrial Engineering 22 (2015) 1155{1170 1167

Figure 14. Third Pareto optimal solution.

Figure 15. Fourth Pareto optimal solution.

Figure 16. Fifth Pareto optimal solution.

Figure 17. Sixth Pareto optimal solution.

Figure 18. Final Pareto optimal solution.

sumers having di�erent bene�ts, costs and customer
value. For example, consider product 1, which shows a
Pareto optimal solution. This product has 3 functions
and a subfunction. The production cost for this
product is 1920, the bene�t is 2910 and customer total
value is 1.8. The cost and customer total value of this
product is the lowest among others, and the bene�t is
close to the lowest. On the other hand, product 7 has

the highest customer total value among all products
and the lowest bene�t. Product 6 has the highest
bene�t and a high customer total value. The di�erences
in the objectives can help to incorporate customer
utilities in a decision making process. The numerical
results imply the con�guration of di�erent products
having various costs and customer values, based on
customer views obtained from the web based system.
The products themselves are those providing maximum
bene�ts for the producers. The signi�cant decision
made in the proposed methodology is the trade-o�
between cost, bene�t, and customer value objectives,
which is based on customer views on adding features
of products, and producer views on the con�guration
of bene�cial features.

From a managerial perspective, due to rapid
changes in products, speci�cally for digital devices,
the need for tactical planning is apparent. Therefore,
design of a comprehensive methodology to consider cus-
tomer opinion in ful�lling those products is valuable.
The proposed method is a helpful decision support
for managers to make real time decisions with respect
to the dynamism in customer views and market pull.
This way, customer customization is met, leading to
larger market shares and more pro�t. Managers can
determine the demanding subfunctions to fortify the
engineering design and production unit for more pro�t.

If we consider the objectives separately, along
with the constraints, the three optimal solutions are
characterized as follows:

� If the cost objective only is considered, then, the
objective value is Y � = 1920, with the optimal
solution as shown in Figure 12.

� If the customer's value objective function is consid-
ered, then the optimal objective value is X 0� = 9:32,
with the Pareto solution as shown in Figure 18.

� If the bene�t objective function is used, then the
optimal value is X� = 3515, with the optimal
solution as shown in Figure 19.

If the number of grid points in the "-constraint
method is increased, then, the optimal solution is
expected to change as well. This way, di�erent settings
of di�erent objectives can be obtained for convergent
products.

Figure 19. Optimal solution with bene�t as objective
function.
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5. Conclusions

In this paper, we have proposed a methodology to
determine value adding functionalities for convergent
products. A collection of base functions and sub-
functions con�gure the nodes of a web-based (digital)
network representing functionalities. Each arc in the
network is to be assigned as the link between two nodes.
The aim is to �nd an optimal tree of functionalities
in the network, adding value to the product in the
web environment. First, a puri�cation process was
performed in the product network to assign the links
among bases and sub-functions. Then, numerical
values, as bene�ts and costs, were determined for arcs
and nodes, respectively, using leveling and clustering
approaches. Finally, the Steiner tree methodology was
adapted to a multi-objective model of the network to
�nd the optimal tree determining the value adding
sub-functions to bases in a convergent product. The
numerical results can be used for the con�guration
of di�erent products having various costs, based on
customer views obtained from a web based system. The
products themselves are those that provide maximum
bene�t for the producers. The important result ob-
tained from the proposed methodology is that customer
values, corresponding to bene�ts, are considered for
addition of features to products and producers. An
"-constraint approach was employed to optimize the
proposed multi-objective model.
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