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Abstract. One of the most important issues in controller design and analysis of a
nonlinear system is its degree of nonlinearity. Helbig et al. proposed a method in which
the system, along with a linear reference model (which is the sum of a couple of �rst
order transfer functions), is stimulated with a set of input patterns. The outputs of these
systems are then compared and the nonlinearity measure of the system is obtained as
the normalized di�erence between the outputs of these two systems. In this paper, the
linear reference model is replaced with two simpler linear ones. The proposed method has
been used for assessment of the nonlinearity measure of various nonlinear systems that
are used as standard benchmarks by the nonlinear process control research community.
The results show that, despite the use of this simpler model with less parameters, the
calculated nonlinearity measure is almost similar to the one obtained by Helbig's method.
Furthermore, the nonlinearity measure obtained by the proposed method can be calculated
very much faster.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Measurement of process nonlinearity in chemical pro-
cesses is the most important part of the identi�cation
and description of a system for the design of a suitable
control structure. This is because of the inherent non-
linear behavior of all chemical processes. Nonlinearity
of a system can be de�ned as the measure of non-
linearity in the input-output behavior of the system.
Analysis of a nonlinearity measure can be classi�ed
into open-loop and closed-loop analyses: Investigation
of open-loop systems only leads to identi�cation of the
behavior of the process, whereas, studying closed-loop
systems further indicates the e�ect of nonlinearity in
assessment of closed-loop control systems. In addition,
this is useful in the design of optimal controllers [1].
The criteria used in the Non-Linearity Measure (NLM)
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is the di�erence between the best adapted parallel
linear system and the real nonlinear process for the
various and worst di�erent inputs [2,3]. One can
use the NLM to judiciously select the appropriate
algorithm for identi�cation and then control of the
process. Over the last three decades, a variety of
nonlinear controller design techniques have been de-
veloped which need constraints and easy low order
models, whilst the main model of the process is more
complex. For instance, a distillation column contains
a large number of algebraic and di�erential equations,
which makes these control algorithms either impossible
or extremely di�cult to use for distillation column
control. Another instance of such a case would be the
control of blood glucose levels in patients su�ering from
diabetes, based on the detailed physiological models
proposed in the literature [4,5]. In this study, the
measure of nonlinearity proposed by Helbig et al. [2]
is extended, such that it may be obtained faster and
with less computational demands.

A variety of linear systems are modi�ed in the
literature in order to approximate nonlinear systems for
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model based nonlinearity assessments; A brief review is
presented in [6]. Helbig et al. [2] proposed a weighted
summation of several �rst order transfer functions with
various time constants for this purpose.

In this work, Helbig's method has been extended,
both in speed of assessment and its generality, to be
able to address the processes with time delays, various
types of oscillations and by reducing its sensitivity
to the parameters of linear models. A Second Order
Plus Dead-Time (SOPDT) linear model, along with
a zero order model, has been added to the set of
candidate linear models used to assess system nonlin-
earity measures, rather than the weighted summation
of several �rst order systems. This extension makes it
possible to assess the NLM in a fraction of a second,
which is noticeably less than the required time in the
others. It would be signi�cantly helpful in Real-Time
Optimization (RTO) and plant-wide control of the
process plants, which have a nonlinear dynamic under a
wide range of operating conditions (which are dictated
by the RTO in the Supervisory Control Layer) in which
the validity of the linear model has to be assessed.

The problem is presented in the form of a convex
optimization problem [2], and, �nally, the numerical
convex optimization methods are used to calculate the
NLM of the system. In order to show the performance
of the extended scheme and its improvements for
systems with various types of nonlinearity, it has been
used to assess the NLM of several nonlinear chemical
processes. The following seven standard benchmarks
are used in nonlinear system analysis and control
articles: (1) a mildly nonlinear CSTR, (2) the Van
de Vusse process, (3) a fermentation reactor, (4) a pH
neutralization system with and without measurement
delay, (5) a high purity distillation column, (6) two
nonlinear CSTRs in series, and (7) the Sorensen model
of Type I Diabetes Mellitus (T1DM) disease. Simula-
tions of the aforementioned processes are performed
according to their state space models, except for
the �fth benchmark, which has been simulated by a
commercial dynamic simulator. Various input patterns
have been used in the stimulation of the models, and
the outputs of simulations are saved for each input
pattern.

The paper is organized as follows. A brief
literature review is presented in Section 2. In Section 3
the NLM is de�ned and formulated in the form of
an inf -sup-inf -problem whose optimum point is not
feasible. The resulted problem is transformed to a �nite
convex optimization problem on the space of linear
time-delayed systems in Sections 4. Afterwards, in
Section 5, the performance of the proposed method
has been shown via its application for assessment of
the NLM of several nonlinear chemical processes with
various types of nonlinearity. The paper is concluded
in Section 6.

2. Literature review

An overall view of nonlinearity measures in the liter-
ature can be acquired through [6-8]. The goal is to
realize how severe the degree of nonlinearity of the
process is and to see if linear control strategies can be
used to control the system.

The Regression Error Speci�cation Test, which is
a popular linearity test method and does not depend on
any assumption, is introduced by Ramsey [9]. Tan [6]
classi�ed this method in the class of a statistical
approach, as well as [10-14].

Desoer & Wang [15] proposed the NLM in the
form of a min-problem that quanti�es the di�erence
between the dynamical outputs of a nonlinear system,
N , and a parallel well de�ned linear system, G:

�UN = inf
G2G sup

u2U
kN [u]�G[u]k; (1)

where U and G denote the set of input signals and
the set of admissible linear systems, respectively, and
operator k:k is the induced norm. They also employed
the equation:

�UN = inf
G2G sup

u2U
kN [u]�G[u]k

kuk ; (2)

that is a normalized form of Eq. (1) with the induced
norm of input, u.

Also, Nikolaou [16] introduced a notation of the
inner product in order to quantify the nonlinearity of
a dynamic system. The measure can be computed by
considering an appropriate input set and calculation of
the NLM using Eq. (1) by Monte-Carlo simulations.

Ogunnaike et al. [17] de�ned the NLM as the max-
imum di�erence between any pair of locally approxi-
mating linear systems around the operating region.

Stack & Doyle III [18,1] proposed a control rele-
vant NLM in the sense of coherence analysis. They used
the nonlinear system as a stationary random process
and proposed the input-output coherence as the NLM
of the system.

Allg�ower [19] introduced the NLM in the form of:

�UN = inf
G2G sup

u2U
kN [u]�G[u]k
kN [u]k ; (3)

which is the normalized Eq. (1), with the induced norm
of nonlinear output, N , rather than input in Eq. (2).

Alternatively, Helbig et al. [2] modi�ed the notion
of Eq. (3) by considering initial conditions of the
nonlinear system in addition to input space in Eqs. (1)-
(3):

�UN = inf
G2G sup

(u;xN;0)2S
inf

xG;02XG;0
kN [u; xN;0]�G[u; xG;0]k

kN [u; xN;0]k ;
(4)
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where S = f(u; xN;0) : u 2 U ; xN;0 2 XN;0g, and XG;0
and XN;0 denotes the appropriate initial conditions of
the approximate linear and nonlinear systems, respec-
tively. The motivation is to generalize Eq. (3) to make
it possible to assess the nonlinearity measure for time
varying processes.

Schweickhardt [8] used minimal linear models to
compute the NLM based on Eq. (3). According to this
method, an appropriate structure for the linear model
is chosen and then the minimal modeling error of the
nonlinear and best linear system is used as NLM.

Sun & Hoo [20] proposed a NLM for SISO non-
linear systems by the following equation:

�UN =maxfsup
u2U
kN [u]�Gup[u]k; sup

u2U
kN [u]�Glo[u]kg;

(5)

where Gup and Glo are linear systems, such that the
output of the nonlinear system bounds at all times
between the outputs of the linear systems, Gup and
Glo.

A Gramian based NLM approach was presented
by Hahn & Edgar [21]. Empirical controllability and
observability Gramians are used in this notion to
compute input-output NLM using input-state NLM
and state-output NLM, respectively. The required
Gramians are obtained from the nonlinear process data
and are compared to Gramians from a linear system to
get NLM.

The NLM computing is based on di�erential
geometry proposed by Guay [22], which calculates the
measure of closed-loop nonlinearity rather than open-
loop measures previously mentioned. The aforemen-
tioned procedure uses the curvature of the steady
state map as NLM extended in [23,24] to implement
dynamic systems using Fre�chet derivative operators.
The dynamical approach seems to be complicated
and signi�cant simpli�cations should be considered,
otherwise it would be impractical.

Harris et al. [25] measured system nonlinearity via
the method proposed by Allg�ower [19] using functional
expansions. This approach is computationally inexpen-
sive and derives approximate lower and upper bounds
on the NLM of the process.

Tan [6] proposed a NLM based on a topological
approach to quantify closed-loop nonlinearities. The
quanti�cation of the distance between the nonlinear
system under study and its linearized model in a closed-
loop mode is given by the use of a �-gap metric. Finally
the largest �-gap, which is a result of closed-loop
nonlinearity, can be obtained. Hosseini [26] modi�ed
an H-gap metric based method and used it in model
bank selection in multi-linear model analysis. Also,
Du et al. [27] and Du & Tong [28] used a gap metric
based method for NLM calculation. The authors tried
to simplify the calculations and reduce the computation

time by smart selection of gridding points. However,
they mentioned that the current gap metric based
approaches are computationally intensive.

Li [29] proposed a general measure of nonlinearity
for stochastic systems, which is based on the quanti�-
cation of the deviation of the system from linearity.

In this paper, the NLM is investigated by an
extended approach, based on the proposed method
in [2]. It seems to be more general and applicable for
a larger set of systems compared to its alternatives.

3. De�nition of nonlinearity measurement

The NLM of a process is de�ned as the normalized dif-
ference between nonlinear and parallel linear systems.
Investigation of the dynamic behavior of a nonlinear
system starts by choosing the manipulating variables
and the outputs of the system. The inputs should
be those which are used as manipulating variables to
control the selected outputs. The required data to
calculate the NLM are the time series of the selected
pairs, which can be obtained from the real plant or
its mathematical models. Indeed, the only important
data are the required input-output data obtained from
the system itself (if it has not been modeled yet)
or its simulation, based on the mathematical model
representing the system, whose inputs and outputs are
uN;in(t) and yN;out(t), respectively. This system would
be in the form of the state space of Eq. (6):

_xN = f (xN ; uN;in); xN (0) = xN;0; (6)

yN;out = h(xN ; uN;in):

In Eq. (6), the inputs of the nonlinear process (uN;in),
the states (xN ) and the outputs (yN;out) are, respec-
tively, members of spaces Uin, X , and Yout. The space,
Uin, contains the total applicable inputs of the speci�ed
process, and the spaces, X and Yout, represent the
states and outputs of the system, respectively.

Deviation variables are de�ned to implement cal-
culations in the general form. Here, the deviation
variables are de�ned, with respect to reference values,
as uN = uN;in�uN;s and yN = yN;out�yN;s. uN and
yN are members of YN = fyN : (yN + yN;s) 2 Youtg
and U = fuN : (uN + uN;s) 2 Uing, respectively.
The reference values for continuous processes are the
values of variables at the operating point. By applying
the new deviation variables, the described system in
Eq. (6) is rewritten as Eq. (7). The related equation of
the approximated linear system is de�ned the same as
a nonlinear system.

yN = N [uN ;xN;0]; (7)

yG = G[uG;xG;0]: (8)
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The nonlinearity measure of the dynamic nonlinear
system, N : U � XN;0 ! Y, with output yN , is de�ned
as:

�UN = inf
G2G sup

(u;xN;0)2S
inf

xG;02XG;0

kN [u ;xN;0]�G[u ;xG;0]k
kN [u ;xN;0]k ; (9)

where G : U � XG;0 ! Y is a member of space Y and
S = f(u; xN;0) : u 2 U ; xN;0 2 XN;0g. In Eq. (9),
�UN is the maximum normalized di�erence between the
nonlinear system, N , and the parallel linear system,
G, corresponding to the worst input signals and initial
conditions of the nonlinear system, N , and the best
initial conditions of the parallel linear system, G. The
�rst inf -operator optimizes the linear system, G, in
space G, in order to approximate N as closely as
possible. The sup-operator creates the worst conditions
of the nonlinear system by the worst inputs and initial
conditions. The second inf -operator �nds the best
initial conditions for the parallel linear system, G.

The space, S, should be considered so that the
corresponding outputs of the system remain bounded,
otherwise the calculations will encounter several prob-
lems. The suitable and appropriate choice of inputs is
an important part of the algorithm. The input signals
should be chosen such that the considered operating
range can be covered as much as possible; furthermore
in closed-loop systems, the admissible signal should
comprise the stability of the closed-loop. It should be
noted that the sampling time and time span [t0; tf ) of
the operation are consequential as well.

The nonlinearity measure, �UN , is a positive real
number between zero and one. The value of zero for
NLM, �UN = 0, means that the approximated parallel
linear system exactly coincides with the system, and
the considered process is exactly linear. On the other
hand, �UN = 1 implies that the system has quite
a nonlinear behavior and the parallel linear system
is not coincident with the nonlinear system. The
fundamental characteristics of the HLM and their
corresponding theoretical basis have been discussed by
Sun & Hoo [20].

4. Computation of nonlinearity measure

According to the proposed equation by Helbig et al. [2]
in Eq. (4), calculation of NLM requires the solution of
an inf -sup-inf -problem, whose corresponding optimum
point is not feasible. As a solution to convert the
problem to a min-max -min-problem, spaces G, S and
XG;0 should be restricted in an acceptable interval.

A suitable linear set, Gc, which is dense in G,
should be considered to constrain space G. Di�erent
sets can be used to accomplish this task. Space Sc is an

approximation of space S with n members. As a result,
the sup-operator is transformed to a max -operator.
After enforcing the changes, a min-max -problem is
achieved. Finally, a constrained min optimization
problem is achieved by using a virtual variable, z, as
shown in Eq. (10) for all (uj ;xN;0j ) 2 Sc. The solution
of this optimization problem (�ScN ) is an approximation
of �UN . In fact, the target function is converted to a
real number, z 2 R, and the eliminated min- and max -
operators are observed in the added constraints.

�ScN = min
z2R;G2Gc z;

s.t.
kN [uj ;xN;0j ]�G[uj ;xG;0j ]k

kN [uj ;xN;0j ]k � z � 0: (10)

In [2], to simplify the problem, another reasonable
assumption is considered. Since, for a continuous
stable process to reach its speci�c equilibrium point,
providing it works at su�ciently fast large amount of
time regardless of its initial condition, the internal inf -
operator can be disregarded and the initial values can
be set to zero for all linear systems. Thus, Eq. (4) is
rewritten as Eq. (11):

�UNOP = inf
G2G sup

u2U
kN [u ;xN;s]�G[u ;0 ]k

kN [u ;xN;s]k : (11)

Hence, after implementation of the aforementioned
assumptions, the problem is transformed into a �nite
convex optimization problem:

�ScNOP = min
z2R;G2Gc z;

s.t.
kN [uj ;xN;sj ]�G[uj ;0 ]k

kN [uj ;xN;sj ]k � z � 0: (12)

To calculate �ScNOP using Eq. (12), spaces Gc and Uc
are required to be properly speci�ed. The set, Uc,
is a collection of inputs which are applied to the
nonlinear system and parallel linear system as well.
This collection should be created in such a way that
the outputs be bounded and reasonable. This input
collection can consist of any kind of input; step, pulse,
ideal pulse, random number and others. The kind of
input has no e�ect on the results [2,3]. The resulted
convex optimization problem could be e�ciently solved
by various optimization algorithms proposed for this
type of problem. In this study, an interior-point
algorithm [30] has been used to solve the obtained
convex optimization problem.

To approximate the behavior of the nonlinear
system, three sets of transfer function are used sep-
arately: (1) the weighted sum of the �rst order linear
transfer functions, (2) a Second Order transfer function
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Plus Dead Time (SOPDT), and (3) a zero order (ZO)
transfer function. The SOPDT and ZO systems are
introduced here, while the �rst system is proposed by
Helbig et al. [2]. The linear systems are illustrated
in Eqs. (13)-(15), respectively; moreover, a direct
feedthrough is added to each system.

GFO[u;xG;0] =
mX
i=1

di:Gi[u;x G;0i ] + dm+1:u;

Gi(s) =
1

1 + Tis
;T 2 Rm

+ ; (13)

GSO[u;xG;0] =
K:e�Ds

�2s2 + 2��s+ 1
+ d:u; (14)

GZO[u;xG;0] = K:u: (15)

The �rst is proposed and utilized in [2]. There are
m + 2 + m:n decision variables in Eq. (13), which are
considerable in comparison to second order and zero
order transfer functions. This is the cause of a huge
reduction in computation time. The other advantage
of SOPDT used as a parallel linear system is to make
the method applicable for nonlinear systems with time
delay, as illustrated in an example of pH neutralization
in section 5.5.

If it is assumed that the operating point of the
system is transformed to zero by the use of deviation
variables, Eqs. (13)-(15) are rewritten as Eqs. (16)-(18):

GFO[u;0 ] =
mX
i=1

di:Gi[u;0 ] + dm+1:u;

Gi(s) =
1

1 + Tis
;T 2 Rm

+ ; (16)

GSO[u;0 ] =
K:e�Ds

�2s2 + 2��s+ 1
+ d:u; (17)

GZO[u;0 ] = K:u: (18)

By this assumption, Eq. (13) is simpli�ed and the
number of decision variables in the optimization prob-
lem is considerably reduced. The number of variables
in Eq. (13) is m + 2 + m:n, where m + 1 represents
the number of d's, one variable designates z, and
m:n variables correspond to the initial conditions of
the linear �rst order transfer functions. When the
operating point is shifted to zero, the corresponding
variable in the problem is eliminated. Therefore, the
number of decision variables is reduced to m + 2
instead of m + 2 + m:n variables. The suggested
second and zero order transfer functions in Eqs. (17)
and (18) have 6 and 2 decision variables, respectively.
Hence, in the established framework, the number of
decision variables is a lot less than those of the original
framework.

5. Case studies

The problem is presented in the form of a convex
optimization problem. The performance of the in-
troduced scheme is investigated in seven benchmark
nonlinear chemical processes, with various types of
nonlinearity from mildly to highly nonlinear systems:
(1) mildly nonlinear CSTR [31], (2) the Van de
Vusse process [32], which is highly nonlinear, (3)
a fermentation reactor [33] with a moderate non-
linearity, (4) a pH neutralization system with and
without measurement delay [34]; the pH system is
a moderate to high nonlinear system, (5) the highly
nonlinear high purity distillation column [35] which
is studied like a commercial plant, (6) two nonlinear
CSTRs in series [36] to show the e�ect of relative
order of the system; this is a moderately nonlin-
ear system, and (7) the Sorensen model of Type I
Diabetes Mellitus (T1DM) disease [4]; the model
of this process has numerous states and one out-
put.

The problems are solved and the results are
reported, as well as the corresponding computation
times (with core i5-2450M, 4GB memory, Windows 7
OS).

5.1. Example 1
In this example, a CSTR that has mildly nonlinear
behavior is considered and the performance accuracy
of the introduced linear systems is compared to the
proposed models of [2]. The equations representing the
mathematical model of the process are represented by
Pottmann & Seborg [31]:

dcA
dt

=
q
V

(cAf � cA)� k0cA exp(� E
RT

); (19)

dT
dt

=
q
V

(Tf � T ) +
(��H)k0cA

�Cp
exp(� E

RT
)

+
�cCpc
�CpV

qc[1� exp(� hA
qc�cCpc

)](Tc � T ): (20)

The model parameters in Eqs. (19) and (20) are
adapted from [31]. The initial conditions are cA;0 =
8:823�10�2 mol

L and T0 = 441:22 K. The manipulating
input is the ow rate of cooling water uN;in = qc,
and uN;s = 100 L

min . The input region is juN j =
10 L

min in the vicinity of the steady state operating
point. The time interval of simulation is [0; 20) min,
with a sampling time of �t = 0:1 min. The three
mentioned parallel linear systems are investigated sep-
arately. The parameters are optimized and the result is
reported. The optimization problem is solved and the
measure of nonlinearity, �ScNOP , is calculated according
to the mentioned input variables for the �rst state
(cA).
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5.1.1. Weighted summation of several �rst order
transfer functions (GFO)

The weighted sum of several �rst order transfer func-
tions illustrated in Eqs. (13) and (16) is used as a
parallel linear system. In this study, 20 �rst order
transfer functions and a direct feedthruogh have been
used as the parallel linear model. The time constants
of the transfer functions are considered in the span of
2� � 10�3 and 2� � 103 min with a logarithmically
equal distribution. The applied inputs to the system
are 14 steps at time t = 0. Figure 1 shows the step
response of the �rst state (cA) at the desired operating
point.

The optimization problem is solved under the
aforementioned solving conditions and the nonlinearity
measure has been obtained as �UcNOP = 0:2179. The
aforementioned optimized linear and approximated
system outputs are indicated in Figure 2(a). The
computation time is nearly 388 sec.

In [2], the NLM is calculated as �UcNOP =
0:248, based on a simulation for the time interval of
[0; 70) min, and the collection, Uc, contains 140 di�er-
ent inputs in which other conditions are identical [2].
The above 140 inputs contain 8 step inputs and 132

Figure 1. Transient behavior of cA.

random inputs, which change every 0:1 min. However,
this value has been reported as �UcNOP = 0:244 in [37].
Additionally, the NLM of the input-output pair of
qc�cA has been obtained as �ScN = 0:215, with the use of
free initial conditions for the transfer function, GFO [2].
The number of decision variables in the original method
is 140 � 20 + 22 = 2822. However, using deviation
variables reduces the number of decision variables to
21 + 1 = 22. Therefore, the computational demand
and time of the simpli�ed framework are much less than
those of the accurate one, while there is no signi�cant
di�erence between the calculated NLM.

Figure 2(a) shows the best outputs of the linear
system, which is achieved to approximate the nonlinear
input-output pair, qc � cA. As seen in Figure 1,
the system under study is slightly nonlinear and the
outputs of the optimized parallel linear system (Fig-
ure 2(a)) exhibited an accurate approximation of the
outputs. According to de�nition, due to the di�er-
ence between the nonlinear system under examination
and the optimized parallel linear system, the little
di�erence between these parameters indicates the slight
nonlinearity of the systems.

5.1.2. A second order transfer function (GSO)
In this part, the linear system is considered to form
GSO in the form of Eq. (17). This system, without
considering dead time, has 5 optimized variables in the
optimization problem, which, in comparison with 22
and 2822 variables in [2], reduces the required time to
solve the problem. The value of nonlinearity measures
is calculated as �UcNOP = 0:2334 for a pair of qc � cA,
and the computation time is 63:04 sec. The optimized
linear system's outputs are indicated in Figure 2(b).

5.1.3. A zero order transfer function (GZO)
In this section, the linear system is considered to form
GZO[u; 0] = K:u. This system has one optimized
variable in the optimization problem. The optimized
problem has two variables, with respect to z as the
virtual variable. The value of the nonlinearity mea-
sures is calculated as �UcNOP = 0:2526 for the pair of

Figure 2. Changes of cA for 4 di�erent steps imposed on the approximated linear models for i-o pair of qc � cA: a) GFO;
b) GSO; and c) GZO.
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Figure 3. Changes of states in Van de Vusse reaction for 4 di�erent inputs.

Table 1. The calculated NLM with di�erent linear
approximations in Example 1.

Linear system �UcNOP tcal (sec)

GFO 0.2179 388.3649

GSO 0.2334 63.0432

GZO 0.2526 0.1053

GFO[2] 0.248 -

GFO;[2],x0 0.215 -

qc � cA, with computation time tcal = 0:1053 sec.
The optimized linear system outputs are indicated in
Figure 2(c), besides the response of previous ones, GFO
and GSO.

Additionally, in order to consider unseen operat-
ing points, in the case of continuous chemical processes
like this one and also the other examples, a bias term
can be added to the linear model of Eq. (18):

GZO[u; y0] = b+K:u: (21)

Figure 2 shows that the results of linear system opti-
mization of the �rst (GFO) and second order transfer
functions (GSO) are nearly the same.

The results in Table 1 show a good performance
of GSO according to the results of GFO. Again, the
estimation of NLM utilizing the very simple linear
system, GZO, gives almost similar outcomes to the
results of GSO and GFO with very small computational
cost. NLM estimation employing GZO can be used,
for example, in online applications that require a fast
estimation of NLM.

5.2. Example 2
In this section, the nonlinearity measure of the Van de
Vusse process states, along with its cooling system, are
studied with respect to system inputs.

A k1�! B k2�! C; (22)

2A k3�! D: (23)

The CSTR processing the Van de Vusse reaction is
a benchmark system for nonlinear controller design
and is investigated in many research articles. In
the investigated operating point, the behavior of this
system is highly nonlinear and the gain of the system
is changing, as illustrated in Figure 3. The states
of this system are a concentration of substance A
(cA), a concentration of substance B (cB), reactor
temperature (T ), and the temperature of cooling water
in jacket (TJ) which are illustrated in Eqs. (24)-(27),
respectively.

dcA
dt

=
F
VR

(cA0 � cA)� k1cA � k3c2A; (24)

dcB
dt

= � F
VR

cB + k1cA � k2cB ; (25)

dT
dt

=
F
VR

(T0 � T ) +
kwAR
�CpVR

(TJ � T )

� 1
�Cp

�
k1cA�Hr;AB + k2cB�Hr;BC

+ k3c2A�Hr;AD
�
; (26)
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dTJ
dt

=
1

mJCp;J
(dotQJ + kwAR(T � TJ)) ; (27)

ki = ki;0 exp(� Ei
RT

); i = 1; 2; 3:

The parameters of Eqs. (24)-(27) are replaced from [32].
The values of the steady state of the system are cA;s =
2:1402 mol

L , cB;s = 1:0903 mol
L , Ts = 387:3411 K, and

TJ;s = 386:0566 K. The manipulating variable in this
process is uN;in = F

VR and its steady state value is
uN;s = 141:9

10 = 14:19 hr�1. The set of Uc contains
20 step inputs in an interval of �11:19 hr�1 � uN �
11:19 hr�1. (This range corresponds to the deviation of
the input from its absolute value.) Figure 3 shows the
dynamic behavior of the nonlinear system stimulated
by 4 di�erent step inputs, which are members of Uc.
The process is simulated in the time span of [0; 2) hr
with sampling time �t = 0:01 hr.

Figure 3 shows that all states have a sign change
in the steady state gain except for the concentration
of A, leading to �UcNOP = 1 [38]. Similar to Example 1,
the NLM is computed for all states of the process and
compared to those values calculated in the literature.
Computation is accomplished using three previously
discussed linear systems.

5.2.1. Weighted summation of several �rst order
transfer functions (GFO)

The weighted sum of �rst order transfer functions
in the form of Eq. (16), with 20 �rst order transfer
functions, is used. The time constant of the transfer
function is considered in the span of 2� � 10�3 to
2� hr with a logarithmic equal distribution. The
results of computations are presented in Table 2. The
value of �UcNOP = 0:9883 is calculated for the input-
output pair uN � cB by the time of computation,
tcal = 431:8 sec. This number is reported as 1 and
0:9912, respectively in [2,38]. Also the values of �UcNOP
are reported as 0:2478, 0:9921 and 0:9957 for cA, T and
TJ , respectively [38].

5.2.2. A second order transfer function (GSO)
As mentioned before, the optimization problem has 5
variables. The optimization problem is solved and the
results are shown in Table 2.

5.2.3. A zero order transfer function (GZO)
The parallel linear system is considered in the form of
GZO[u; 0] = K:u. The optimization problem has two
variables. The optimization problem is solved and the
results are recorded in Table 2.

As seen in Table 2, the results of NLM com-
putation by the proposed linear systems are signi�-
cantly acceptable in comparison to the reported results
of the original framework used in [2]. Hereupon,
in the rest of the examples, the SOPDT transfer
function (GSO) is used to assess the NLM of the
benchmark nonlinear systems, and show its capabili-
ties.

5.3. Example 3
In this example, a continuous fermentation system
is studied. The nonlinear behavior of continuous
fermenters is one of the interesting case study examples
in nonlinear control [33]. This system has 3 states
which are expressed in Eqs. (28)-(30). The parameters
are available in [33]. The transient behavior of the
model is shown in Figure 4.

dX
dt

= �DX + �X; (28)

dS
dt

= D(Sf � S)� 1
YX=S

�X; (29)

dP
dt

= �DP + (��+ �)X; (30)

� =
�m(1� P

Pm
)

Km + S + S2

Ki

:

The initial value of the states is [5:9956 5:0109
19:1267]T . The nonlinear plant's data is achieved
through sampling in the time interval 0 - 70 hr
with a sampling time of �t = 0:25 hr. The sec-
ond order transfer function (GSO) is used for lin-
ear approximation of the nonlinear system and NLM
computation. System inputs are used in a span of
�60% to +60% relative to equilibrium values. The
NLM of the states of this system are indicated in
Table 3.

Table 2. The results of Example 2 with di�erent linear approximations

GFO GSO GZO Helbig et al. Shastri et al.y

Output �UcNOP tcal (sec) �UcNOP tcal (sec) �UcNOP tcal (sec) �UcNOP �UcNOP
cA 0.2364 223.3753 0.2584 26.5446 0.2612 0.0754 0.2478 -
cB 0.9883 431.8095 1.0000 43.3334 1.0000 0.0867 0.9912 1.0000
T 0.9854 244.6982 1.0000 43.4365 1.0000 0.0883 0.9921 1.0000
TJ 0.9857 244.2729 0.9995 41.3064 1.0000 0.0794 0.9957 1.0000

y Sign change in the gain of process around an operating point leads to the maximum nonlinearity.
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Figure 4. Transient behavior of nonlinear Fermentor's states.

Table 3. Nonlinearity measure of the continuous
Fermentor's states.

Output �UcNOP tcal (sec)

X 0.7020 22.7404
S 0.6993 24.5368
P 0.3706 38.6037

5.4. Example 4-1
The pH neutralization system is investigated. This
system is a well known Wiener type nonlinear system
which is investigated as a benchmark example of
nonlinear systems in the literature. The description
states for the transient behavior of the nonlinear system
are expressed in Eqs. (31)-(33). The system parameters
are adapted from [34]. The initial values of system
states (x0) are [5:9956 5:0109 19:1267)]T , and the initial
value of pH is 7. Figure 5 shows the measured output
of the system, regarding three di�erent inputs.

dWa4

dt
=

1
Ah

(q1(Wa1 �Wa4) + q2(Wa2 �Wa4)

+ q3(Wa3 �Wa4)); (31)

dWb4

dt
=

1
Ah

(q1(Wb1 �Wb4) + q2(Wb2 �Wb4)

+ q3(Wb3 �Wb4)); (32)

dh
dt

= q1 + q2 + q3 � Cv(h+ z)n: (33)

The sampling procedure is performed in the time inter-
val of 0-20 min, with sampling time of �t = 15 sec. An
approximation of a nonlinear system with the parallel
second order transfer function (GSO) is presented. The
computation results for the pH neutralization system
are indicated in Table 4. the NLM value is calculated

Figure 5. Transient behavior of the pH neutralization system in relative to 3 manipulating inputs.

Table 4. The nonlinearity measure of pH neutralization system's states relative to inputs.

Input q1 q2 q3

Output �UcNOP tcal (sec) �UcNOP tcal (sec) �UcNOP tcal (sec)

Wa4 0.3067 55.90 0.0332 38.07 0.2863 66.50

Wb4 0.3067 88.51 0.0332 48.01 0.2863 86.34

Wh4 0.0731 28.04 0.0194 30.16 0.0681 28.61

pH 0.5722 30.61 0.3858 29.05 0.5691 33.87
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Figure 6. Response of the approximate second order linear system with (a) and without (b) considering time delay in
optimization parameters, in comparison to the nonlinear outputs (gray curves correspond to nonlinear behavior).

and presented for the output (pH) and also the states
of the system.

5.5. Example 4-2
In the pH neutralization process discussed previously,
the time delay corresponding to the measurement was
not considered. In this part, the same process, along
with time delay in the measurement, is considered.
The input-output pair of q1-pH is studied. Sampling
time is the same as in Example 4-1, and a dead
time of 30 sec for pH measurement is considered. As
illustrated in Figure 6(a), the optimized SOPDT can
properly approximate the desired linear system, as well
as the second order transfer function, without delay in
Figure 6(b). In order to see the dead time properly in
the linear model, the norm of the di�erence between
two nonlinear and linear systems at the earlier times
of simulation, is added to the objective function with a
very small weight (w = 0:005). The results of the NLM
value are approximately the same as Example 4-1, as
recorded in Table 5. The estimated value of dead time
by SOPDT is exactly the same as the actual process,
i.e. 30 sec. In addition, NLM is calculated using GFO.

According to the results illustrated in Table 5,
the NLM values are almost equal in the case of
Example 4-1 using GSO, with and without dead time,
and GFO. Again, in the presence of dead time in
the pH measurement, the NLM values show some
variance, which is caused by the unmeasured dead time
in the plant's input-output data. However, the SOPDT
transfer function gives the same results when there is
no dead time in the pH measurement.

Table 5. NLM of q1-pH pair in pH neutralization system,
with and without Dead Time (DT).

DT 0 sec 30 sec

GFO 0.5753 0.6084

GSO without DT 0.5722 0.5861

GSO with DT 0.5722 0.5721

5.6. Example 5
In this example, the nonlinearity measurement of a
high purity distillation column proposed by Skogestad
& Morari [35] is studied. A distillation column is one of
the most complicated systems in chemical engineering,
regarding modeling and simulation, which is caused
by the huge number of observable and non-observable
state variables and system parameters. The reason why
this system was simulated by a commercial dynamic
simulator was to make its behavior similar to what
happens in a real process without any simplifying
assumption. The input-output data from simulation
are used to compute the NLM of this system. A high
purity distillation column is an important nonlinear
process, which shows a huge change in the magnitude
of the process gain, with respect to the sign change of
the inputs. Modeling data for the distillation column
are adapted from [35]. The input ow rate to the
column is considered a manipulating variable, and
the concentrations of the main product in the top
and bottom of the column are considered as process
outputs. The model is illustrated in Figure 7.

The results of stimulation are indicated in Fig-
ure 8 for distillate concentration (xD). It is clear
in Figure 8 that the gain of the system has a huge

Figure 7. Two product distillation column of Skogestad
and Morari [35], simulated by a commercial simulator.



M. Fakhroleslam et al./Scientia Iranica, Transactions C: Chemistry and ... 22 (2015) 967{980 977

Figure 8. Transient behavior of distillation column for distillate product.

change against positive and negative stimulations. For
instance, in the top of the column, xD changes in the
range of 0:999 � 1 for positive stimulation, whereas
there is no rigid limitation in the negative stimula-
tion. Exactly the same behavior is observed in the
concentration at the bottom of the column (xB). At
the bottom of the column, when a positive change is
applied to the input ow rate, xB can change in a wide
range, whilst in a negative stimulation, xB can vary
in a limited range of 0 � 0:001. This behavior leads
to the huge nonlinearity of the high purity distillation
column, as the NLM calculation of �UcNOP = 1 con�rms.
Furthermore, as seen in Figure 8, there is a time varying
delay in the input-output behavior of the system which
is induced by the huge number of state variables of
the system with the changing parameters. However,
the main cause of the severe nonlinear behavior of this
system is the intense changes of the process gain, since
the use of the SOPDT transfer function did not change
the result of NLM calculation.

5.7. Example 6
This example is used to show the e�ect of the relative
order of the system under study, on the NLM calcula-
tion. A system of two tanks (like the proposed CSTR
in Example 1), which are connected in series and are
cooled by a cooling stream, is discussed. This system is
higher order in comparison to the system in Example
1, and the �rst tank is exactly the CSTR illustrated in
Example 1. The model equations and parameters are
used from [36]:

dcA1

dt
=

q
V1

(cAf � cA1)� k0cA1 exp(� E
RT1

); (34)

dT1

dt
=
q
V1

(Tf � T1) +
(��H)k0cA1

�Cp
exp(� E

RT1
)

+
�cCpc
�CpV1

qc(1� exp(� hA1

qc�cCpc
))(Tcf � T1);

(35)

dcA2

dt
=

q
V2

(cA1 � cA2)� k0cA2 exp(� E
RT2

); (36)

dT2

dt
=
q
V2

(T1 � T2) +
(��H)k0cA2

�Cp
exp(� E

RT2
)

+
�cCpc
�CpV2

qc(1� exp(� hA2

qc�cCpc
))

:(T1 � T2 + exp(� hA1

qc�cCpc
)(Tcf � T1)); (37)

where the initial conditions are cA1;0 = 8:823 �
10�2 mol

L , T1;0 = 441:22 K, cA2;0 = 5:293 � 10�3 mol
L ,

and T2;0 = 449:47 K. The manipulating input is the
coolant water ow rate (uN;in = qc), and uN;s =
100 L

min . The input region is considered to be similar to
that used in Example 1. The time interval of simulation
is 0-20 min, with the sampling time of �t = 0:1 min.
The output of this system is the concentration of
component A in the second tank (cA2). The transient
behavior of this system is shown in Figure 9.

As predicted from comparison of the input-output
behavior of the systems with one and two CSTRs,
respectively, in Figures 1 and 9, the NLM values are
close. The nonlinear system introduced in this example
is a little more nonlinear than the system introduced

Figure 9. Transient behavior of cA2 in the two CSTR
system of Example 6.



978 M. Fakhroleslam et al./Scientia Iranica, Transactions C: Chemistry and ... 22 (2015) 967{980

in Example 1 in which one CSTR existed with the
relative order of one. The NLM value of this system is
�UcNOP = 0:3522.

5.8. Example 7
The nonlinearity assessment of Sorensen's physiological
model of T1DM is implemented. The number of
state variables in this nonlinear system is numerous.
Sorensen's model consists of 19 states in three sub-
models of Glucose, Insulin and Glucagon, with 11, 7,
and 1 states, respectively. The manipulating input of
this model for a T1DM patient is the injection rate
of insulin, and the measured output is the plasma
glucose concentration. The describing equations and
the physiological parameters of the model are given
in [4]. It is well known that the large number of
nonlinear or even purely linear state variables would
cause a time delay in the outputs of a system. This time
delay in the case of purely linear states would be the
cause of the nonlinear behavior of the system, whereas
the main system is linear. The values of the input and
output at the equilibrium point are us = 25 mU

min and
GH;s = 85mg

dL , respectively. The manipulating input
is stimulated in the range of juN j = 20 mU

min in the
vicinity of an equilibrium point. The simulations are
implemented in the time interval of 0-500 min, with
sampling time of �t = 1 min. The value of NLM is
computed as �UcNOP = 0:1682. The system is not so
much nonlinear in the sense of this criterion, as is clear
in Figure 10. The nonlinearity of the nonlinear states of
this system is caused by tanh(:) terms which describe
metabolic rates. Since the order of magnitude of these
rate terms is small compared with the other terms in
the states of this equation, the nonlinearity of the total
system is not a�ected by these nonlinearities.

Again, the value of NLM decreases when SOPDT

Figure 10. Response of deviation plasma glucose level (in
mg
dL ) with respect to 4 step stimulations of the insulin
injection rate (in mU

min ).

is used instead of GSO, as the approximating linear
system. The NLM is calculated as �UcNOP = 0:1589
in this manner, regarding an estimated dead time of
DT = 11 min. As stated before, this large system
with nonlinear state variables, shows a totally linear
behavior.

6. Conclusion

In this paper, the results of simulation and NLM
computation in Examples 1 and 2 show that the
suggested computed values using two approximations
in this study are in reasonable agreement with the
results reported by other researchers. The number
of parameters in the suggested linear approximation
is less than the others in the literature. Therefore,
the required amount of computation for solving the
optimization problems is less and consequently, the
required calculation time will decrease. Computation
of the NLM of a system (�UcNOP ) using a second
order linear transfer function (GSO) is about 7:4
times faster than the approach in which the weighted
summation of �rst order linear transfer functions
(GFO) is used. Moreover, estimation of the NLM
of a system using zero order comparison functions
is 466:0 and 3447:68 times faster compared to using
GSO and GFO. Additionally, there is no restriction
on generating oscillations in the use of GSO rather
than GFO in which the number of oscillations is
limited to the number of �rst order transfer func-
tions (the number of transfer functions is proportional
to the number of optimization parameters, which
geometrically increases computational cost). The
dead time estimation is also observed in the use of
SOPDT.

In this research, seven standard and frequently
used benchmarks of nonlinear chemical processes have
been investigated. The case studies contain various
types of nonlinear system: mildly to highly nonlinear
systems, systems with relative degrees of one, two and
more, systems with small to large numbers of states,
systems with a drastic change in the process gain
value, and systems with a sign change of the process
gain. The results obtained show that the main issue
a�ecting the nonlinearity measure is the input-output
behavior of the system, since the nonlinearity measure
was originally de�ned based on the input-output trend
of the system. Hence, various issues, like the relative
order and the number of states, cannot be used as a
major decision criterion in the nonlinearity assessment
of the process. According to the results obtained, the
nonlinearity of systems increases in the following order:
Sorensen's T1DM model in Example 7, the CSTR
reactor in Example 1, two serially connected CSTRs
in Example 6, pH neutralization systems in Example
4, the fermentation system in Example 3, the Van de
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Vusse system in Example 2, and high purity distillation
columns in Example 5.

Due to the fast estimation of the NLM via the pro-
posed method, it can be employed in an online manner.
For instance, it can be used in the online selection or
estimation of linear models in the identi�cation and
control of nonlinear systems.
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