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Abstract. The thermo-elastic bending analysis of functionally graded ceramic-metal
sandwich plates is presented in this study. The sandwich plate faces are assumed to be
homogeneous and the core layer is constructed from FG material which its properties
are varied through thickness according to the power-law equation. The hyperbolic shear
deformation theory considering extension e�ect is employed for modeling the FG ceramic-
metal sandwich plates. The presented theory is variationally consistent, does not require
shear correction factor, and gives rise to transverse shear stress varying parabolically across
the thickness. The governing equations are derived from principle of virtual work and the
closed-form solutions are obtained using Navier method. The consideration of extension
e�ect in presented formulation is examined and it is found that though it has no noticeable
e�ect on transverse de
ections and in-plane normal stresses, the obtained transverse shear
stresses are quite a�ected by this term. Also the e�ects of thermal load, aspect ratio,
thickness aspect ratio, thickness to side ratio and volume fraction index are investigated.
It is observed that presented method is accurate and simple to use in comparison to other
higher order shear deformation plate theories.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Functionally Graded Materials (FGMs) were proposed
by the Japanese researchers in 1984 [1,2]. They
overcome the interface problems and discontinuity in
stress distribution of the previous materials, such as
combination of elastic laminates bounded together.
These novel materials are microscopically inhomoge-
neous and characterized by a gradual change in ma-
terial properties over volume. Due to their e�ective
properties, functionally graded structures are widely
utilized in many industries, such as high e�ciency
engine components, light weight structures for aircrafts
and space industries, shipbuilding industries, medical
instruments, biomechanics and automotive industries.
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One of the most important FGMs is metal-ceramic
combination which gains superior properties than each
constituent, in which ceramic phase protects metal
phase from extreme heat environments, corrosion and
oxidation. This property can be utilized in controlling
thermal stresses in elements exposed to high tem-
peratures, such as gas turbine blades and aerospace
structures.

Many studies on analysis of FGMs behaviors
have been performed in recent years [3,4]. Zenkour
presented an analytical solution for bending of cross-ply
laminates under thermo-mechanical loads [5]. Zenk-
our and Alghamdi studied thermo-elastic bending of
sandwich plates with ceramic core and FG metal-
ceramic faces using simpli�ed re�ned sinusoidal shear
deformation plate theory [6]. Various analyses of FGMs
were investigated based on the meshless methods by
several researchers [7-9]. Kashtalian investigated the
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bending response of FG plates using the 3D elasticity
solution [10]. Vel and Batra presented a 3D solution for
vibration analysis of FGMs [11]. Reddy analyzed the
FG composite laminates plates using the Equivalent
Single Layer (ESL) and layerwise theories [12]. Lanhe
studied the thermal buckling of simply supported
moderately thick FGM plates by implementation of
�rst order shear deformation theory [13]. Zhao et al.
performed mechanical and thermal buckling analysis
of FG plates using element-free kp-Ritz method [14].
Praveen and Reddy studied the nonlinear transient
thermo-elastic response of functionally graded plates
using �nite element method [15]. Reddy and Chin
gave a nice overview of thermo-mechanical behavior of
functionally graded cylinders and plates [16].

The Classical Plate Theory (CPT) is the simplest
plate theory that gives reasonable results for moder-
ately thin plates but cannot predict the transverse
shear stresses along the thickness [17]. The First-
order Shear Deformation Theory (FSDT) predicts the
constant transverse shear stress along the plate thick-
ness [18,19]. In this theory, the shear correction factor
is required and the free stress condition on the plate
surfaces is not satis�ed. To avoid the use of shear
correction factor, the Higher-order Shear Deformation
Theories (HSDTs) were developed [20-23].

Recently, some new HSDTs have been introduced.
Shimpi presented a two-variable re�ned plate theory
for isotropic and orthotropic plates which involves only
two unknown functions [24,25]. Kim et al. studied
the laminate composite plate behaviors using two-
variable re�ned plate theory considering the extension
e�ect [26]. El Meiche et al. presented a new hy-
perbolic shear deformation plate theory for buckling
and vibration analyses of FGM sandwich plates [27].
Mantari and Soares developed a new trigonometric
higher order plate theory with extension e�ect for
analysis of functionally graded plates [28]. Tounsi et al.
developed a re�ned trigonometric shear deformation
theory for thermo-elastic bending of FGM sandwich
plates [29]. Mantari et al. presented a new accurate
higher order shear deformation theory for bending and
free vibration analysis of isotropic and multilayered
plates and shells [30]. Vidal and Polit developed
a re�ned sinus plate �nite element formulation and
investigated the e�ects of mechanical and thermal loads
on laminated and sandwich structures [31]. Zenkour
and Sobhy studied the dynamic bending response of
FG plates resting on elastic foundation using sinu-
soidal shear deformation plate theory [32]. Houari et
al. presented a new higher order shear and normal
deformation theory for thermo-elastic bending analysis
of FG sandwich plates [33]. Wang and Shi introduced a
simple and accurate sandwich plate theory accounting
for transverse normal strain and interfacial stress conti-
nuity [34]. Mantari and Soares presented an optimized

sinusoidal higher order shear deformation theory for
bending analysis of FG plates and shells [35].

In this paper, an analytical solution for thermo-
elastic bending of FG sandwich plates is presented
using the hyperbolic shear deformation plate theory.
The displacement �eld is assumed to vary hyper-
bolically across the plate thickness. The presented
theory satis�es free stress boundary conditions at top
and bottom surfaces of plate without using the shear
correction factor. Also the consideration of extension
e�ect is investigated in presented formulation and the
obtained results are compared with some HSDTs with
�ve unknown functions to illustrate simplicity, e�-
ciency and accuracy of presented formulations. Some
of these HSDTs which are utilized in this study are:
Parabolic Shear Deformation Plate Theory (PSDPT)
by Reddy [21], Sinusoidal Shear Deformation Plate
Theory (SSDPT) by Tourtier [36], and Exponential
Shear Deformation Plate Theory (ESDPT) by Karama
et al. [37].

2. Problem formulation

In the present study, a rectangular FG Ceramic-Metal
sandwich plate with uniform thickness composed of
three di�erent layers is studied. Top and bottom faces
are constituted of isotropic ceramic and metal phases,
respectively, and the core is made of FG material. The
right-handed Cartesian coordinate system is used in
which plate lies in x-y plane, z axis is normal to the
plate along thickness and the mid-plane is located at
z = 0, as illustrated in Figure 1.

Top plate coordinate is z = z3 = +h=2 and the
bottom is z = z0 = �h=2. Also the two interfaces
coordinates are z1 and z2 form bottom to top through
the thickness, as shown in Figure 2.

Material properties of the FG core are assumed
to vary through the thickness according to the power
law. From the mixture law [38], the following relation
can be written for e�ective material properties of the

Figure 1. Geometry of rectangular FG sandwich plate in
rectangular Cartesian coordinates.
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Figure 2. Variation of the plate constituents along the
thickness of FG sandwich plate.

plate:8<:P (3)(z)
P (2)(z)
P (1)(z)

9=;=

8><>:
P3 z2�z�z3

P1+(P3�P1)
�
z�z1
z2�z1

�k
z1�z�z2

P1 z0�z�z1

9>=>; :
(1)

Here, P (z) can be Young's modulus, E, or thermal
expansion, �. Indexes 1, 2 and 3 express the properties
of layers 1, 2 and 3 form bottom to top of the
plate, respectively. k is the volume fraction index
(0 � k � +1), which indicates the variation of
material properties of FG core through the thickness
from metallic phase at the bottom interface to ceramic
phase at the top interface. For sake of simplicity,
Poisson's ratio is assumed to be constant due to Chi
and Chung works [39] which this assumption is utilized
in various literatures [21,29,36-37].

2.1. Higher-order displacement theory
Higher-order plate theories assume the following dis-
placement �eld in Cartesian coordinates:

u = u0(x; y)� z @w0

@x
+  (z)�x; (2a)

v = v0(x; y)� z @w0

@y
+  (z)�y; (2b)

w = w0(x; y); (2c)

where u, v and w are the displacements in the x,
y and z directions and u0, v0 and w0 are the mid-
plane displacements. �x is the rotation of the yz plane
about the y axis and �y is the rotation of the xz
plane about x axis. Main di�erence of the higher-
order theories concern to de�nition of shape function
 (z). Several shape functions have been introduced by
di�erent researchers which some of them are as below:

Classical Plate Theory (CLPT) [17]:  (z) = 0;
First-order Shear Deformation Plate Theory (FS-
DPT) [40]:  (z) = z;
Parabolic Shear Deformation Plate Theory (PS-
DPT) [21]:  (z) = (1� (4z2)=(3h2));
Sinusoidal Shear Deformation Plate Theory (SS-
DPT) [36]:  (z) = (h=�) sin(�z=h);
Exponential Shear Deformation Plate Theory (ES-
DPT) [37]:  (z) = ze�2(z=h)2

.

2.2. Hyperbolic shear deformation plate theory
This theory satis�es stress free conditions at the top
and bottom planes of the plate without need of shear
correction factor. The displacements are assumed to
be small in comparison to plate dimensions; so their
derivatives and therefore the strains are in�nitesimal.
Considering extension e�ect, the transverse displace-
ment (w) is composed of three components:

w(x; y; z) = wb(x; y) + ws(x; y) + wa(x; y); (3)

where wb, ws and wa are bending, shear and extension
parts of the transverse displacement, respectively. The
in-plane displacements, u and v, are assumed as follows:

u = u0 + ub + us; v = v0 + vb + vs; (4)

where ub and vb are bending components, and us and
vs are shear components de�ned as below:

ub = �z @wb
@x

; vb = �z @wb
@y

; (5a)

us = �f(z)
@ws
@x

; vs = �f(z)
@ws
@y

; (5b)

where:

f(z) =
(h=�) sinh

��
hz
�� z

[cosh(�=2)� 1]
: (6)

The strains can be obtained using the displacement
�eld de�ned in Eqs. (3) and (4):

"x = "0
x + zkbx + f(z)ksx;

"y = "0
y + zkby + f(z)ksy;


xy = 
0
xy + zkbxy + f(z)ksxy;


yz = g(z)
syz + 
ayz;


xz = g(z)
sxz + 
axz; "z = 0; (7)

where:

"0
x=

@u0

@x
; "0

y=
@v0

@y
; 
0

xy=
@u0

@y
+
@v0

@x
;

kbx=�@2wb
@x2 ; kby=�@2wb

@y2 ; kbxy=�2
@2wb
@x@y

;

ksx=�@2ws
@x2 ; ksy=�@2ws

@y2 ; ksxy=�2
@2ws
@x@y

;


syz =
@ws
@y

; 
sxz =
@ws
@x

; 
ayz =
@wa
@y

;


axz =
@wa
@x

; g(z) = 1� df(z)
dz

: (8)
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The normal stress �z is negligible in comparison to
in-plane stresses, �x and �y, and may be neglected
in constitutive equations. The stress components
for isotropic FGMs can be obtained by the following
thermo-elastic constitutive relations:8<:�x

�y
�xy

9=;
(n)

=

24Q11 Q12 0
Q12 Q22 0

0 0 Q66

35(n)8<:"x��(z)T
"y��(z)T


xy

9=;
(n)

;
(9a)�

�yz
�xz

�(n)

=
�
Q44 0

0 Q55

�(n)�
yz

xz

�(n)

; (9b)

where n is the layer number. Coe�cients of the sti�ness
matrix in Eqs. (9a) and (9b) can be expressed as:

Q11 = Q22 =
E(z)

1� �2 ; (10a)

Q12 =
�E(z)
1� �2 ; (10b)

Q44 = Q55 = Q66 =
E(z)

2(1 + �)
: (10c)

The Young's modulus, E(z), and thermal expansion
coe�cient, �(z), for FG core depend on the z coordi-
nate and they vary through the thickness according to
Eq. (1).

2.3. Governing equations
Using the principle of virtual work, the governing
equation of present FG sandwich plate can be derived:Z

V
(�x�"x + �y�"y + �xy�
xy + �yz�
yz

+ �xz�
xz)dV = 0; (11)

where V is volume of the plate. Eq. (11) can be
written in terms of coe�cients of sti�ness matrix by
substituting the stresses and strains and integrating
through the plate thickness:Z
A

fNx�"0
x +Ny�"0

y +Nxy�
0
xy +M b

x��
b
x +M b

y��
b
y

+M b
xy��

b
xy +Ms

x��
s
x +Ms

y��
s
y +Ms

xy��
s
xy

+Qayz�

a
yz +Qaxz�


a
xz +Qsyz�


s
yz

+Qsxz�

s
xzgdxdy = 0; (12)

where A is the mid-plane area, (Mx, My) are bending
moments, Mxy is twisting moment, and (Nx, Ny) and
(Qxz, Qyz) are normal and shear forces, respectively.
These resultants can be derived by integrating the

corresponding stresses through the thickness of the
layers as:

(Nx; Ny; Nxy) =

h=2Z
�h=2

(�x; �y; �xy)dz

=
2X

n=0

zn+1Z
zn

(�x; �y; �xy)dz;

(M b
x;M

b
y ;M

b
xy) =

h=2Z
�h=2

(�x; �y; �xy)zdz

=
2X

n=0

zn+1Z
zn

(�x; �y; �xy)zdz;

(Ms
x;M

s
y ;M

s
xy) =

h=2Z
�h=2

(�x; �y; �xy)f(z)dz

=
2X

n=0

zn+1Z
zn

(�x; �y; �xy)f(z)dz;

(Qaxz;Q
a
yz; Q

s
xz; Q

s
yz)

=

h=2Z
�h=2

(�xz; �yz; g(z)�xz; g(z)�yz)dz

=
2X

n=0

zn+1Z
zn

(�xz; �yz; g(z)�xz; g(z)�yz)dz: (13)

Substituting Eq. (7) in Eq. (9), integrating through
the plate thickness, and using the de�nitions of stress
resultants from Eq. (13), the following equations will
be obtained:8<: N

M b

Ms

9=; =

24 A B Bs
B D Ds

Bs Ds Hs

358<: "
�b
�s

9=;�
8<: NT

M bT

MsT

9=; ;
(14a)�

Qa
Qs

�
=
�
As Aa
Aa Ass

��

a

s

�
; (14b)

where:

N=fNx; Ny; Nxygt; M b=fM b
x;M

b
y ;M

b
xygt;

Ms=fMs
x ;M

s
y ;M

s
xygt; NT =fNT

x ; N
T
y ; 0gt;

M bT =fM bT
x ;M bT

y ; 0gt; MsT =fMsT
x ;MsT

y ; 0gt;



J. Rouzegar and M. Gholami/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 561{577 565

" = f"0
x; "

0
y; 


0
xygt;

�b = f�bx; �by; �bxygt; �s = f�sx; �sy; �sxygt;
Qa = fQayz; Qaxzgt; Qs = fQsyz; Qsxzgt;

a = f
ayz; 
axzgt; 
s = f
syz; 
sxzgt; (15a)

A =

24A11 A12 0
A12 A22 0
0 0 A66

35 ;
B =

24B11 B12 0
B12 B22 0
0 0 B66

35 ;
D =

24D11 D12 0
D12 D22 0

0 0 D66

35 ;
Bs =

24Bs11 Bs12 0
Bs12 Bs22 0
0 0 Bs66

35 ;
Ds =

24Ds
11 Ds

12 0
Ds

12 Ds
22 0

0 0 Ds
66

35 ;
Hs =

24Hs
11 Hs

12 0
Hs

12 Hs
22 0

0 0 Hs
66

35 ;
As =

�
As44 0
0 As55

�
; Ass =

�
Ass44 0
0 Ass55

�
;

Aa =
�
Aa44 0
0 Aa55

�
; (15b)

where Aij , Bij etc. are coe�cients of the plate sti�ness,
de�ned by:

(Aii;Bii; Dii; Bsii; D
s
ii;H

s
ii)

=
2X

n=0

zn+1Z
zn

Q(n)
ii [1; z; z2; f(z); zf(z); f2(z)]dz;

(i = 1; 2); (16a)

(A12;B12; D12; Bs12; D
s
12;H

s
12)

=
2X

n=0

zn+1Z
zn

Q(n)
12 [1; z; z2; f(z); zf(z); f2(z)]dz;

(16b)

(A66;B66; D66; Bs66; D
s
66;H

s
66)

=
2X

n=0

zn+1Z
zn

Q(n)
66 [1; z; z2; f(z); zf(z); f2(z)]dz;

(16c)

Asii =
2X

n=0

zn+1Z
zn

Q(n)
ii dz; (i = 4; 5); (16d)

Assii =
2X

n=0

Z zn+1

zn
Q(n)
ii [g(z)]2dz; (i = 4; 5); (16e)

Aaii =
2X

n=0

Z zn+1

zn
Q(n)
ii [g(z)]dz; (i = 4; 5): (16f)

Also, NT and (M bT , MsT ) are thermal force and mo-
ment resultants, respectively. In the present study, the
material properties are constant in x and y directions
and therefore we can write:

NT
x = NT

y ; M bT
x = M bT

y ; MsT
x = MsT

y : (17)

Thermal resultants can be written in terms of material
properties of plate as:8<: NT

x
M bT
x

MsT
x

9=; =
2X

n=0

zn+1Z
zn

E(z)
1� � �(z)T

8<: 1
z

f(z)

9=; dz: (18)

The temperature �eld is assumed to be a combination
of three terms according to Eq. (19). The �rst term
regards uniform temperature �eld across the thickness,
the second term considers the contribution of tempera-
ture which linearly varies across the thickness and the
last term considers the temperature variation through
the thickness according to the shape function of the
theory. This temperature �eld was utilized in several
previous works [6,29,30] and results of present study
will be compared with existing ones in literature.

T (x; y; z) = T1(x; y) +
z
h
T2(x; y) +

 (z)
h

T3(x; y):
(19)

Substituting Eqs. (7) and (8) into Eq. (12), integrating
by parts and setting the coe�cients of �u0, �v0, �wb,
�ws and �wa to zero separately, the following governing
equations will be obtained:

�u0 :
@Nx
@x

+
@Nxy
@y

= 0; (20a)

�v0 :
@Nxy
@x

+
@Ny
@y

= 0; (20b)

�wb :
@2M b

x
@x2 + 2

@2M b
xy

@x@y
+
@2M b

y

@y2 = 0; (20c)
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�ws :
@2Ms

x
@x2 + 2

@2Ms
xy

@x@y
+
@2Ms

y

@y2 +
@Qsxz
@x

+
@Qsyz
@y

= 0; (20d)

�wa :
@Qaxz
@x

+
@Qayz
@y

= 0: (20e)

Substituting Eqs. (14), (7) and (8) into Eqs. (20), the
governing equations in terms of displacements will be
obtained:

A11
@2u0

@x2 +A66
@2u0

@y2 + (A12 +A66)
@2v0

@x@y

�
�
B11

@3wb
@x3 + (B12 + 2B66)

@3wb
@x@y2

�
�
�
Bs11

@3ws
@x3 + (Bs12 + 2Bs66)

@3ws
@x@y2

�
= F1;

(21a)

(A12 +A66)
@2u0

@x@y
+A66

@2v0

@x2 +A22
@2v0

@y2

�
�
(B12 + 2B66)

@3wb
@x2@y

+B22
@3wb
@y3

�
�
�
(Bs12 + 2Bs66)

@3ws
@x2@y

+Bs22
@3ws
@y3

�
= F2;

(21b)

B11
@3u0

@x3 + (B12 + 2B66)
@3u0

@x@y2

+ (B12 + 2B66)
@3v0

@x2@y
+B22

@3v0

@y3

�
�
D11

@4wb
@x4 +2(D12+2D66)

@4wb
@x2@y2 +D22

@4wb
@y4

�
�
�
Ds

11
@4ws
@x4 +2(Ds

12+2Ds
66)

@4ws
@x2@y2 +Ds

22
@4ws
@y4

�
= F3; (21c)

Bs11
@3u0

@x3 + (Bs12 + 2Bs66)
@2u0

@x@y2

+ (Bs12 + 2Bs66)
@3v0

@x2@y
+Bs22

@3v0

@y3

�
�
Ds

11
@4wb
@x4 +2(Ds

12+2Ds
66)

@4wb
@x2@y2 +Ds

22
@4wb
@y4

�
�
�
Hs

11
@4ws
@x4 +2(Hs

12+2Hs
66)

@4ws
@x2@y2 +Hs

22
@4ws
@y4

�

+Aa55
@2wa
@x2 +Aa44

@2wa
@y2 +As55

@2ws
@x2 +As44

@2ws
@y2

= F4; (21d)

A55
@2wa
@x2 +A44

@2wa
@y2 +Aa55

@2ws
@x2 +Aa44

@2ws
@y2 = F5;

(21e)

where F1, F2, F3, F4 and F5 are the thermal resultants
force, de�ned by:

F1 =
@NT

x
@x

; F2 =
@NT

y

@y
;

F3 =
@2M bT

x
@x2 +

@2M bT
y

@y2 ;

F4 =
@2MsT

x
@x2 +

@2MsT
y

@y2 ;

F5 = 0: (22)

3. Analytical solution procedure

The boundary of FG sandwich plate is assumed to
be simply supported at all edges which leads to the
boundary conditions:

v0 = wb = ws = wa = Nx = M b
x = Ms

x = 0

at x = 0; a;

u0 = wb = ws = wa = Ny = M b
y = Ms

y = 0

at y = 0; b: (23)

The Navier method is employed for solution of obtained
governing equations. The displacements �elds are
sought as the following expressions which satisfy the
above boundary conditions automatically:8>>>><>>>>:

u0
v0
wb
ws
wa

9>>>>=>>>>; =
1X
m=1

1X
n=1

8>>>><>>>>:
Umn cos(�x) sin(�y)
Vmn sin(�x) cos(�y)
Wbmn sin(�x) sin(�y)
Wsmn sin(�x) sin(�y)
Wamn sin(�x) sin(�y)

9>>>>=>>>>; ; (24)

where Umn, Vmn, Wbmn, Wsmn and Wamn are unknown
coe�cients to be determined in the solution procedure.

In this study, the temperature distribution in x-y
plane are assumed to be uniform and sinusoidal. For
sinusoidal distribution temperature �eld we have:

fTg =
�
T
	

sin(�x) sin(�y);

T = fT1; T2; T3gt ; T =
�
T 1; T 2; T 3

	t ; (25)
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where T1, T2 and T3 were de�ned in Eq. (19). The
double Fourier expansion of uniformly distributed tem-
perature can be expressed as follows:

fTg =
�
T
	 1X
m=1

1X
n=1

16
mn�2 sin(�x) sin(�y)

m;n = 1; 3; 5 � � � (26)

in which � = m�=a and � = n�=b.
Substituting Eqs. (24)-(26) in governing Eqs. (21),

the following system of equations is obtained:

[K]f�g = fFg; (27)

where:

f�g =
�
Umn; Vmn;W b

mn;W
s
mn;W

a
mn
	t
;

is displacement vector which should be determined, [K]
is the sti�ness matrix, and fFg is the force vector.
Components of symmetric [K] matrix are as follows:

[K] =

266664
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

377775 ; (28)

where:

a11 = �(A11�2 +A66�2);

a12 = ���(A12 +A66);

a13 = ��[B11�2 + (B12 + 2B66)�2];

a14 = ��[Bs11�
2 + (Bs12 + 2Bs66)�2];

a22 = �(A66�2 +A22�2);

a23 = �[(B12 + 2B66)�2 +B22�2];

a24 = �[(Bs12 + 2Bs66)�2 +Bs22�
2];

a33 = �(D11�4 + 2(D12 + 2D66)�2�2 +D22�4);

a34 = �(Ds
11�

4 + 2(Ds
12 + 2Ds

66)�2�2 +Ds
22�

4);

a44 =� (Hs
11�

4 + 2(Hs
11 + 2Hs

66)�2�2 +Hs
22�

4

+As55�
2 +As44�

2 +As55�
2 +As44�

2);

a45 = �(Aa55�
2 +Aa44�

2);

a55 = �(A55�2 +A44�2);

a15 = 0; a25 = 0; a35 = 0: (29)

Furthermore, the force vector is composed of the
following components:

fFg = fF1; F2; F3; F4; F5gt ; (30)

where:

F1 = �(ATT 1 +BTT 2 +BaTT 3);

F2 = �(ATT 1 +BTT 2 +BaTT 3);

F3 = �h(�2 + �2)(BTT 1 +DTT 2 +DaTT 3);

F4 = �h(�2 + �2)(BsTT 1 +DsTT 2 + F sTT 3);

F5 = 0; (31)

and:

fAT ;BT ; DT g

=
2X

n=0

zn+1Z
zn

E(z)
1� �2 (1 + �)�(z)

�
1; z; z2	 dz;

fBaT ;DaT g

=
2X

n=0

zn+1Z
zn

E(z)
1� �2 (1 + �)�(z) (z) f1; zg dz;

fBsT ;DsT ; F sT g

=
2X

n=0

zn+1Z
zn

E(z)
1��2 (1+�)�(z)f(z)

�
1; z;  (z)

	
dz:
(32)

Also, we have:

z = z=h; f(z) = f(z)=h;  (z) =  (z)=h: (33)

4. Numerical results and discussion

In this section employing hyperbolic shear deformation
plate theory and considering extension e�ect, several
numerical examples of simply supported FG sandwich
plate under thermo-mechanical loading are solved.
In order to validate the presented method, obtained
results are compared with �rst and higher order plate
theories. The materials used in this study are Titanium
and Zirconia whose properties are shown in Table 1.
The Poisson's ratios for both ceramic and metallic
phases are assumed to be constant and independent
of temperature.

The temperature distribution across plate thick-
ness is considered according to Eq. (19); it means
that as well as investigation on linear distribution of
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Table 1. Material properties of FG sandwich plate.

Properties Metal:
Ti-6A-4V

Ceramic:
ZrO2

E(GPa) 66.2 117.0

v 1/3 1/3

�(10�6=K) 10.3 7.11

temperature across the thickness, the e�ects of thermal
load values T 1 and T 3 are also studied. As men-
tioned before, the temperature distribution in x and
y directions are uniform and sinusoidal whose Fourier
expansions were described by Eqs. (25) and (26). For
sake of brevity and to express the thickness ratio of
each layer, a combination of three numbers (called
\thickness aspect ratio") is employed; for example
\1-2-1" de�nes the ratios of each layer from bottom
to top, i.e. the thickness of FG core is twice the
thickness of Metal and ceramic layers. The obtained
results are presented in two cases: PERESENT 1 (the
extension e�ect is not considered in formulation) and
PERESENT 2 (the extension e�ect is considered in
formulation). Dimensionless values used for transverse
de
ection, in-plane normal stress and transverse shear
stresses are listed in Table 2, where E0 = 1 GPa
and �0 = 10e � 6=K. It is assumed that a=h = 10,
a=b = 1, T 1 = T 3 = 0 and T 2 = 0, unless mentioned
otherwise. The shear correction factor for FSDPT
theory is k = 5=6.

Example 1. A simply supported rectangular FG
sandwich plate subjected to temperature �eld varying
linearly through the thickness and sinusoidally in x and
y directions is considered.

In Table 3 the e�ects of volume fraction index (k)
and thickness aspect ratio on dimensionless central de-

ection of square plate are investigated. It is observed
that results of presented method are in good agreement
with other theories. Results of PRESENT 1 and
PRESENT 2 formulations are very close and it means
that the extension term has no noticeable e�ect on the
transverse de
ections. For a constant thickness aspect
ratio, increasing the volume fraction index signi�cantly
increases the de
ection of the plate, since the behavior
of FG core tends to metal phase and consequently the
plate sti�ness is decreased.

Table 4 contains the dimensionless central de
ec-

Figure 3. E�ect of thickness to side ratio on the
dimensionless transverse de
ection, w, for 1-2-1 FG
sandwich plate.

tion of the plate for di�erent aspect ratios and thickness
aspect ratios. As expected, the transverse de
ection is
decreased when aspect ratio is increased in the result of
plate sti�ness increase. Also it is observed that results
of the present formulations are very close and they are
almost identical to other theories.

Table 5 contains the e�ect of aspect ratio on the
dimensionless transverse de
ection considering di�er-
ent volume fraction indexes. For a constant volume
fraction index the transverse de
ection is decreased by
increasing the aspect ratio, and for a speci�c aspect
ratio the transverse de
ection is increased by increasing
the volume fraction index. The reasons of these issues
were discussed before.

Figure 3 illustrates the e�ects of thickness to side
ratio on the dimensionless transverse de
ections con-
sidering di�erent volume fraction indexes. As expected,
for a certain volume fraction index, the de
ections are
decreased as the thickness to side ratio is increased and
for a speci�c thickness to side ratio the de
ections are
increased as volume fraction index is increased.

The dimensionless in-plane normal stresses, �x,
have been tabulated in Table 6 for square plates (a=b =
1) considering di�erent thickness aspect ratios and
volume fraction indexes. The present formulations
are in good agreement with other theories and again
extension term has negligible e�ects on the result. It is
observed that by increasing volume fraction ratio, the
normal stresses, �x, are decreased for 1-2-1 and 2-2-1

Table 2. Dimensionless parameters.

Dimensionless transverse de
ection w = h
�0T2a2w

�a
2 ;

b
2 ; z
�

Dimensionless in-plane normal stress �x = 10h
�0T2E0a2 �x

�a
2 ;

b
2 ;

h
2

�
Dimensionless transverse shear stress �xz = 10h

�0T2E0a
�xz
�
0; b2 ; 0

�
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Table 3. E�ects of volume fraction index and thickness aspect ratio on dimensionless central de
ections w (a=b = 1).

k Theory
w

1-1-1 1-2-1 1-2-2 2-1-2 2-2-1

k = 0

PRESENT 1 0.5697923674 0.5560289302 0.5446015603 0.5762419990 0.5762419988

PRESENT 2 0.5697906561 0.5560249740 0.5445992909 0.5762429690 0.5762429691

PSDPT 0.5697963998 0.5560435002 0.5446190228 0.5762401048 0.5762401048

SSDPT 0.5698014747 0.5560597437 0.5446403969 0.5762378652 0.5762378652

ESDPT 0.5698069150 0.5560764877 0.5446621105 0.5762357284 0.5762357284

FSDPT 0.5697678537 0.5559251873 0.5444491654 0.5762632835 0.5762632835

k = 1

PRESENT 1 0.5788143493 0.5779191830 0.5730531291 0.5795149450 0.5826038457

PRESENT 2 0.5788125914 0.5779173382 0.5730531161 0.5795131466 0.5825943606

PSDPT 0.5788094857 0.5779144556 0.5730538443 0.5795096754 0.5825925248

SSDPT 0.5788035048 0.5779086454 0.5730547792 0.5795031868 0.5825784716

ESDPT 0.5787973877 0.5779027122 0.5730558373 0.5794965358 0.5825639272

FSDPT 0.5788564684 0.5779602984 0.5730516734 0.5795600773 0.5826950408

k = 2

PRESENT 1 0.5800516210 0.5809657676 0.5775582952 0.5800309116 0.5846167843

PRESENT 2 0.5800467343 0.5809582911 0.5775576563 0.5800273615 0.5845986656

PSDPT 0.5800449336 0.5809565819 0.5775550792 0.5800249852 0.5846012120

SSDPT 0.5800366258 0.5809451600 0.5775511540 0.5800176471 0.5845817996

ESDPT 0.5800280039 0.5809332994 0.5775471901 0.5800100670 0.5845616254

FSDPT 0.5801060851 0.5810391437 0.5775881317 0.5800803280 0.5847396905

k = 3

PRESENT 1 0.5804283619 0.5820222850 0.5789868553 0.5801944236 0.5858475020

PRESENT 2 0.5804215261 0.5820105072 0.5789850412 0.5801899232 0.5858241087

PSDPT 0.5804209150 0.5820109286 0.5789821524 0.5801882554 0.5858293185

SSDPT 0.5804116250 0.5819967453 0.5789763660 0.5801805990 0.5858066376

ESDPT 0.5804019295 0.5819819368 0.5789704450 0.5801726650 0.5857830725

FSDPT 0.5804877232 0.5821107784 0.5790277184 0.5802453381 0.5859905852

k = 4

PRESENT 1 0.5805920959 0.5825824613 0.5795840278 0.5802628946 0.5867252924

PRESENT 2 0.5805840008 0.5825676430 0.5795812478 0.5802578147 0.5866985682

PSDPT 0.5805842215 0.5825697358 0.5795786331 0.5802566082 0.5867053410

SSDPT 0.5805743751 0.5825538083 0.5795719709 0.5802487952 0.5866804640

ESDPT 0.5805640686 0.5825371384 0.5795651154 0.5802406844 0.5866546493

FSDPT 0.5806541647 0.5826804850 0.5796297723 0.5803145105 0.5868825281

k = 5

PRESENT 1 0.5806815193 0.5829554515 0.5798777615 0.5802966458 0.5873938994

PRESENT 2 0.5806725539 0.5829384293 0.5798742542 0.5802911799 0.5873649698

PSDPT 0.5806733607 0.5829417477 0.5798719991 0.5802902921 0.5873726768

SSDPT 0.5806631440 0.5829245759 0.5798648672 0.5802823879 0.5873462331

ESDPT 0.5806524307 0.5829065842 0.5798575047 0.5802741733 0.5873188309

FSDPT 0.5807453814 0.5830603704 0.5799259999 0.5803486566 0.5875616248

and increased for 2-1-2. There is no regular change in
stress values for 1-1-1 and 1-2-2 combinations.

The dimensionless in-plane normal stresses, �x,
through the plate thickness for ceramic, metal and FG
sandwich plates are plotted in Figure 4 for di�erent
thickness aspect ratios. The in-plane normal stresses
are negative for upper plane, positive for lower plane

and zero at mid-plane for homogeneous ceramic and
metal plates. For FG sandwich plates, no symmetry
is observed for di�erent thickness aspect ratios and
the stresses are zero somewhere else than mid-plane.
The continuity of stresses through the plate thickness
is observed for all thickness aspect ratios.

Table 7 compares the dimensionless transverse
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Table 4. E�ect of thickness aspect ratio and aspect ratio (a=b) on dimensionless central de
ections, w (k = 3).

Thickness
aspect ratio

Theory
�w

a=b = 1 a=b = 2 a=b = 3 a=b = 4 a=b = 5

1-1-1

PRESENT 1 0.5804283619 0.2321357834 0.1160383311 0.0682335886 0.0445939819

PRESENT 2 0.5804215261 0.2321292896 0.1160323970 0.0682284171 0.0445897564

PSDPT 0.5804209150 0.2321283564 0.1160309371 0.0682262404 0.0445866922

SSDPT 0.5804116250 0.2321190971 0.1160217287 0.0682171026 0.0445776442

ESDPT 0.5804019295 0.2321094409 0.1160121379 0.0682076025 0.0445682591

FSDPT 0.5804877232 0.2321950892 0.1160975447 0.0682926733 0.0446529018

1-2-1

PRESENT 1 0.5820222850 0.2327559023 0.1163338865 0.0683955472 0.0446899283

PRESENT 2 0.5820105072 0.2327446399 0.1163234683 0.0683862793 0.0446820876

PSDPT 0.5820109286 0.2327445763 0.1163226109 0.0683843417 0.0446788120

SSDPT 0.5819967453 0.2327304399 0.1163085524 0.0683703912 0.0446649990

ESDPT 0.5819819368 0.2327156920 0.1162939046 0.0683558823 0.0446506661

FSDPT 0.5821107784 0.2328443114 0.1164221557 0.0684836210 0.0447777522

1-2-2

PRESENT 1 0.5789868553 0.2315702601 0.1157647758 0.0680802232 0.0445000151

PRESENT 2 0.5789850412 0.2315686581 0.1157635213 0.0680794424 0.0444998225

PSDPT 0.5789821524 0.2315655691 0.1157601052 0.0680755807 0.0444954087

SSDPT 0.5789763660 0.2315598012 0.1157543682 0.0680698867 0.0444897690

ESDPT 0.5789704450 0.2315539037 0.1157485096 0.0680640820 0.0444840329

FSDPT 0.5790277184 0.2316110871 0.1158055437 0.0681209080 0.0445405937

2-1-2

PRESENT 1 0.5801944236 0.2320472672 0.1159982770 0.0682134745 0.0445837117

PRESENT 2 0.5801899232 0.2320430494 0.1159945221 0.0682103506 0.0445813707

PSDPT 0.5801882554 0.2320411153 0.1159921519 0.0682073873 0.0445776726

SSDPT 0.5801805990 0.2320334841 0.1159845625 0.0681998556 0.0445702144

ESDPT 0.5801726650 0.2320255820 0.1159767136 0.0681920803 0.0445625327

FSDPT 0.5802453381 0.2320981354 0.1160490676 0.0682641573 0.0446342567

2-2-1

PRESENT 1 0.5858475020 0.2342532918 0.1170554092 0.0687976881 0.0449342363

PRESENT 2 0.5858241087 0.2342307480 0.1170342640 0.0687784446 0.0449173527

PSDPT 0.5858293185 0.2342351590 0.1170373604 0.0687797559 0.0449164528

SSDPT 0.5858066376 0.2342125563 0.1170148873 0.0687574626 0.0448943883

ESDPT 0.5857830725 0.2341890915 0.1169915887 0.0687343943 0.0448716118

FSDPT 0.5859905852 0.2343962340 0.1171981170 0.0689400688 0.0450761989

shear stress, �xz, of the square FG sandwich plate
considering di�erent thickness aspect ratios and vol-
ume fraction ratios. Both the second and third
terms of Eq. (19) are considered in temperature �eld
distribution across the plate thickness. The shape
function used in the re�ned plate theories determines
the amount of shear deformation e�ects, and since
di�erent shape functions are used in higher order plate
theories, the obtained transverse shear stresses listed
in Table 7 are not identical. It is seen that the relative
di�erences between the results for all thickness aspect
ratios and volume fraction ratios are almost constant.

Furthermore, applying extension e�ect in formulation
leads to higher transverse shear stresses.

Figure 5 plots the distribution of dimensionless
transverse shear stress, �xz, through the plate thickness
for homogenous ceramic and metal plates and two
FG sandwich plates (k = 1 and k = 3). It is
assumed that T 3 = �100 and di�erent thickness aspect
ratios are examined. For ceramic and metal plates,
symmetric distribution of transverse shear stresses is
observed and maximum transverse shear stresses, �xz,
are occurred at mid-plane of the plate; but for FG
sandwich plates, no symmetry is observed and maxi-
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Table 5. E�ect of aspect ratio and volume fraction index on dimensionless central de
ections, w (thickness aspect ratio:
1-2-1).

a=b Theory w
Ceramic k = 1 k = 2 k = 3 k = 4 k = 5 Metal

1 PRESENT 1 0.5560289302 0.5779191830 0.5809657676 0.5820222850 0.5825824613 0.5829554515 0.5859292289
PRESENT 2 0.5560249740 0.5779173382 0.5809582911 0.5820105072 0.5825676430 0.5829384293 0.5859005636

2 PRESENT 1 0.2224751220 0.2311430399 0.2323423490 0.2327559023 0.2329742650 0.2331193321 0.2342773810
PRESENT 2 0.2224692776 0.2311414085 0.2323352828 0.2327446399 0.2329600317 0.2331029438 0.2342496562

3 PRESENT 1 0.1112899462 0.1155510400 0.1161346330 0.1163338865 0.1164383257 0.1165074286 0.1170603078
PRESENT 2 0.1112832817 0.1155497579 0.1161282383 0.1163234683 0.1164250492 0.1164920775 0.1170341231

4 PRESENT 1 0.0655076788 0.0679543930 0.0682845078 0.0683955472 0.0684530943 0.0684909305 0.0687947118
PRESENT 2 0.0654998961 0.0679535874 0.0682790285 0.0683862793 0.0684411212 0.0684769927 0.0687706264

5 PRESENT 1 0.0428679443 0.0444176550 0.0446224813 0.0446899283 0.0447243063 0.0447466952 0.0449273962
PRESENT 2 0.0428587735 0.0444174411 0.0446181382 0.0446820876 0.0447139503 0.0447345103 0.0449059165

Figure 4. Distribution of dimensionless in-plane normal stress, �x, through the dimensionless plate thickness for di�erent
thickness aspect ratios: (a) 1-1-1; (b) 1-2-1; (c) 1-2-2; (d) 2-1-2; and (e) 2-2-1.
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Table 6. E�ect of volume fraction index and thickness aspect ratio on in-plane normal stress, �x (a=b = 1).

k Theory �x
1-1-1 1-2-1 1-2-2 2-1-2 2-2-1

k = 0

PRESENT 1 -1.666270185 -1.706173174 -1.750864976 -1.659805185 -1.659805183
PRESENT 2 -1.666060872 -1.705227842 -1.749453161 -1.659980811 -1.659980815
PSDPT -1.666262293 -1.706145395 -1.750826730 -1.659809686 -1.659809686
SSDPT -1.666251551 -1.706108223 -1.750776194 -1.659815474 -1.659815474
ESDPT -1.666239223 -1.706067098 -1.750720991 -1.659821523 -1.659821523
FSDPT -1.666304291 -1.706320304 -1.751079099 -1.659775556 -1.659775556

k = 1

PRESENT 1 -1.664537186 -1.650219824 -1.674486900 -1.670079883 -1.619779739
PRESENT 2 -1.664869171 -1.650542326 -1.674474798 -1.670436590 -1.620452706
PSDPT -1.664547722 -1.650230005 -1.674485728 -1.670091315 -1.619803260
SSDPT -1.664561703 -1.650243499 -1.674484044 -1.670106492 -1.619834712
ESDPT -1.664577065 -1.650258299 -1.674481972 -1.670123219 -1.619869593
FSDPT -1.664478598 -1.650162909 -1.674488930 -1.670016939 -1.619654573

k = 2

PRESENT 1 -1.665213426 -1.638296708 -1.670200987 -1.673283690 -1.591738489
PRESENT 2 -1.665631213 -1.638845583 -1.670440685 -1.673668560 -1.592602883
PSDPT -1.665227609 -1.638315829 -1.670208133 -1.673296422 -1.591770112
SSDPT -1.665246589 -1.638341429 -1.670217557 -1.673313430 -1.591812491
ESDPT -1.665267691 -1.638369894 -1.670227809 -1.673332273 -1.591859600
FSDPT -1.665137762 -1.638195667 -1.670159390 -1.673214764 -1.591571828

k = 3

PRESENT 1 -1.664947010 -1.630136403 -1.670966444 -1.674752458 -1.572213322
PRESENT 2 -1.665395841 -1.630781411 -1.671289538 -1.675146085 -1.573191149
PSDPT -1.664962657 -1.630159716 -1.670976676 -1.674765667 -1.572249767
SSDPT -1.664983676 -1.630191030 -1.670990265 -1.674783330 -1.572298586
ESDPT -1.665007142 -1.630225994 -1.671005210 -1.674802960 -1.572352803
FSDPT -1.664864668 -1.630015106 -1.670909471 -1.674681466 -1.572021032

k = 4

PRESENT 1 -1.664363446 -1.623612627 -1.672149528 -1.675553600 -1.557948963
PRESENT 2 -1.664828430 -1.624314931 -1.672507898 -1.675950667 -1.559002872
PSDPT -1.664379907 -1.623638511 -1.672161178 -1.675567035 -1.557988595
SSDPT -1.664402048 -1.623673336 -1.672176696 -1.675585018 -1.558041661
ESDPT -1.664426828 -1.623712285 -1.672193837 -1.675605021 -1.558100490
FSDPT -1.664277475 -1.623478794 -1.672085743 -1.675481656 -1.557739052

k = 5

PRESENT 1 -1.663711887 -1.618241874 -1.673152165 -1.676039216 -1.547094559
PRESENT 2 -1.664187179 -1.618984220 -1.673527784 -1.676438015 -1.548203148
PSDPT -1.663728871 -1.618269574 -1.673164554 -1.676052770 -1.547136267
SSDPT -1.663751743 -1.618306856 -1.673181090 -1.676070932 -1.547192318
ESDPT -1.663777379 -1.618348574 -1.673199410 -1.676091156 -1.547254363
FSDPT -1.663623538 -1.618099111 -1.673084902 -1.675966745 -1.546871587

mum transverse shear stress is occurred at somewhere
else than mid-plane. In all cases the shear stress,
�xz, is zero at top and bottom of the plate and
the free shear stress condition for plate surfaces is
satis�ed.

Example 2. A simply supported square FG sandwich
plate subjected to a temperature �eld, varying linearly

through the thickness and uniformly in x and y direc-
tions, is considered.

Since the obtained results for PRESENT 1 and
PRESENT 2 formulations are very close and almost
identical in Example 1, only results of former formu-
lation will be presented. Convergence of solution for
transverse de
ection of plates with di�erent volume
fraction indexes is investigated in Table 8. As seen,



J. Rouzegar and M. Gholami/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 561{577 573

Table 7. E�ect of volume fraction index and thickness aspect ratio on transverse shear stress, �xz (a=b = 1, T 3 = �100).

Scheme Theory
�xy

1-1-1 1-2-1 1-2-2 2-1-2 2-2-1

k = 0

PRESENT 1 0.4028358771 0.4149608693 0.4240194720 0.4051912198 0.4051912198

PRESENT 2 0.8185195399 0.8611282991 0.8977638131 0.8210835427 0.8210835454

PSDPT 0.4835939258 0.5007396835 0.5128627023 0.4852054866 0.4852054866

SSDPT 0.5934726419 0.6181984407 0.6348398250 0.5937493238 0.5937493238

ESDPT 0.7175373248 0.7520809920 0.7112661898 0.7156444112 0.7156444068

k = 1

PRESENT 1 0.3432062880 0.3458099805 0.3766442324 0.3413718693 0.3130551319

PRESENT 2 0.7049987498 0.7103409263 0.7730922364 0.7012350178 0.6447151154

PSDPT 0.4122750313 0.4155986787 0.4527063288 0.4098902226 0.3762177188

SSDPT 0.5065518345 0.5109037615 0.5564681898 0.5033668373 0.4625901791

ESDPT 0.6131901777 0.6187806692 0.6739088205 0.6090165600 0.5603746910

k = 2

PRESENT 1 0.3088234924 0.3129745071 0.3491960938 0.3030138205 0.2875827468

PRESENT 2 0.6391880299 0.6463100429 0.7164941693 0.6260836619 0.5935752116

PSDPT 0.3715984124 0.3764347316 0.4194312529 0.3643737580 0.3458547636

SSDPT 0.4575807395 0.4633035716 0.5152470741 0.4483249823 0.4256934533

ESDPT 0.5552182657 0.5618162410 0.6235999229 0.5435454326 0.5162208151

k = 3

PRESENT 1 0.2910543906 0.2964798972 0.3287871582 0.2831556441 0.2824547146

PRESENT 2 0.6049553154 0.6143239766 0.6763968230 0.5868641159 0.5821895481

PSDPT 0.3506010343 0.3568666238 0.3950480248 0.3407837945 0.3396055396

SSDPT 0.4323346531 0.4396710973 0.4855383249 0.4197559586 0.4179056687

ESDPT 0.5253798864 0.5337292239 0.5879679250 0.5095093860 0.5066318196

k = 4

PRESENT 1 0.2825876839 0.2886603236 0.3130751787 0.2734689573 0.2819432394

PRESENT 2 0.5888057166 0.5990913264 0.6457000803 0.5678457184 0.5798599671

PSDPT 0.3406331613 0.3475981815 0.3763567704 0.3293006406 0.3388281774

SSDPT 0.4204092018 0.4284919312 0.4628744336 0.4058869770 0.4167200219

ESDPT 0.5113637840 0.5204565894 0.5609286709 0.4930374560 0.5048830244

k = 5

PRESENT 1 0.2789253711 0.2852696994 0.3010202953 0.2690055936 0.2821570433

PRESENT 2 0.5820597330 0.5924169938 0.6221043826 0.5592639389 0.5790081723

PSDPT 0.3363636015 0.3435750117 0.3620344454 0.3240416028 0.3389170908

SSDPT 0.4153694582 0.4236361725 0.4455318450 0.3995865421 0.4165866368

ESDPT 0.5055305868 0.5146810058 0.5402701760 0.4856232894 0.5043978689

Table 8. Convergence study of central transverse de
ection, w (thickness aspect ratio: 1-2-1).

Volume
fraction
index

w
m = n

= 1
m = n
= 1::5

m = n
= 1::10

m = n
= 1::20

m = n
= 1::30

m = n
= 1::40

m = n
= 1::50

k = 0 0.9014 0.8144 0.8099 0.8084 0.8086 0.8085 0.8085
k = 1 0.9369 0.8465 0.8418 0.8403 0.8405 0.8404 0.8404
k = 2 0.9418 0.8510 0.8463 0.8447 0.8449 0.8449 0.8449
k = 3 0.9435 0.8525 0.8478 0.8462 0.8465 0.8464 0.8464
k = 4 0.9444 0.8534 0.8486 0.8471 0.8473 0.8472 0.8472
k = 5 0.9450 0.8539 0.8492 0.8476 0.8478 0.8478 0.8478
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Figure 5. Distribution of dimensionless transverse shear stress, �xz, through the dimensionless plate thickness for
di�erent thickness aspect ratios: (a) 1-1-1; (b) 1-2-1; (c) 1-2-2; (d) 2-1-2; and (e) 2-2-1.

considering enough number of series terms, the ob-
tained transverse de
ections are quite converged. Ta-
ble 9 presents the dimensionless transverse de
ections
considering di�erent thickness aspect ratios and volume
fraction indexes. It is observed that the transverse

Table 9. E�ects of volume fraction index and thickness
aspect ratio on dimensionless transverse de
ection, w.

Volume
fraction

w

index 1-1-1 1-2-1 1-2-2 2-1-2 2-2-1

k = 0 0.8286 0.8085 0.7919 0.8380 0.8380
k = 1 0.8417 0.8404 0.8333 0.8428 0.8473
k = 2 0.8435 0.8449 0.8399 0.8435 0.8502
k = 3 0.8441 0.8464 0.8420 0.8737 0.8520
k = 4 0.8443 0.8472 0.8429 0.8438 0.8533
k = 5 0.8445 0.8478 0.8433 0.8440 0.8543

de
ections are raised by increasing volume fraction
index for all thickness aspect ratios. In comparison
to sinusoidal temperature distribution, the obtained
de
ections have higher values.

The convergence of solution for in-plane normal
stresses, �x, is investigated in Table 10. In comparison
to transverse de
ections, slow rate of convergences
is observed for in-plane normal stress, �x, because
the stresses are computed from second derivatives of
transverse de
ections, and more terms in the related
in�nite series must be employed to achieve the desired
accuracy.

Table 11 presents the dimensionless in-plane nor-
mal stress, �x, for di�erent thickness aspect ratios and
volume fraction indexes. Like sinusoidal temperature
�eld when volume fraction index is increased, the in-
plane normal stress, �x, is decreased for 1-2-1 and 2-
2-1, increased for 2-1-2, and does not show regular
changes for 1-1-1 and 1-2-2. In comparison to sinu-

Table 10. Convergence study of in-plane normal stress, �x (thickness aspect ratio: 1-2-1).

Volume
fraction
index

�x
m = n

= 1
m = n
= 1::50

m = n
= 1::100

m = n
= 1::200

m = n
= 1::400

m = n
= 1::600

m = n
= 1::700

m = n
= 1::800

k = 0 -2.766 -1.747 -1.687 -1.697 -1.702 -1.703 -1.704 -1.704

k = 1 -2.676 -1.693 -1.628 -1.639 -1.645 -1.646 -1.647 -1.647

k = 2 -2.656 -1.682 -1.616 -1.627 -1.632 -1.634 -1.635 -1.635

k = 3 -2.643 -1.674 -1.607 -1.619 -1.624 -1.626 -1.627 -1.627

k = 4 -2.632 -1.667 -1.601 -1.612 -1.618 -1.620 -1.621 -1.621

k = 5 -2.623 -1.662 -1.595 -1.607 -1.612 -1.614 -1.615 -1.615
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Table 11. E�ects of volume fraction index and thickness
aspect ratio on dimensionless in-plane normal stress, �x.

Volume
fraction

�x

index 1-1-1 1-2-1 1-2-2 2-1-2 2-2-1

k = 0 -1.664 -1.704 -1.749 -1.657 -1.657
k = 1 -1.662 -1.647 -1.672 -1.668 -1.617
k = 2 -1.663 -1.635 -1.668 -1.671 -1.589
k = 3 -1.662 -1.627 -1.668 -1.672 -1.569
k = 4 -1.662 -1.621 -1.670 -1.673 -1.555
k = 5 -1.661 -1.615 -1.671 -1.673 -1.544

Figure 6. E�ect of the thermal load value, T 3, on
distribution of dimensionless in-plane normal stress, �x,
through the dimensionless plate thickness (thickness
aspect ratio: 1-1-1 and k = 3).

soidal temperature �eld, the obtained in-plane normal
stresses, �x, are decreased for all thickness aspect ratios
and volume fraction indexes.

Example 3. A simply supported square FG sand-
wich plate subjected to a temperature �eld distributed
sinusoidally in x-y plane is considered. It is assumed
that this �eld varies across the thickness according
to Eq. (19) when T 1 = 0, T 2 = 100 and T 3 takes
di�erent values. Figures 6 and 7 illustrate the e�ect of
the thermal load value, T 3, on dimensionless in-plane
normal stress, �x and transverse shear stress, �xz. It is
observed that thermal load value, T 3, has a signi�cant
e�ect on in-plane normal and transverse shear stresses.

Example 4. A simply supported square FG sand-
wich plate subjected to a temperature �eld, distributed
sinusoidally in x-y plane, is considered. It is assumed
that this �eld varies across the thickness according
to Eq. (19) when T 2 = 100, T 3 = 0, and T 1 takes
di�erent values. Figures 8 and 9 illustrate the e�ect of
the thermal load value, T 1, on dimensionless in-plane

Figure 7. E�ect of the thermal load value, T 3, on
distribution of dimensionless transverse shear stress, �xz,
through the dimensionless plate thickness (thickness
aspect ratio: 1-1-1 and k = 3).

Figure 8. E�ect of the thermal load value, T 1, on
distribution of dimensionless in-plane normal stress, �x,
through the dimensionless plate thickness (thickness
aspect ratio: 1-1-1 and k = 3).

normal stress, �x, and transverse shear stress, �xz, and
it is seen that these stresses are quite sensitive to T 1.

5. Conclusions

In this paper, the hyperbolic shear deformation plate
theory has been employed for thermo-elastic bend-
ing analysis of functionally graded sandwich plates.
Governing equations were obtained with and with-
out considering extension e�ect using the principle
of virtual work; the Navier method was adopted for
solution of the equations. Several thermo-mechanical
benchmark problems were solved by presented formu-
lation. Obtained results were compared with analyt-
ical solutions of other plate theories, and excellent
agreement between present theory and other HSDTs
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Figure 9. E�ect of the thermal load value, T 1, on
distribution of dimensionless transverse shear stress, �xz,
through the dimensionless plate thickness (thickness
aspect ratio: 1-1-1 and k = 3).

was observed. It can be concluded that although
simplicity is the main feature of presented formulation,
it is completely accurate and e�cient in thermo-elastic
analysis of FG sandwich plates. The results indicated
that elimination of extension term had no noticeable
e�ect on the accuracy of the transverse de
ections and
in-plane normal stresses. However, the precision of
the computed values for transverse shear stresses were
quite a�ected by this term. Also the e�ect of thermal
load, aspect ratio, thickness aspect ratio, thickness
to side ratio and volume fraction index on obtained
results were investigated and the results showed good
consistency with expected trends.
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