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Abstract. In this paper, three adaptive critic-based neuro-fuzzy controllers are presented
for improving attitude and position control of ships. The controllers include vessel position
and heading errors and their derivatives as inputs. Three critic based reinforcement learning
methods evaluate the situations of the ship in terms of satisfactory achievements of the
control goals. The critic agent output, namely the reinforcement signal, is a measure of the
controlled system stress. The controller modi�es its characteristics in a way that the critic
stress is decreased. The proposed controller has a simple structure and shows satisfactory
transient responses and robustness to model uncertainty.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Dynamic Positioning (DP) system is a computer con-
trolled system to automatically maintain a vessel's
position and heading by using its own propeller and
thrusters. This is obtained either by installing tun-
nel thrusters in addition to the main screw(s), or
by using azimuthing thrusters, which can produce
thrust in di�erent directions. Previously DP sys-
tems were designed using conventional PID controllers
to suppress the wave-induced motion components.
Balchen et al. [1] introduced advanced control tech-
niques based on optimal control and Kalman-�lter
theory. This work has later been modi�ed and
extended by several research groups [2-4]. Several
control methodologies have been applied to the DP
controller design including fuzzy logic controller [5],
H1 robust controller [6], nonlinear feedback lineariza-
tion [7], backstepping controller [8], and nonlinear
sliding mode controller [9]. These papers mostly
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use model based controller, so encourage one to use
non model-based control methods, such as intelligent
techniques, which neither relies on an accurate descrip-
tion of the plant, nor on the precise measurements.
To �nd possible alternatives to the classical model-
based controllers, great attention has been recently
paid to the topic of intelligent control of complex
systems.

Fuzzy control systems use the experience, knowl-
edge, and decision-making process of expert human and
engineer. An expert human expresses intuitively the
behavior of a fuzzy controller by means of linguistic
rules. In addition appropriate fuzzy logic controller can
overcome the environmental variation during operation
process [10].

Neuro-controllers have also been widely used in
recent years. Motivated by the fact that human control
actions are regulated by the brain, arti�cial neural
networks have been designed as simpli�ed models
of human neural structures. The ability to act as
universal approximators is a signi�cant characteristic
of these nets which has made them useful for modeling
nonlinear systems. A neuro controller in general,
performs as a speci�c form of adaptive control where
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the controller is in the form of multilayer neural
network and the adaptable parameters are in the form
of adjustable weights [11].

Some modern intelligent techniques have used
neuro-fuzzy structures to combine the generalization
capabilities of neural networks and decision making
capabilities of fuzzy systems [12].

There are three learning methods characterized by
the information source used for learning and classi�ca-
tion. These learning methods are supervised learning,
unsupervised learning, and reinforcement learning [13].
Adaptive critic is a special case of reinforcement learn-
ing [14] in which the condition of the controlled system
is not interpreted by failure or success binary signal,
instead a continuous reinforcement signal produced by
the critic agent shows the degree of failure or success of
control action or in other words, it shows the stress of
the system under control. The controller adapts itself
to reduce this stress [15-16].

In the present work, the idea of using adaptive
critic-based neuro-fuzzy controller is applied to the
dynamic position control of ships. Simulation results
are provided to show the e�ectiveness of the proposed
methodology.

The remaining part of this paper is organized
as follows. Section 2 presents mathematical model of
the ship. Section 3 describes the adaptive critic-based
neuro-fuzzy controller structure and some mathemat-
ical fundamentals. Section 4 presents architecture of
the ship controller. In Section 5, The case study and
simulation results are presented. And �nally in section
6, the conclusion remarks will be given.

2. Modeling of ships

2.1. Kinematics equation of motion
In order to explain ship motion, it is convenient to
introduce two frames. The �rst one is earth-�xed
frame that represents position and orientation of the
vessel with respect to an earth-�xed frame X0Y0Z0
which is expressed in the form of � = [x; y; z; '; �;  ],
and the second one is body-�xed frame that is �xed
to the vessel. The vessel velocities are measured
relative to this frame XY Z, by v = [u; v; w; p; q; r] (see
Figure 1).

To have a reliable modeling we introduce J(�)
transformation matrix that represents the transfor-
mation between the body-�xed and the earth-�xed
velocities vectors:

_� = J(�)v: (1)

It should be mentioned that the transformation matrix
depends on the Euler angles. We can derive J(�)
with some mathematic operations in transformation of
frames [17]:

Figure 1. De�nition of the earth-�xed X0Y0Z0 and the
vessel-�xed XY Z reference frames.

J(�)=

24c c� �s c� s s�+ c c�s�
s c� c c�+ s�s�s �c s�+ s�s c�
�s� c�s� c�c�

35 ;
(2)

where s. stands for sin(.) and c. stands for cos(.).
�, � and  are Euler angles that are about X, Y and
Z coordinates, respectively. Conventional ships are not
equipped with actuators in roll and pitch which suggest
that the roll and pitch modes should be omitted in
automatic control design procedure. In fact, this is
an appropriate assumption since both the rolling and
pitching motions of a ship are oscillatory with zero
mean and limited amplitude. Moreover, a conventional
ship is metacentric stable which implies that there exist
restoring moments in roll and pitch. In this paper, it is
assumed that the ship is su�ciently metacentric stable,
such that only the rotation matrix in yaw can be used
to describe the kinematic equations of motion [18]. For
3 DOF, the vessel position in earth-�xed frame and its
velocities in body-�xed frame can be represented by
� = [x; y;  ] and v = [u; v; r], respectively. As a result
of vessel motion in horizontal plane (� = 0 and � = 0),
the transformation matrix depends on only yaw angle
and we have:

J(�) = J( ) =

24cos � sin 0
sin cos 0

0 0 1

35 ; (3)

where J( ) is nonsingular for all  . It should be noted
that J�1( ) = JT ( ) [19].

2.2. Low Frequency (LF) ship model
We can model a surface ship motion in horizontal plane
by the model:

M _v +Dv = u+ JT ( )b; (4)

where u is a vector of control forces and moment that
ship propulsion system provides it. M is the inertia ma-
trix including hydrodynamic added inertia and D > 0
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is a strictly positive de�nite matrix representing linear
hydrodynamic damping. With considering starboard-
port symmetry of ships, M and D matrixes can be
written as:

M =

24m11 0 0
0 m22 m23
0 m32 m33

35 ;
D =

24d11 0 0
0 d22 d23
0 d32 d33

35 ; (5)

which states that there is no coupling between the
surge and the sway-yaw subsystems. In general, M
will be non-symmetrical, that is m23 6= m32 due to
the properties of hydrodynamic added inertia. In
fact, hydrodynamic added mass will depend on the
speed of the ship and the wave frequency of encounter.
However, for low-speed and zero speed applications,
the inertia matrix M = MT is positive de�nite
and constant. In general the damping matrix D
will be nonlinear. However for DP and cruising at
constant speed, linear damping is a good assump-
tion [17].

For describing environmental forces and moments
in the ship low-frequency model due to wind, ocean
currents, and unmodeled dynamics we introduce a bias
term b 2 R3 as [19]:

_b = �T�1b+ 	n; (6)

where T is a diagonal matrix representing time con-
stant, 	 is the excitation gain and n is a vector of
Gaussian white noise.

2.3. Wave Frequency (WF) model
The WF motions are mainly due to 1st-order wave
loads. Assuming small amplitudes, a linear Wave
Frequency (WF) model of order p can in general be
expressed as:

_� = 
� +
X

w; (7)

�w = ��; (8)

where � 2 Rp and �w = [xw; yw;  w]T is the WF earth-
�xed position and heading vector, w is a vector of
Gaussian white noise and 
,

P
and � are constant

matrices of appropriate dimensions [18].

2.4. Measurements
Only position and heading measurements are available.
The measurement vector y is assumed to be a super-
position of the LF and WF motions, in addition to the
measurement noise v, that is:

y = � + �w + v: (9)

3. Adaptive critic-based neuro-fuzzy controller

3.1. Neuro-fuzzy networks
Fuzzy set is a simple extension of the de�nition of
a classical set in which the characteristic function is
permitted to have any number between 0 and 1. A
fuzzy set A in X can be de�ned as a set of ordered
pairs:

A = f(x; �A(x))jx 2 Xg ; (10)

where �A(x) is called membership function for the
fuzzy set A. It maps each x to a membership grade
between 0 and 1. Also a fuzzy If-Then rule (fuzzy rule,
fuzzy implication, or fuzzy conditional statement) is
expressed as follow:

If (x is A) then (y is B); (11)

where A and B are linguistic values de�ned by fuzzy
sets. (x is A) is called antecedent or premise, while
(y is B) is called the consequence or conclusion.
Fuzzy systems are made of a knowledge base and
reasoning mechanism called fuzzy inference engine. A
fuzzy inference engine turns fuzzy If-Then rules into a
mapping from the inputs of the system into its outputs,
using fuzzy reasoning methods. It means that fuzzy
systems represent nonlinear mapping accompanied by
fuzzy If-Then rules from the rule base. Each of
these rules describes the local mappings. The rule
base can be constructed either from human expert
or automatic generation that is extraction of rules
using numerical input-output data. There are two
types of fuzzy inference system that are commonly
used: Mamdani and Takagi-Sugeno-Kang (TSK). In
neuro-fuzzy networks, TSK type fuzzy inference system
is used. The output of each rule can be a linear
combination of input variables plus a constant term
or can be only a constant term. The �nal output is the
weighted average of each rules' output. Basic neuro-
fuzzy system architecture that has two inputs x and y
and one output f is shown in Figure 2. The rule base
contains two TSK If-Then rules as:

Figure 2. A neuro-fuzzy structure which is equivalent to
a TSK fuzzy inference system.
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Rule 1: If x is A1 and y is B1, then:

f1 = a1x+ b1y + c1; (12)

Rule 2: If x is A2 and y is B2, then:

f2 = a2x+ b2y + c2: (13)

The node functions in a layer are the same as described
below:

� Layer 1: Every node i in this layer is a square node
with a node function as:

o1;i = �Ai(x) (i = 1; 2); (14)

o1;i = �Bi�2(y) (i = 3; 4); (15)

where x is the input to node i, and Ai (or Bi�2)
is a linguistic label (such as small or large) asso-
ciated with this node. In other words o1;i is the
membership grade of a fuzzy set Ai and it speci�es
the degree to which the given input x satis�es the
quanti�er Ai. Parameters in this layer are referred
to premise parameters.

� Layer 2: Every node in this layer is labeled by II
whose output is the product of all incoming signals:

o2;i = ui = �Ai(x)�Bi(x) (i = 1; 2): (16)

Each node output represents the �ring strength of a
fuzzy rule.

� Layer 3: Every node in this layer is labeled by
N . The i-th node calculates the ratio of the rules
�ring strength to the summation of all rules �ring
strengths:

o3;i = �ui =
ui

(u1 + u2)
(i = 1; 2): (17)

Outputs of this layer are called normalized �ring
strengths.

� Layer 4: In this layer, every node is adaptive, due
to its adjustable parameters, with a node function
as:

o4;i = �uifi = �ui(aix+ bi + ci); (18)

where �ui is a normalized �ring strength from layer
3 and fai; bi; cig is the parameter set of this node.
Parameters in this layer are referred to consequent
parameters.

� Layer 5: The single node in this layer is labeled by
P

that computes the overall outputs as the summation
of all incoming signals:

o5;i =
X
i

�uifi =
P
i uifiP
i ui

: (19)

Thus a network which is functionally equivalent
to the TSK fuzzy inference system has been con-
structed.

3.2. The controller structure
According to psychological theories, some of the main
factors of human being learning are emotional signal
such as satisfaction and stress. Emotion can be de�ned
as states elicited by instrumental reinforcing stimuli,
which their occurrence, termination or omission is
made contingent upon the making of a response, and
alter the course of future emission of that response [20].
Adaptive critic design is based on reinforcement learn-
ing concept. The critic agent assesses the behavior of
the control system through evaluation of plant output
and provides reinforcement signal namely r. In classical
reinforcement learning, there exists a reinforcement
signal, R, which usually accepts binary values. For
example, if R = 1, the control system has failed and
should modify itself so that a reinforcement signal of
value zero is achieved, i.e. the critic is fully satis�ed
in subsequent trials [21]. However, in novel or non-
classical reinforcement learning methods, the reinforce-
ment signal (r) is always continuous and accepts any
value between -1 and 1, with r = 1 (or -1) indicating
the total failure of the control system. The closer the
reinforcement signal gets to zero, the better the control
action. Here the system does not wait for a total failure
to occur before it starts learning. Instead, it continues
its learning process at the same time as it applies its
control action. Generally, in a multivariable system
for each output a critic is assigned. Inputs of the
critic are usually error between the system's output and
its desired or reference value, and its derivative, and
its output is the corresponding reinforcement signal.
The reinforcement signals contribute collaboratively for
updating parameters of each neuro-fuzzy controller. It
should be noticed that the structure of controller is like
a TSK fuzzy system whose parameters are updated
using the reinforcement learning. The aim of the
control system is minimization of the square value of
reinforcement signals. Structure of adaptive critic-
based neuro-fuzzy controller is shown in Figure 3.

Let de�ne the error function for each controller
as:

Ej =
1
2
r2
j (j = 1; 2; :::;m); (20)

where rj is the output signal of critic j, and m

Figure 3. Structure of adaptive critic-based neuro-fuzzy
controller.
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is the total number of outputs. The goal of the
learning procedure is to minimize error signal Ej for
the adjustment of controller weights; so the steepest
descent method is used as:

�wi = ��i @Ej@wi
(i = 1; 2; :::; n) (j = 1; 2; :::;m);

(21)

where �i is the learning rate of the corresponding con-
troller, w0is are the tunable weights of each controller,
and n is the total number of controller parameters. In
order to calculate the relative derivative of Eq. (21),
the chain rule is used:

@Ej
@wi

=
@Ej
@rj

@rj
@yj

@yj
@ui

@ui
@wi

(i = 1; 2; :::; n and j = 1; 2; :::;m): (22)

From Eq. (21) and also the dynamic equations of the
system, we have:

@E
@rj

= rj (j = 1; 2; :::;m); (23)

@yj
@ui

= Jji (i = 1; 2; :::; n and j = 1; 2; :::;m); (24)

where Jji is the element in the i-th column and j-th
row of the Jacobin matrix of the system, and ui is the
i-th control input. If the direction of changes of the
system output with respect to the input is known we
can approximate J with its sign. Also we have:

ej = y(ref)j � yj (j = 1; 2; :::;m); (25)

where ej is the error produced in the tracking of the j-
th output and yref is the desired output. Let us de�ne
the reinforcement signal of the j-th critic as a linear
combination of error ej , and derivative of error _ej as:

rj = Kjej + Lj _ej (j = 1; 2; :::;m); (26)

where Kj and Lj are positive constants of the j-th
critic. By the chain rule and using Eq. (26), we can
write:

@rj
@yj

=
@rj
@ej

@ej
@yj

= Kj(�1) = �Kj (j = 1; 2; :::;m):
(27)

From Eqs. (21) to (27), �wi will be calculated as:

�wi = �iKjrjJji
@ui
@wi

: (28)

Eqs. (29) to (31) are used for updating the learning
parameters, ai, bi and ci, in Eq. (14):

aijnew = aijold + �irjx
uiPn
i=1 ui

; (29)

Figure 4. Structure of ACNFC for dynamic positioning
of ships.

bijnew = bijold + �irjy
uiPn
i=1 ui

; (30)

cijnew = cijold + irj
uiPn
i=1 ui

; (31)

where �i, �i and i are learning rates for each rule.
Here it is assumed that Kj = 1 and Jii = 1; Jji = 0,
i 6= j (instead of the Jacobian matrix its sign is used).

4. Architecture of the ship controller

Figure 4 shows the structure of the designed Adaptive
Critic based Neuro-Fuzzy Controller (ACNFC) for
dynamic position control of ships. This structure is
made of three neuro-fuzzy controllers with three critics
for control of vessel position (x; y) and heading  .
The inputs of each controller are the outputs0 error
signal and its derivative, and three linguistic variables
(negative (N), positive (P), and zero (Z)) are used in
each input in order to tune the rules, and accordingly
nine rules are formed for each controller. We have
considered three membership functions for each of the
inputs. The sigmoid functions for the variables N and
P , and the Gaussian function for the variable Z are
de�ned, respectively as:

�Fji(xi) = [1 + exp(�aji(xi � cji))]�1 ; (32)

�Fji(xi) = exp
�
�(
xi � cji
�ji

)2
�
; (33)

where cji is the center of function, �ji is the function
variance, and aji is the curve inection parameter. The
membership functions of the linguistic variables are
shown in Figure 5.

The main section in ACNFC is the critic. Inputs
of each critic are the output's error signal and its
derivative, which are used to evaluate the system
performance. For example, if the error signal is positive
but its derivative is negative, then the performance
is good. As another instance, if the error signal
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Figure 5. The membership functions of the
corresponding linguistic variables of the proposed ACNFC.

Figure 6. Moored tanker, L = 200:6 (m) [8].

and its derivative are both negative, the controller
behavior will not satisfy the critic. Finally by apply-
ing the stress signal to each ACNFC, The controller
parameters are tuned in order to optimize the system
performance by minimizing the square of reinforcement
signal.

5. Dynamic position control

Consider the moored tanker shown in Figure 6. Nu-
merous simulations are performed to evaluate the per-
formance of controllers using MATLAB software. The
case studies are based on the following non-dimensional
model of the moored tanker (Bis-system) [8,17]:

M =

241:0825 0 0
0 2:0575 �0:4087
0 �0:4087 0:2153

35 ; (34)

D =

240:0865 0 0
0 0:0762 0:1510
0 0:0151 0:0031

35 : (35)

The Bis-system is based on the use of the time unit
de�ned by

q
Ship length

Gravity const , the mass unit de�ned by
m = ��r, and the body mass ratio m=�r where r
is the hull contour displacement and � is the water
density, as normalization variables. The method of

Table 1. Parameters of critic agents.

K1 L1 K2 L2 K3 L3

0.14 0.85 0.25 0.9 0.05 0.13

non-dimensionalization is presented completely in [17].
The bias time constants were chosen as:

T =

2456:7 0 0
0 12:9 0
0 0 �213:5

35 : (36)

Performance of the ACNFC depends on the values of
learning rate and coe�cients of critic. The values of
the coe�cients of critic agents are given in Table 1,
they have been chosen by trial and error mechanism.
It should be emphasized that the critic role is to truly
evaluate the situation but indeed not needed to be so
accurate. The sample time of 0.1 sec is chosen and
learning rates are constant and equal to �1 = �2 =
�3 = 0:35. Also the controllers initial weights are
selected randomly between [-1 1]. In the simulations
measurement noise is modeled as white noise and WF
motions are modeled by a 2nd-order linear model. The
initial value for the position x is chosen -10, and its
desired value is 0. Also the initial position y is set to
-10, and its desired value is 0. Finally the set point
for the heading is chosen to be -10, which is applied
at instance 10 as a step function from initial value
of 0. The control systems have been implemented and
simulated to investigate their performance. The results
show that wave �ltering, positioning and tracking are
performed with no visible o�sets, and satisfactory
accuracy is obtained. The Simulation results are shown
in Figures 7-9. In all of the following �gures all the
values represent the di�erence from the corresponding
steady state values. It should be noted that all values
of state variables and the system parameters are non-
dimensionalized according to [17]. To obtain the real
values of state variables, the non-dimensional position

Figure 7. Performance of ACNFC, position x.
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Figure 8. Performance of ACNFC, position y.

Figure 9. Performance of ACNFC, heading  .

and time should be multiplied by the ship length and
time unit de�ned by

q
Ship length

Gravity const , respectively. The
real values of forces can be obtained using the values
of ship length, ship mass and the mentioned time unit.

To check the robustness of the controlled system
to model uncertainty, the ACNFCs are implemented

Figure 11. Performance of ACNFC wrt model
uncertainties: (a) Position y; and (b) sway force.

on the ship model whose matrices in Eqs. (34) to (36)
are changed �30% around their nominal values. We
can see that the performance of the ACNFCs is not
strongly a�ected and only slight deviations are visible
in the control signals, position and heading response.
The computer simulations are shown in Figures 10-
12.

Figure 10. Performance of ACNFC wrt model uncertainties: (a) Position x; and (b) surge force.
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Figure 12. Performance of ACNFC wrt model
uncertainties: (a) Heading  ; and (b) yaw moment.

6. Conclusion

In this article three adaptive critic-based neuro-fuzzy
controllers were proposed in order to control the
dynamic positioning of ships. The unique aspect of
this type of controller is that it uses the critic which
simulates the expert operation in reality. Here we de-
sign the critic instead of designing the controller itself.
This feature increases the degree of intelligence and
robustness of the system and results in a self-tuning and
adaptive controller. Learning rules are very simple and
therefore the computational speed is high. Considering
the simplicity of ACNFC and its independence from
the model, this control method has advantage of on-
line learning and control, and can be applied to a large
variety of systems. The proposed controller was applied
to control the position x, position y and heading
angle of the moored tanker. Simulation results show
that the controller has good convergence and robust
performance which are concluded from the adaptive
and intelligent structure of the proposed control.
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