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Abstract. A �nite element formulation based on two-variable re�ned plate theory has
been developed in this paper and has been implemented for bending analysis of isotropic
and orthotropic plates. The two-variable re�ned plate theory can be used for thin and
thick plates and predicts parabolic variation of transverse shear stresses across the plate
thickness. In this theory the zero traction condition on the plate surfaces is satis�ed
without using shear correction factor. The governing equations have been derived using
the principle of minimum potential energy. After constructing weak form equations, a new
4-node rectangular plate element with six degrees of freedom at each node has been used
for discretization of the domain. The �nite element code is written in MATLAB and some
benchmark problems have been solved. Comparison of results with exact solution and
other common plate theories shows the accuracy and e�ciency of presented �nite element
formulation.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Classical Plate Theory (CPT) is the simplest plate
theory that gives good results for bending analysis of
thin plates but it does not take into account shear
deformation e�ects [1]. The e�ect of shear deformation
is important in bending analysis of thick plates and
also for thin plates vibrating at higher modes; so
numerous researchers have attempted to re�ne the
CPT. Reissner proposed First order Shear Deformation
Theory (FSDT) based on stress approach [2] and
another form of FSDT was proposed by Mindlin [3]
based on displacement approach. The FSDT predicts
the constant transverse shear stress along the plate
thickness, and, hence, the shear correction factor is
required for satisfying the free stress conditions on the
plate surfaces. To avoid the use of shear correction
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factor, the Higher-order Shear Deformation Theories
(HSDTs) were developed. Second-order shear deforma-
tion theory of Whitney and Sun [4], third-order shear
deformation theory of Hanna and Leissa [5], Reddy [6],
Reddy and Phan [7], Bhimaraddi and Stevens [8],
Kant [9] and Lo et al. [10] are the most famous HSDTs.

Recently, some new higher order shear deforma-
tion theories such as trigonometric shear deformation
theory [11], hyperbolic shear deformation theory [12]
and two-variable re�ned plate theory [13] have been
developed. The two-variable plate theory is a simple
and e�cient theory that contains only two unknown
variables which are bending and shear components
of transverse displacement. This theory satis�es the
condition of free stress at the plate surfaces without
using shear correction factor. It was introduced by
Shimpi [13] for isotropic plates and then extended to
orthotropic plates by Shimpi and Patel [14] and Thai
and Kim [15]. The analysis of laminated composite
plates was done by Kim et al. [16] and the vibration
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and buckling analysis of plates were performed by
Shimpi and Patel [17] and Kim et al. [18], respectively.
Analysis of free vibration of FGM plates rested on
elastic foundation performed by Thai and Choi [19].

Previous researchers have adopted the two-
variable plate theory and presented analytical solu-
tions for some plate problems with speci�c geometry,
loading and boundary conditions. In practice, it
is too di�cult to solve many engineering problems
by common analytical methods. Using numerical
approaches such as Finite Element Method (FEM),
the complicated problems could be simulated in an
approximate manner. Finite element analysis became
quick, precise and popular by the advancements in
computer science. Recently a new shear deformation
plate �nite element formulation was introduced by
Patel and Shimpi [20]. They represent a C1 continuity
element with complete bicubic Hermite interpolation
function. Katori and Okada [21] developed a �nite
element formulation based on re�ned plate theory using
triangular and quadrilateral elements for discretization
of the domain.

In this study a new �nite element formulation
based on two-variable re�ned plate theory has been
developed for bending analysis of thin and thick or-
thotropic plates. A new 4-node rectangular plate
element with six degrees of freedom at each node
has been introduced. The developed formulation has
been validated by some benchmark problems in the
literature.

2. Two-variable plate theory

The two-variable re�ned plate theory is constructed
based on following assumptions:

1. The in-plane displacements (u in x-direction, v
in y-direction and w in z-direction) are negligible
relative to the plate thickness. So the strain-
displacement relations can be expressed as:8>>><>>>:

"x = @u
@x ; 
xy = @v

@x + @u
@y ;

"y = @v
@y ; 
yz = @w

@y + @v
@z ;

"z = @w
@z ; 
zx = @w

@x + @u
@z :

(1)

2. The transverse displacement w has two compo-
nents: the bending and shear component (wb and
ws):

w(x; y; t) = wb(x; y; t) + ws(x; y; t): (2)

3. The stress normal to the middle plane, �z, is
small compared with the other stress components
and may be neglected in the stress-strain relations.
Consequently, the stress-strain relations for an or-
thotropic plate can be written as:

8>>><>>>:
�x= E1

(1��12�21)"x+ �12E2
(1��12�21)"y; �xy=G12
xy;

�y= E2
(1��12�21)"y+ �21E1

(1��12�21)"x; �yz=G23
yz;

�z = 0; �zx = G31
zx;
(3)

where E1 and E2 are elastic modulus, G12, G23
and G31 are shear modulus, and �12 and �21 are
Poisson's ratios.

4. The displacements in x and y directions consist of
bending and shear components:

u = ub + us; v = vb + vs: (4)

The bending components of displacement play the
same roles as u and v in classical plate theory. So we
can write:

ub = �z @wb
@x

; vb = �z @wb
@y

: (5)

Based on the above assumptions, the displacements can
be calculated as:

u(x; y; z) = �z @wb
@x

+ h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@ws
@x

;
(6)

v(x; y; z) = �z @wb
@y

+ h
�

1
4

� z
h

�� 5
3

� z
h

�3
�
@ws
@y

;
(7)

w(x; y; t) = wb(x; y; t) + ws(x; y; t): (8)

The strain �eld is obtained by substituting Eqs. (6)-(8)
in Eq. (1):

"x = �z @2wb
@x2 + h

�
1
4

� z
h

�� 5
3

� z
h

�3
�
@2ws
@x2 ; (9)

"y = �z @2wb
@y2 + h

�
1
4

� z
h

�� 5
3

� z
h

�3
�
@2ws
@y2 ; (10)

"z = 0; (11)


xy = �2z
@2wb
@x@y

+ 2h
�

1
4

� z
h
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3

� z
h

�3
�
@2ws
@x@y

;
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yz =
�

5
4
� 5

� z
h

�2
�
@ws
@y

; (13)


xz =
�

5
4
� 5

� z
h

�2
�
@ws
@x

: (14)

Substituting strains from Eqs. (9)-(14) in constitutive
Eqs. (3), the expressions for stresses can be obtained
as:8>>>><>>>>:

�x
�y
�xy
�yz
�zx

9>>>>=>>>>;=

266664
Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

377775
8>>>><>>>>:
"x
"y

xy

yz

zx

9>>>>=>>>>; ;
(15)
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where:8>>><>>>:
Q11 = E1

1��12�21
; Q12 = �12E2

1��12�21
= �21E2

1��12�21
;

Q22 = E2
1��12�21

;

Q44 = G23; Q55 = G31; Q66 = G12:
(16)

Using principle of minimum potential energy, the
governing equations and boundary conditions will be
obtained. Total potential energy of the plate can be
written as:

U =
Z z=h=2

z=�h=2

Z y=b

y=0

Z x=a

x=0

1
2

[�x"x + �y"y + �xy
xy

+ �yz
yz + �zx
zx]dxdydz +
aZ

0

bZ
0

qwdxdy; (17)

where q is the intensity of distributed load in z-
direction. Substituting stress and strain �elds into
Eq. (17) and taking into account the independent
variations of wb and ws, the governing equations can
be obtained, as follows:

D11
@4wb
@x4 +2(D12+2D66)

@4wb
@x2@y2 +D22

@4wb
@y4 = q;

(18)

1
84

�
D11

@4ws
@x4 +2(D12+2D66)

@4ws
@x2@y2 +D22

@4ws
@y4

�
�
�
A55

@2ws
@x2 +A44

@2ws
@y2

�
= q; (19)

where D11, D22, D12, D66, A44 and A55 are plate
material sti�ness, expressed by:8>>><>>>:

D11 = Q11h3

12 ; D22 = Q22h3

12 ; D12 = Q12h3

12 ;

D66 = Q66h3

12 ;

A44 = 5Q44h
6 ; A55 = 5Q55h

6 :
(20)

As seen in Eqs. (18) and (19), the governing equa-
tions for bending of orthotropic plates consist of two
uncoupled forth-order di�erential equations. Di�erent
possible boundary conditions are discussed in [14].

3. Finite element formulation

3.1. Weak form equations
For a plate element with volume ve and mid-plane

e, the principle of minimum potential energy can be
written as:Z
ve

�(�xx"xx+�yy"yy+�xy
xy+�xz
xz+�yz
yz)dv

Figure 1. Bending moments and shear forces on a plate
element.

�
Z

e

q�wdxdy�
I
�e

�
�Mnn

@�w
@n

+Vn�w
�
ds=0; (21)

where Mnn and Vn denote the bending moment and
e�ective shear force, respectively, as shown in Figure 1.
The e�ective shear force can be de�ned as:

Vn = Qn +
@Mns

@s
: (22)

Substituting the stress and strain �elds into Eq. (21),
we obtain:

�� =
Z

e

0BBBBBB@
�
D11

@2wb
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@2wb
@y2

�
@2�wb
@x2

+
�
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�
@2�wb
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@2wb
@x@y
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@x@y

1CCCCCCA dxdy

+
Z
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1
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�
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@y2

�
@2�ws
@x2

+
�
D12

@2ws
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@2ws
@y2

�
@2�ws
@y2

+4D66
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@x@y

@2�ws
@x@y

1CCCCCCA
+
�
A44

@ws
@x

@�ws
@x

+A55
@ws
@y

@�ws
@y

�!
dxdy

�
Z

e

q�(wb + ws)dxdy

+
I
�e

�
�Mnn

@�(wb+ws)
@n

+Vn�(wb+ws)
�
ds:

(23)

Equating variation of potential energy to zero, the weak
form of governing equations is found as:
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Z

e

"�
(D2�wb)TD(D2wb)

�
+
�

1
84

(D2�ws)TD(D2ws)

+ (D1�ws)TA(D1ws)
��
dxdy

�
Z

e

�
�(wb + ws)T q

�
dxdy

�
I
�e

"
�
�
�(@(wb + ws)

@n

�T
Mnn

+ (�(wb + ws))
T Vn

#
ds = 0; (24)

where A, D, D1 and D2 are de�ned as:

A =
�
A44 0
0 A55

�
; D =

24D11 D12 0
D12 D22 0

0 0 D66

35 ;

D1 =

8<: @
@x

@
@y

9=; ; D2 =

8>>>>><>>>>>:
@2

@x2

@2

@y2

2 @2

@x@y

9>>>>>=>>>>>; : (25)

3.2. Discretized equations
The bending and shear transverse displacement �elds
can be determined by interpolating the nodal Degrees
Of Freedom (DOFs) over the elements domain:

wb(x; y) =
nX
j=1

�b
j'j(x; y) = NT�b;

ws(x; y) =
nX
j=1

�s
j'j(x; y) = NT�s; (26)

where �b and �s are bending and shear DOF vectors in
each element, 'j and N are interpolation functions and
shape functions, respectively. Substituting Eq. (26) in
Eq. (24), the �nite element equations based on two-
variable re�ned plate theory are obtained as:�

K11 0
0 K22

��
�b
�s

�
=
�
F
F

�
; (27)

where:

K11 =
Z

e

(BT2 DB2)dxdy; (28)

K22 =
Z

e

�
1
84
BT2 DB2 +BT1 AB1

�
dxdy; (29)

F =
Z

e

Nqdxdy�
I
�e

�
@N
@n

Mnn+
@N
@s

Mns+NQn
�
;
(30)

where B1 and B2 are:

B1 = D1N; B2 = D2N: (31)

If the e�ect of shear deformation is ignored and just
bending degrees of freedom, �b, are considered, the
�nite element formulation for classical plate theory will
be obtained as

[K11]f�bg = fFg: (32)

This formulation was presented by many researchers in
the literature [22].

3.3. Element design
According to Eq. (24), bending and shear components
of transverse displacements and their normal deriva-
tives can be chosen as the primary variables. Because
@=@n is related to global derivatives @=@x and @=@y,
the degree of freedoms will be:

DOFs :
n
wb @wb

@x
@wb
@y ws @ws

@x
@ws
@y

o
: (33)

In order to complete the development of �nite element
formulation of two-variable plate theory, an element
including bending and shear properties is required.
For this purpose a 4-node rectangular plate element
with six degrees of freedom at each node is introduced.
Regarding Eq. (26), the elemental bending and shear
DOFs will be:�
�b�T =

h
wb1

�
@wb
@y

�
1

��@wb@x

�
1 � � �

��@wb@x

�
4

i
;

(�s)T =
h
ws1

�
@ws
@y

�
1

��@ws@x

�
1 � � �

��@ws@x

�
4

i
:

(34)

Thus each element has 24 degrees of freedom. If the
shear and bending nodal DOFs are de�ned as abi and
asi , respectively, and the elemental shear and bending
DOFs are de�ned as abe and ase, we will have:

abe =

8>>>>><>>>>>:
abi
abj
abk
abl

9>>>>>=>>>>>; ; abi =

8<: wb
@wb=@y�@wb=@x

9=; ;

ase =

8>><>>:
asi
asj
ask
asl

9>>=>>; ; asi =

8<: ws
@ws=@y�@ws=@x

9=; : (35)

The shape functions used in this study had been de-
rived by Melosh [23]. According to shear and bending
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Figure 2. Rectangular plate element.

nodal DOFs, abi and asi , the shape functions in terms
of normalized coordinates are de�ned as:

NT
i =

1
8

(1+�0)(1+�0)

8>><>>:
(2+�0+�0��2��2)

b�i(1� �2)

�a�i(1� �2)

9>>=>>; ;

� = (x� xc)=a; � = (y � yc)=b; �0 = ��i;

�0 = ��i; (36)

where 2a and 2b are the width and length of rectangular
element as shown in Figure 2.

4. Results and discussion

A FE code based on presented formulation is generated
using MATLAB software. Some benchmark problems
are solved by the code and the obtained results are
compared with exact values and analytical solutions.

Example 1. A Simply supported isotropic square
plate (of length and width, a, and thickness, h)
subjected to uniformly distributed transverse load, q0,
is considered. This problem is simulated by presented
�nite element code based on two-variable re�ned plate
theory (in short FE-RPT) considering di�erent number
of elements in mesh structure. The e�ect of number of
elements on obtained normalized de
ection of center of
the plate (x = a=2, y = b=2) is shown in Figure 3.
By increasing number of elements, obtained results
converge to the value having 0.2% relative error with
respect to exact solution. Using 16 elements in each
plate side, the normalized transverse de
ection, normal
and shear stresses are obtained for various thicknesses
to side ratio. The results are compared with some ana-
lytical solutions of common plate theories in Table 1. It
is seen that the results of presented formulation are in
good agreement with the exact values and other plate
theories. The di�erences between CPT results and

Figure 3. Convergence study for isotropic square plate
subjected to uniform loading (h=a = 0:1).

Figure 4. Simply supported rectangular plate subjected
to linearly distributed load.

exact values are increased by increasing the thickness
to side ratio because of ignoring the shear deformation
e�ect in this theory; but the presented formulation has
excellent capability in simulation of both thin and thick
plates.

Example 2. A Simply supported isotropic square
plate (of length and width, a, and thickness, h)
subjected to linearly distributed load, as shown in
Figure 4, is considered. As illustrated in Figure 5,
by increasing number of elements, the normalized
de
ections converge to the value having 0.4% relative
error with respect to exact solution. In Table 2, the
transverse de
ections and normal and shear stresses
are compared with the exact values, analytical solu-
tions of two-variable theory and other common the-
ories. The obtained de
ections and normal stresses
are very close to exact values and other plate theories.
Though the shear stresses obtained by FE-RPT are
in good agreement with analytical solutions of two-
variable plate theory, both FE-RPT and Analytical-
RPT present lower shear stresses with respect to other
theories.
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Table 1. Comparison of de
ections and stresses for a simply supported isotropic square plate subjected to uniformly
distributed load.

h=a Source �w*

x = a=2, y = b=2

��x*

x = a=2, y = b=2,
z = h=2

��xy*

x = 0,y = 0,
z = h=2

��xz*

x = 0, y = b=2,
z = 0

0.2

FE-RPT 0.0535 0.2939 0.2083 0.4695
HSDT [24] 0.0535 0.2944 0.2112 0.4840
FSDT [24] 0.0536 0.2873 0.1946 0.3928
CPT [24] 0.0444 0.2873 0.1946 0.0000

0.1

FE-RPT 0.0465 0.2883 0.1971 0.4718
HSDT [24] 0.0467 0.2890 0.1990 0.4890
FSDT [24] 0.0467 0.2873 0.1946 0.3928
CPT [24] 0.0444 0.2873 0.1946 0.0000
EXACT [24] 0.0464 | | |

0.05
FE-RPT 0.0449 0.2869 0.1941 0.4715
CPT [24] 0.0444 0.2873 0.1946 0.0000
EXACT [24] 0.0449 | | |

0.01

FE-RPT 0.0443 0.2865 0.1931 0.4702
HSDT [24] 0.0444 0.2873 0.1947 0.4909
FSDT [24] 0.0444 0.2873 0.1946 0.3928
CPT 0.0444 0.2873 0.1946 0.0000

� �w = Eh3

q0a4w, (��x; ��xy) = (�x;�xy)h2

q0a2 , (��xz) = (�xz)h
q0a

.

Table 2. Comparison of de
ections and stresses for a simply supported isotropic square plate subjected to linearly
distributed load (h=a = 0:1).

Theory �w*

x = a=2, y = b=2

��x*

x = a=2, y = b=2,
z = h=2

��xy*

x = 0, y = 0,
z = h=2

��xz*

x = 0, y = b=2,
z = 0

Present FE-RPT 2.3301 0.1442 0.0781 0.1345
Analytical-RPT 2.3329 0.1445 0.0873 0.1348
TSDT [11] 2.3125 0.1535 0.0975 0.2522
HSDT [6] 2.3325 0.1445 0.0995 0.2463
FSDT [3] 2.3350 0.1435 0.0975 0.1650

CPT [1] 2.2180 0.1435 0.0975 0.0000
EXACT [25] 2.3195 0.1445 | |
� �w = Eh3

q0a4w, (��x; ��xy) = (�x;�xy)h2

q0a2 , (��xz) = (�xz)h
q0a

.

Table 3. Material properties of orthotropic plate.

E2=E1 G12=E1 G13=E1 G23=E1 �12 �21

0.525 0.26293 0.15991 0.26293 0.44026 0.23124

Example 3. A simply supported orthotropic rectan-
gular plate with material properties listed in Table 3
is subjected to a uniformly distributed transverse
load, q0. Considering di�erent mesh designs, the
problem is simulated by presented FE-RPT code,
and the obtained transverse de
ections and in-plane
stresses are listed in Table 4. As it is observed, by
increasing number of elements, the results converge

to values which are in good agreement with exact
solutions.

As discussed in Eq. (32), the CPT formulation
is achieved by neglecting the shear component of
transverse de
ection. Results for central transverse
de
ection of the plate, obtained by FE-CPT and
FE-RPT formulations, are compared with the exact
values in Figure 6. As illustrated in this �gure, in
comparison to FE-CPT formulation, the normalized
transverse de
ections extracted from FE-RPT formu-
lation are more accurate. By increasing number of
elements, FE-RPT de
ections converge to the value
with only 1.6% relative error respect to exact solution,
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Table 4. Normalized transverse de
ections and in-plane normal stresses for simply supported orthotropic rectangular
plate subjected to uniformly distributed loading (a=b = 0:5, h=a = 0:1).

Method Mesh design �w*

x = a=2, y = b=2

��x*

x = a=2, y = b=2,
z = h=2

��y*

x = a=2, y = b=2,
z = h=2

Present FE-RPT 2� 4 1241.8 66.610 18.327

Present FE-RPT 4� 8 1387.6 64.496 19.199

Present FE-RPT 6� 12 1413.3 66.051 19.767

Present FE-RPT 8� 16 1422.6 66.564 19.958

Present FE-RPT 10� 20 1427.1 66.828 20.058

Present FE-RPT 12� 24 1429.6 66.981 20.116

Present FE-RPT 14� 28 1431.1 67.075 20.152

Present FE-RPT 16� 32 1432.0 67.137 20.175

EXACT [15] | 1408.5 65.975 20.204

� �w = wQ11=hq0, (��x; ��y ; ��xy) = (�x;�y;�xy)
q0

.

Table 5. Comparison of Normalized transverse de
ection for simply supported orthotropic plate.

Plate parameters �w*(x = a=2; y = b=2)

a=b h=a EXACT [14] Analytical-RPT [14] FE-RPT

0.5
0.05 21542 21513 21889

0.1 1408.5 1402.2 1432.0

0.14 387.23 384.2 393.81

1
0.05 10443 10413 10802

0.1 688.57 688.37 709.44

0.14 191.07 191.02 196.09

2
0.05 2048.7 2047.9 2098.4

0.1 139.08 138.93 142.4

0.14 39.79 39.75 40.81

� �w = wQ11=hq0

Figure 5. Convergence study for isotropic square plate
subjected to linear loading (h=a = 0:1).

whereas this error for FE-CPT formulation is about
4.4%.

In Tables 5-8 normalized transverse de
ections
and normal and shear stresses obtained by FE-RPT
code are compared with the exact values and the results
obtained by analytical solution of two-variable plate
theory. As it is seen, the presented formulation has
good capability in estimation of these parameters. Also
the e�ects of aspect ratio (a=b) and thickness to side
ratio (h=a) on the results are investigated and it is
seen that the di�erences between FE-RPT results and
exact values are increased by increasing the aspect
ratio. The normalized transverse shear stresses ��xz for
di�erent values of (a=b) and (h=a) are listed in Table 8.
It is observed that the stresses obtained by FE-RPT
are in good agreement with analytical solution of two-
variable plate theory but have considerable di�erences
with respect to exact value. In the other word, both
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Table 6. Comparison of normalized in-plane normal stress ��x for simply supported orthotropic plate.

Plate parameters ��x*(x = a=2; y = b=2; z = h=2)
a=b h=a EXACT [14] Analytical-RPT [14] FE-RPT

0.5
0.05 262.67 262.78 266.86
0.1 65.97 66.07 67.07
0.14 33.86 33.96 34.49

1
0.05 144.31 144.68 149.90
0.1 36.02 36.36 37.67
0.14 18.34 18.68 19.37

2
0.05 40.65 40.98 41.85
0.1 10.02 10.33 10.55
0.14 5.03 5.32 5.41

� ��x = �x=q0

Table 7. Comparison of normalized in-plane normal stress ��y for simply supported orthotropic plate.

Plate parameters ��y*(x = a=2; y = b=2; z = h=2)
a=b h=a EXACT [14] Analytical-RPT [14] FE-RPT

0.5
0.05 79.54 79.30 80.18
0.1 20.20 19.94 20.15
0.14 10.51 10.25 10.36

1
0.05 87.08 86.68 89.84
0.1 22.21 21.80 22.61
0.14 11.61 11.21 11.63

2
0.05 54.27 54.04 55.36
0.1 13.88 13.65 14.00
0.14 7.27 7.06 7.25

� ��y = �y=q0

Figure 6. Convergence study of normalized transverse
de
ection of orthotropic rectangular plate obtained by
FE-RPT and FE-CPT codes (a=b = 0:5, h=a = 0:1).

�nite element modeling and analytical solution of two-
variable plate theory give rise to lower transverse shear
stresses with respect to exact values. This issue is
related to the features of two-variable plate theory and
was reported by previous researchers [14].

In Figures 7 and 8, the in-plane normal stresses
are plotted across thickness of orthotropic plate for
h=a = 0:05 and h=a = 0:1. These �gures show that
the in-plane normal stresses obtained by present FE
formulation are in good agreement with the analytical
solution and the exact values. Also the transverse
shear stress is plotted in Figure 9 and as expected
it varies parabolically across thickness of the plate.
As previously mentioned, the transverse shear stresses
obtained by both FE and analytical solution of two-
variable plate theory have noticeable di�erences with
respect to exact solution of orthotropic plate.

The most important challenge of plate theories is
how to deal with transverse shear deformation e�ects.
Because of di�erent assumption adopted in common
plate theories, the results of shear stresses for all
theories have noticeable di�erences with each other and
exact values. For example, as seen in Table 1, the shear
stresses of isotropic plates predicted with di�erent
plate theories have di�erences with each other. In
comparison to conventional higher order plate theories,
the main feature of two-variable plate theory is its
simplicity. This theory contains only two unknown pa-
rameters and it was adopted in various analyses such as
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Table 8. Comparison of normalized transverse shear stress ��xz for simply supported orthotropic plate.

Plate parameters ��xz*(x = 0; y = b=2; z = 0)
a=b h=a EXACT [14] Analytical-RPT [14] FE-RPT

0.5
0.05 14.04 12.67 12.01
0.1 6.92 6.31 6.01
0.14 4.87 4.47 4.25

1
0.05 10.87 8.04 7.62
0.1 5.34 4.02 3.80
0.14 3.73 2.84 2.71

2
0.05 6.24 4.15 3.75
0.1 2.95 2.03 1.86
0.14 1.99 1.41 1.31

� ��xz = �xz=q0

Figure 7. The variation of ��x across thickness of orthotropic square plate.

Figure 8. The variation of ��y across thickness of orthotropic square plate.

bending, vibration and buckling problem easily [13-19].
For achieving a simpler and more e�cient formulation,
it is logical to lose some precision.

Parametric study. In this section, a paramet-
ric study on simply supported and fully clamped
orthotropic square plates considering various aspect

ratios has been performed and the obtained normalized
transverse de
ections, in-plane normal stresses and
transverse shear stresses at the plate center are listed in
Tables 9 and 10. The material properties except E1=E2
are chosen according to Table 3. As seen for both
simply supported and clamped plates, by increasing
E1=E2 ratio, the normalized transverse de
ection and



J. Rouzegar and R. Abdoli Sharifpoor/Scientia Iranica, Transactions B: Mechanical Engineering 22 (2015) 196{207 205

Figure 9. The variation of ��xz across thickness of orthotropic square plate.

Table 9. Normalized transverse de
ections and in-plane
normal stresses at the plate center for simply supported
orthotropic square plates.

h=a E1=E2 �w ��x ��y ��xz

0.05

1 8334.9 133.39 133.43 7.44
2 10966 150.77 86.65 7.44
4 12989 164.20 49.79 7.44
5 13475 167.43 40.79 7.44
8 14253 172.59 20.17 7.45
10 14522 174.37 21.03 7.45

0.1

1 555.20 33.61 33.64 3.72
2 719.61 37.91 21.80 3.72
4 846.10 41.24 12.51 3.72
5 876.46 42.04 10.25 3.72
8 925.08 43.33 6.58 3.72
10 941.89 43.77 5.28 3.72

Table 10. Normalized transverse de
ections and in-plane
normal stresses at the plate center fully clamped
orthotropic square plates.

h=a E1=E2 �w ��x ��y ��xz

0.05

1 2682.8 63.038 63.07 6.19
2 3491.7 72.34 39.81 6.19
4 4094.5 79.56 21.52 6.19
5 4232.9 81.30 17.10 6.19
8 4444.3 84.08 10.30 6.19
10 4512.8 85.05 8.00 6.19

0.1

1 200.85 16.02 16.05 2.51
2 251.61 18.30 10.09 2.52
4 289.43 20.08 5.44 2.53
5 298.12 20.51 4.34 2.53
8 311.40 21.20 2.61 2.53
10 315.72 21.44 2.03 2.53

stress ��x are increased and the normalized stress ��y is
decreased; but the normalized out of plane shear stress
��xz is almost independent of E1=E2. As expected, the
obtained de
ections and stresses of simply supported
plates are higher than clamed plates. This issue

Figure 10. Comparison of normalized central de
ection
obtained for simply supported and fully clamped
orthotropic square plate (h=a = 0:1).

is illustrated in Figures 10 and 11 for normalized
de
ection �w and stress ��x, respectively.

5. Conclusion

In this study, a �nite element formulation based on
two-variable re�ned plate theory is developed. Unlike
Classical Plate Theory (CPT), the presented formula-
tion can be used for both thin and thick plates and
predicts parabolic variation of transverse shear stresses
across the plate thickness. Presented �nite element
formulation is free from shear locking and zero traction
condition on the plate surfaces is satis�ed without using
shear correction factor. After constructing weak form
equations using the principle of minimum potential
energy, a new 4-node rectangular plate element with six
degrees of freedom at each node has been introduced
for discretization of the domains. The e�ciency
and accuracy of the presented formulation has been
proved by solving of some benchmark isotropic and
orthotropic plate problems. The obtained results are
in good agreement with exact values and analytical
solutions of common plate theories. The convergence of
obtained results is con�rmed by increasing the number
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Figure 11. Comparison of normalized central stress ��x
obtained for simply supported and fully clamped
orthotropic square plate (h=a = 0:1).

of elements in mesh design. Also the e�ects of aspect
ratio, thickness to side ratio, material properties and
type of boundary conditions on obtained results are
investigated. Consequently, using presented �nite ele-
ment formulation, the thin and thick, and isotropic and
orthotropic plate problems with arbitrary geometries
and loadings can be simulated.
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