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Abstract. Aggregate production planning is a medium-term production plan that
determines the production plan for satisfying uctuating demand. In this paper, a robust
approach is used to formulate aggregate production planning, in which some parameters,
such as production cost and customer demand, are fuzzy variables. The concept of entropy
is used to reduce the sensitivity of noisy data and to obtain a more robust aggregate
production plan, based on the proposed model. Finally, a numerical example is presented
to explain the model solution. In addition, the robustness of the proposed model solution
is compared with other classical fuzzy programming approaches.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Aggregate Production Planning (APP) is an activity
used to determine an aggregate plan for production
systems in advance of 3 to 18 months, so that the
total cost is kept to a minimum. The quantity of
subcontracted products, regular and overtime hours of
labor, numbers to be hired and �red, and amounts of
inventory and backorder are determined in each period.

A comprehensive survey for aggregate production
planning has been presented in [1], which has studied
the models and solution methods for APP. Due to
APP being NP-hard, some meta-heuristic methods
have been developed to solve these problems [2-4].

In order to model uncertainty in a real produc-
tion environment, some parameters, such as cost and
demand, are uncertain and uctuate in the planning
horizon. Some approaches have been used to re-
duce the uncertainty of the production environment.
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Stochastic programming is a technique that is applied
to stochastic aggregate production planning. In this
method, stochastic variables with probability functions
are used to represent uncertain parameters [5-7]. Fuzzy
programming is another approach to incorporate un-
certainty into aggregate production planning. Some
studies have proposed Fuzzy Linear Programming
(FLP) models for APP [8-12]. Multi product aggregate
production planning with fuzzy demands and fuzzy
capacities has been presented in [13]. Wang and
Fang [14] implemented a genetic-based approach for
APP with fuzzy variables and within a family of
inexact solutions. Researchers have considered APP
with multiple objectives in fuzzy environments [15,16].
Yan et al. [17] proposed a fuzzy programming model
for lot sizing in a production planning problem. In
their proposed model, unit pro�t, capacity and de-
mand are considered fuzzy variables. They used a
GA algorithm based on fuzzy simulation to solve the
problem.

In the literature, some researchers have used
strong approaches to extenuate uncertainty. Robust
optimization is an approach that is e�ective in re-
ducing the sensitivity of uncertain parameters. This
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approach has been developed to �nd admissible and
desirable solutions for any possible events of uncertain
agents. The robust approach has been developed
in operation research, using a concept called the
robust counterpart [18]. Robust optimization has
been used to formulate aggregate production plan-
ning in uncertain environments [19,20], and an agent-
based web service approach has been presented to
increase the robustness of the experimental results
across diverse uncertainties in the production environ-
ment [21].

The existence of uncertain parameters in pro-
duction planning problems makes the attaining of
robust solutions more valuable than obtaining optimal
solutions that ignore this uncertainty. In fact, for
some systems, managers prefer to have a production
plan that will be robust in any possible event in the
future, even if it does not have an optimum production
cost. This fact shows that it is essential to develop
an approach which will be e�cient for any system,
where the robustness of the solution is important,
in addition to the total cost of production for their
managers. In fact, for such systems, not only a
solution should be with minimum total cost, but also
the uctuation in real scenarios should be low. This
paper presents a new approach towards the robustness
of a solution.

In this paper, a robust aggregate production
planning model is developed to minimize the total cost
of production. To provide a more realistic model,
we assume that some parameters, such as cost and
demand, are fuzzy variables. We use the concept of
fuzzy entropy in the proposed robust model because it
can show a degree of uncertainty. We show that our
model is insensitive to uncertain parameters.

The rest of this paper is organized as follows.
In Section 2, the primary fuzzy aggregate production
planning is proposed. In Section 3, the de�nition of
expected value and entropy are described. In Section 4,
the novel proposed robust fuzzy model is demonstrated.
In Section 5, the computational results are presented,
and, �nally, Section 6 provides conclusions of the
research.

2. Fuzzy aggregate production planning

This paper has concentrated on multi-period and one-
product systems in which some parameters, i.e. reg-
ular time production cost, overtime production cost,
subcontracting cost, and demand at each period, are
uncertain. These uncertain parameters are fuzzy
variables with triangular membership functions. For
example, customer demand is a fuzzy variable, ~Dt =
(Dlt; Dmt; Drt), in which Dlt, Dmt and Drt denote the
smallest possible value, the most promising value, and
the largest possible value, respectively. They describe

a fuzzy event. The parameters and variables are as
follows.

2.1. Model variables

Pt : Regular time production in period t
(units);

Ot : Overtime production in period t
(units);

Bt : Backorder level in period t (units);

St : Subcontracting volume in period t
(units);

Ht : Number of workers hired in period t
(man-days);

Lt : Number of workers laid o� in period t
(man-days);

Wt : Workforce level in period t (man-days);

It : Inventory of product in period t
(units).

2.2. Model parameters
~Dt = (Dlt; Dmt; Drt): Demand of product in period t
(units);
~Pt = (plt; pmt; prt): Regular time production cost per
unit of product in period t ($/units);
~ot = (olt; omt; ort): Overtime production cost per unit
of product in period t ($/units);
~st = (slt; smt; srt): Subcontracting cost per unit of
product in period t ($/units);
ht: Inventory cost per unit of product in period t
($/units);
bit: Backorder cost per unit of product in period t
($/units);
hrt: Cost to hire one worker in period t ($/man-days);
lt: Cost to layo� one worker in period t ($/man-days);
wt: Labor cost in period t ($/man-days);
W0: Initial workforce level (man-days);
I0: Initial inventory level of product in period t (units);
Mt: Regular time machine capacity in period t
(machine-hours);
b: Hours of machining per unit of product;
�t: Ratio of regular machine capacity available for use
in overtime in period t;
�t: Ratio of regular-time workforce available for use in
overtime in period t;
�: Working hours of labor in each period (man-
hour/man-day);
a: Hours of labor per unit of product (man-days/unit);
Wtmax: Maximum labor level available in period t
(man-days);
Stmax: Maximum subcontracted volume available of
product in period t (units).

And the primary model is as follows:
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MinZ =
TX
t=1

~ptPt + ~otOt + ~stSt + hrtHt + ltLt

+ wtWt + htIt + btBt: (1)

Subject to:

Pt +Ot + St + It�1 � It +Bt �Bt�1 = ~Dt 8t;
(2)

aPt � �Wt 8t; (3)

aOt � ��tWt 8t; (4)

bPt �Mt 8t; (5)

bOt � �tMt 8t; (6)

Wt = Wt�1 +Ht � Lt 8t; (7)

Wt �Wtmax 8t; (8)

St � Stmax 8t; (9)

Pt; Ot; St;Ht; Lt;Wt; It; Bt � 0 8t: (10)

Constraint (2) is relevant to market demand. Since
total demand may be greater than the total resource
capacity, the last period backorder can be non-zero.
Constraints (3) and (4) correspond to workforce ca-
pacity constraints at regular time and overtime at each
period. Constraint (5) ensures that the quantity of
regular time production does not exceed available ma-
chine capacity. Constraint (6) is relevant to overtime
machine capacity constraints. Constraint (7) ensures
that the workforce in period t is equal to the summation
of the workforce in the previous period and the change
of workforce level. Constraints (8) and (9) are relevant
to the maximum de�ned level for the workforce level
and subcontracting variable in any period.

3. Expected value and entropy of a fuzzy
variable

Assume that ~A is a fuzzy variable with Membership
Function (MF) denoted as �(�), with triangular form
in a fuzzy interval. The expected value has been
computed as [22]:

E( ~A) = a0 +
1
2

Z +1

a0

�(a)da� 1
2

Z a0

�1
�(a)da: (11)

Fuzzy entropy is a signi�cant index in measuring
fuzzy information. It evaluates the degree of fuzziness
between two fuzzy sets. This concept is a prevalent
measure of randomness. Di�erent researchers have

proposed various de�nitions of fuzzy entropy. In this
paper, we use the following formulation [8]:

H( ~A) =�
Z +1

�1

�
�(a)Ln�(a)

+ (1� �(a))Ln(1� �(a))
�
da: (12)

4. Robust fuzzy aggregate production
planning formulation

In this section, a robust aggregate production planning
model is developed to minimize the total cost of pro-
duction, which is insensitive to uncertain parameters.

The proposed approach considers the \robust-
ness" of the solution in addition to the total cost of
production. In fact, the total cost of production is a
classical measure and the robustness of the solution is
a performance measure. We call a solution \robust" if
it is insensitive to uncertain parameters.

At the beginning of the planning horizon, some
parameters are uncertain, and fuzzy numbers and their
real values in the future are unclear. In fact, there are
many real scenarios that will occur in the future, and
only in the execution time of the plan will the real
amounts of uncertain parameters and real scenarios be
determined. It is clear that any possible scenarios in
the future will cause di�erent values of real total cost.
If a model can provide a solution in which, for any
scenarios, the uctuations and variations in real total
cost are low, then the model is robust.

Since the objective function includes some fuzzy
parameters, it can be de�ned as a single fuzzy variable.
In fact, the objective function can be considered a
fuzzy stochastic variable. So, we rede�ne the objective
function in terms of the expected value and entropy of
this variable. Regarding the fact that uncertain vari-
ables are triangular fuzzy numbers, a new triangular
fuzzy number, ~Rt = (Rlt; Rmt; Rrt), can be de�ned as
follows:
Rlt =pltPt + oltOt + sltSt + hrtHt + ltLt + wtWt

+ htIt + btBt 8t; (13)

Rmt =pmtPt+ omtOt +smtSt+ hrtHt +ltLt+ wtWt

+ htIt + btBt 8t; (14)

Rrt =prtPt + ortOt + srtSt + hrtHt + ltLt + wtWt

+ htIt + btBt 8t: (15)

So, objective function (1) is equal to:

MinZ =
TX
t=1

~Rt: (16)
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As already shown, robust optimization is an approach
that is e�ective in reducing the sensitivity of uncertain
parameters. This approach has been developed to �nd
admissible and good solutions for any possible events
of uncertain agents in the future.

The concept of entropy is used in our robust
model to reduce the uctuation of uncertain param-
eters, because it can show the degree of uncertainty
of these parameters. In fact, a fuzzy variable with
lower entropy has a lower degree of uncertainty. In the
objective function, such variables cause an insensitive
solution to be made against any possible scenarios in
the future. We de�ne our robust objective function
based on the expected value and entropy of fuzzy
variable, ~Rt. So, in the robust model, the objective
function, Z 0, is de�ned as follows:

MinZ 0 =
TX
t=1

�
E( ~Rt) + �H( ~Rt)

�
: (17)

The expected value of ~Rt leads to obtaining the near
optimal solution e�ciently and the entropy attempts
to measure the degree of uncertainty of the fuzzy
parameters. According to the minimization of the
objective function, this de�nition causes the variations
and sensitivity of uncertain parameters to reduce.
Thus, the total cost is robust for any possible events
in the future. Eqs. (18) and (19) show the statements
of the expected value and the entropy of ~Rt. These
equations were solved and Eqs. (20) and (21) show their
�nal results:

E( ~Rt) =Rmt +
1
2

Z Rrt

Rmt

Rrt �Rt
Rrt �Rmt

� 1
2

Z Rmt

Rlt

Rt �Rlt
Rmt �Rlt dRt 8t; (18)

and also:

H( ~Rt) =�
Z Rmt

Rlt

Rt �Rlt
Rmt �RltLn

�
Rt �Rlt
Rmt �Rlt

�
dRt

+
Z Rrt

Rmt

Rrt �Rt
Rrt �RmtLn

�
Rrt �Rt
Rrt �Rmt

�
dRt

+
Z Rmt

Rlt

�
1� Rt �Rlt

Rmt �Rlt
�

� Ln
�

1� Rt �Rlt
Rmt �Rlt

�
dRt

+
Z Rrt

Rmt

�
1� Rrt �Rt

Rrt �Rmt
�

� Ln
�

1� Rrt �Rt
Rrt �Rmt

�
dRt 8t: (19)

Figure 1. The comparison of robustness between two
triangular fuzzy numbers.

After solving these terms, we have:

E( ~Rt) =
1
2
Rmt +

1
4

(Rlt +Rrt) 8t; (20)

E( ~Rt) =
1
2

(Rrt �Rlt) 8t: (21)

Based on Eq. (21), the entropy in the triangular fuzzy
number is the interval between two points, Rrt and
Rlt. So, in Figure 1, it is shown that the triangular
fuzzy number (b) has a lower value of entropy than the
triangular fuzzy number (a). Then, based on de�nition,
fuzzy number (b) is more robust than fuzzy number (a).
In other words, in the proposed approach, minimization
of the entropy of decision variable, ~Rt, causes a more
robust solution.

In Eq. (17), � is the coe�cient of robustness in
the objective function, such that a greater amount of
this coe�cient leads to an increase in the importance of
the robustness of the solution. The signi�cance of total
cost maybe be reduced and an undesirable solution may
be obtained, so, a suitable amount for this coe�cient
is required. This coe�cient is determined by decision
makers, such as system managers.

As depicted earlier, the market demand of a
product is a fuzzy number, so, we can defuzzify it
in a demand constraint, classically, which causes this
constraint to linearize. Eventually, our proposed model
can be stated as follows:

MinZ 0=
TX
t=1

�
1
2
Rmt+

1
4

(Rlt+Rrt)+
�
2

(Rrt �Rlt)
�
:
(22)

Subject to:

Pt +Ot + St + It�1 � It +Bt �Bt�1
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Table 1. Triangular fuzzy variables.

Period
(t)

Difuzzied
demand (unit)

Fuzzy regular
time production

cost ($/unit)

Fuzzy over time
production cost

($/unit)

Fuzzy
subcontracting
cost ($/unit)

1 1500 (30,70,140) (70,100,195) (180,220,320)

2 1800 (35,80,190) (75,140,185) (225,285,295)

3 1700 (32,75,180) (70,130,190) (210,280,300)

4 1900 (35,80,175) (70,130,185) (230,255,310)

5 1650 (33,80,190) (80,150,200) (220,275,330)

6 1900 (32,80,170) (75,145,195) (220,290,295)

Table 2. Certain costs and machine parameters.

Period
(t)

Inventory
cost ($/unit)

Backorder
cost ($/unit)

Max subcontract
(unit)

Machine
capacity

Machine
ratio

1 24 1000 200 2500 0.4

2 24 1200 250 1800 0.3

3 24 1280 250 2200 0.3

4 24 1300 250 2000 0.3

5 24 1300 250 2000 0.4

6 24 1350 270 2050 0.4

Table 3. Labor relevant costs and parameters.

Period
(t)

Hiring cost
($/man-day)

Layo� cost
($/man-day)

Labor cost
($/man-day)

Max work
force (man-day)

Work force
ratio

1 145 150 112 700 0.3

2 145 150 112 700 0.3

3 145 150 120 750 0.3

4 145 155 120 750 0.3

5 145 155 120 800 0.3

6 145 155 120 800 0.3

=
1
4

(Dlt + 2Dmt +Drt) 8t; (23)

aPt � �Wt 8t; (24)

aOt � ��tWt 8t; (25)

bPt �Mt 8t; (26)

bOt � �tMt 8t; (27)

Wt = Wt�1 +Ht � Lt 8t; (28)

Wt �Wtmax 8t; (29)

St � Stmax 8t; (30)

Pt; Ot; St;Ht; Lt;Wt; It; Bt � 0 8t: (31)

5. Computational results

We consider a hypothetical production system with
a multi-period and a single product. Our proposed
model must determine a production plan for 6-months.
The regular time production costs, overtime production
costs, subcontracting costs, and customer demand are
triangular fuzzy numbers. Tables 1 and 2 present
the given values for 6 working periods. The initial
workforce consists of 750 man-days and, at regular time
per worker, there are 8 working hours. Machining and
labor times are a = 2 and b = 2:5, respectively, and,
also, the coe�cient of robustness is � = 10. Other data
are detailed in Table 3.

Our proposed formulation of robust APP is a lin-
ear programming model, so, we used LINGO8 software
to solve this problem e�ciently. The result of this
package is shown in Table 4.
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5.1. Classic approach
In the classical approach, the objective function is just
based on the expected value of the fuzzy stochastic
variable. In fact, in this approach, the robustness and,
thus, the entropy, is not considered, and the classical
method is used to de�ne the objective function, which
is based on the concept of expected value. So, the ob-
jective function in the classical approach is as follows:

MinZ =
TX
t=1

�
1
2
Rmt +

1
4

(Rlt +Rrt)
�
: (32)

5.2. The robustness of proposed model
We considered the robustness of our proposed model
compared to the classical approach. For this purpose,
the illustrated problem is solved based on the proposed
model, and the classical approach, and their solutions
are obtained. So, these approaches are used to obtain
the solutions as the production plans for the future.
Note that at the beginning of the planning horizon,
some parameters are uncertain and are fuzzy numbers.
Just in the execution time of the plan, the real amounts
of uncertain parameters will be determined. The real

Table 4. Production plan by Lingo.

Period (t)
1 2 3 4 5 6

Regular
time production

1250 900 1100 1000 1000 1025

Over time
production

500 270 330 300 400 410

Subcontracting
products

200 200 250 250 250 270

Inventory 450 20 0 0 0 0
Backorder 0 0 0 350 350 540
Hiring level 0 0 0 0 73 11
Layo� level 229 177 0 0 0 0
Workforce level 521 344 344 344 417 428

state of the system, with real occurred parameters, in
execution time, must be determined to demonstrate the
robustness of the proposed model. For this purpose,
we simulated some possible real future scenarios that
may occur after executing the production plan. So,
10 hypothetical scenarios that could occur in the real
state of the system are generated at 2 periods. In
each scenario, we generated a random number for
each triangular fuzzy parameter that is included in
its support interval. In fact, a random number is
generated for each uncertain fuzzy parameter that
illustrates the real amount of that parameter that may
occur in the future. Each scenario is a possible state
of the system that may exist in future reality. So,
in each simulated scenario, all parameters have given
certain amounts, so the real value for total cost can be
calculated. In fact, the real value of total cost in the
future is based on the following equation:

Total cost =
TX
t=1

�
ptPt + otOt + stSt + hrtHt

+ ltLt + wtWt + htIt + btBt
�
: (33)

In this equation, the amounts of parameters are given,
and the two di�erent solutions are determined, based
on the proposed model and the classical approach. So,
the total cost for each scenario is calculated for two
approaches. The results obtained from solving the 10
generated scenarios are shown in Table 5.

In Table 5, the mean value is an expected value
of ten amounts of total costs, and the variation is the
di�erence between the largest and smallest values of
the total costs in each row. The results illustrate that
our proposed model generates a more robust solution
for any possible future scenarios. Figure 2 shows that
the values of the total cost for di�erent scenarios are
closer to each other than those values for the classical
approach. In fact, the variation and uctuation in
the amount of total costs for di�erent scenarios in the
proposed robust approach is smaller than the classical

Table 5. The results of total cost for 10 generated possible scenarios (� = 10).

Scenarios Mean
value

Variation

Total
cost of
proposed
model

1292004 1319515 1299004 1329013 1310914 1319345 1292004 1317 689 1322456 1289457 1309140.1 39556

Total
cost of
classical
approach

1326506 1252007 1349906 1187002 1218765 1198965 1325467 1198797 1187004 1339994 1258441.3 162904
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Figure 2. The comparison of solutions robustness
between two approaches.

approach. The curve of total cost in the proposed
method follows a more robust trend, but the uctuation
in the curve of the total cost for the classical approach is
very high. As shown in Table 5 and Figure 2, the mean
value of total cost in the robust approach is larger than
the classical approach. This problem shows that the
proposed approach is e�cient for any system and that
the robustness of the solution is important, in addition
to the total costs of production, for their managers. In
fact, for such systems, having a solution with minimum
total cost is not adequate, but the uctuation in real
scenarios should be low. Nevertheless, it should be
noted that it is possible, for some levels of �, that the
robust model may create a solution that has minimum
value for the mean value of total cost, and minimum
value for variations, simultaneously.

We should mention that the proposed model
will certainly create a robust solution with minimum
variation in the future, because of minimizing the
entropy. But, minimization of the term of the mean
value of the real total cost is dependent on �, and
this coe�cient will be determined by system man-
agers.

6. Conclusion

In this paper, a di�erent interpretation of the robust
optimization approach is presented. We proposed a
robust aggregate production planning model with fuzzy
parameters to minimize the total cost of production
that is insensitive to uncertain parameters. We used
the concept of entropy in our robust model to reduce
the uctuation of uncertain parameters and expected
value to obtain the near optimal solution e�ciently.

A hypothetical example was implemented to
achieve the proposed model solution. Finally, the ro-
bustness of the proposed model solutions was compared
with other fuzzy approaches, and the results showed
that our robust model could generate a more robust
solution for any possible future scenarios.

This paper concentrated on multi-period and one-
product systems to show the e�ciency of the pro-

posed robust model well. For future research, the
proposed method can be used for more practical models
in production planning, and real-world cases can be
conducted.
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