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Abstract. In this paper, we propose a two-dimensional (2-D) Optimal Linear Detector
(OLD) for radar target detection in compound Gaussian clutter, and obtain an explicit
relation of its coe�cients for slowly uctuating targets. We assume that the samples of
signal and clutter are correlated in both range and azimuth directions, and the target
detection in each radar cell is implemented by a 2-D sample collection of the received
signal. In most conventional detectors, in each pulsation interval, samples of the echo of
each radar cell are passed through a matched �lter along the range, and a pre-detection is
performed; then, the binary results are integrated for successive echoes of that cell (along
the azimuth). In fact, by applying the binary integration, we ignore the considerable
correlation among 2-D data in the azimuth direction. In the proposed 2-D OLD detector,
the correlation of signal and clutter in both range and azimuth directions is considered,
aiming to improve the detection performance. Our simulations con�rm that this detector
outperforms the conventional one-dimensional OLD, as well as AND, OR, and \� out of
n" binary integrators.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

The coherent detection of targets by pulsed radar
against a background of non-homogeneous and non-
stationary unwanted clutter, due to echoes from the
sea, land, or weather, is a problem of fundamental
interest in the radar community [1]. Generally, the
problem of radar target detection splits into two fun-
damental subproblems: formulating a model for the
underlying interference (noise and clutter) and obtain-
ing an implementable detection structure based on
minimizing the loss relative to the optimum detection
structure.

For many years, radar systems had relatively low
resolution capabilities, and, hence, according to the
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central limit theorem, workers in the �eld concluded
that the appropriate statistical model for clutter was
the Gaussian. With this model in hand, the well-known
optimal detector is matched �lter.

Nowadays, in the case of high resolution radars
and/or at low grazing angles, experimental evidence
shows that the statistics of radar clutter signi�cantly
deviate from Gaussian behavior [2-7]. In these cases,
a satisfactory �t of the clutter amplitude probability
density function (pdf) can be achieved through bi-
parametric families of distributions, namely, through
pdfs containing a shape parameter in addition to the
scale one [2,8-10]. Among these, we mention the
most commonly adopted, namely, the Weibull and
the K distributions [11,12,13]. These last pdfs are,
in general, compatible with the so-called compound
Gaussian model, which has received wide attention
in the recent past due to its theoretical and physical
justi�cation [14,15]. However, some other compound
Gaussian distributions have recently been used for
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modeling the high resolution radars based on inverse
Gaussian and inverse Gamma distributions for the
texture component [16,17].

The baseband equivalent of a compound Gaussian
clutter process can be deemed the product of two
mutually independent processes: a fast varying com-
plex zero-mean, possibly correlated Gaussian process,
(the so-called speckle component), and a \more-slowly
varying" nonnegative random process (the so-called
texture component) [2,6,7,18,19].

One of the most important detectors, used in
radar signal detection, is the linear detector. This
detector usually has an acceptable performance, in
addition to simplicity. North has showed that in the
case of additive white Gaussian noise and a perfectly
known signal, a linear �lter, named the matched �lter,
maximizes its output Signal to Noise Ratio (SNR) [20].
Dwork [21] and Zadeh and Ragazzini [22] have proved
that in the presence of colored Gaussian noise and for
a perfectly known signal, the optimum detector is also
the matched �lter.

The structure of an optimal detector (if it exists)
is usually more complicated than that of a linear
detector. The linear detector has a known simple
structure with unknown coe�cients, and, hence, the
goal is to determine the optimum coe�cients so that
the objective function of the detection criterion (the
output SNR or probability of detection) is maximized.
Such a detector is called an Optimal Linear Detector
(OLD).

Nayebi and Aref in [23] have obtained the OLD for
Gaussian signal detection in Gaussian noise, according
to the Neyman-Pearson (N-P) criterion. In their work,
assuming that the data is real, they show that in the
case of a zero mean signal or perfectly known signal,
the N-P criterion causes the SNR to maximize at the
output of the linear detector. Similar to the approach
achieved in Gaussian noise, in some other work, the
OLD has been obtained for signal detection in non-
Gaussian interference. Picinbono and Duvaut in [24]
have studied OLD in Spherically Invariant Random
Processes (SIRP) according to the deection criterion,
which is not necessarily the optimum criterion in radar
applications. Taban et al. in [25,26] have proposed an
OLD for slowly uctuating target detection in pseudo-
Gaussian (or SIRP) interference, according to the N-P
criterion. In addition to some problems, such as con-
sidering data as real [23] and deection criterion [24], in
all previous works, just one sample from each echo has
been used for detection. Mathematically, the sampling
frequency, fs, is selected as 1=� , where � is radar pulse
width.

Usually, it is suitable to choose a higher sam-
pling rate, so that several samples are taken from
each echo. Then, a digital matched �lter can be
used over these samples to improve the signal to

noise ratio. It is common to apply a matched �lter-
based detector on the samples of the echo of each
pulse (along the range). Then, binary results are
integrated for successive pulsation time (along the
azimuth) by a binary integrator, such as \AND",
\OR", or \�-out-of-n" rule, to improve the detection
performance [27]. However, this detector ignores the
correlation between the echoes received from a target
(and also from the clutter) in the successive pulses.
A more powerful detector may be achieved if all the
two-dimensional (2-D) collections of samples (in the
range and the azimuth directions) are used in a 2-D
OLD.

The aim of the work presented here is to provide a
greater insight into the 2-D detection mechanism. With
this in mind, we propose a two-dimensional optimal
linear detector (2-D OLD) for slowly uctuating targets
in compound Gaussian clutter, when the covariance
matrix of clutter is known. We suppose that the
sampling frequency of the received signal in the range
direction is an integer multiple of bandwidth. In other
words, the number of received samples of a range cell
is more than one in each pulsation. Samples of the
received signal of a cell in range are collected in a
2-D matrix during the successive pulsation times (in
azimuth). Indeed, we have a 2-D moving window
that �rst moves one or more samples in the azimuth
direction, then, slides along all of the samples in
the range direction, consecutively. The detection
algorithm is executed in each step of the window
shift. In conventional detectors, each raw of this
matrix (the samples of the same pulsation time) is
detected separately and the binary results may be
integrated for successive pulsation times in order to
improve the detection performance. Undoubtedly, by
applying binary integration, we ignore the considerable
correlation among 2-D data in the azimuth direction.
In the proposed 2-D OLD detector, this correlation
is considered, aiming to improve the detection per-
formance. In our approach to this problem, we have
assumed that the radar uses I-Q sampling, so, in
addition to the amplitude, the phase of the samples
is also maintained and can be used in the coherent
detection scheme.

The remainder of this paper is organized as
follows: in Section 2, �rstly, sampling of the received
signal in two directions of range and azimuth is studied.
Then, the statistical modelling of target and clutter
signals is presented. In Section 3, we propose the
structure of a 2-D OLD and obtain its coe�cients
for non-uctuating and slowly uctuating targets. In
Section 4, using computer simulation, the performance
of the proposed detector is evaluated and compared
with some conventional detectors, such as AND, OR
and one-dimensional (1-D) OLD. Finally, conclusions
are drawn in Section 5.
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2. Data sampling and modelling of signal and
clutter

Consider an active pulse radar with pulse width �0,
partitioning range domain into the range cells with
length �R corresponding to �0. The received signal
is sampled at rate fs = P=�0, which means that in
every pulsation interval, P samples are taken from each
echo of the range cell. On the other hand, we use K
successive echoes of each range Cell Under Test (CUT)
for improving the detection performance. The details
are seen in Figure 1.

In other words, we are dealing with a 2-D struc-
ture for the data samples of a CUT. Figure 2 shows
the 2-D structure for a typical CUT containing the
relevant indices. In this structure, index k, 1 � k � K
denotes the number of echo from the CUT, and index
p, 1 � p � P refers to the number of sample along
the range direction. So we have a K � P matrix of
CUT samples as Y = [ykp]K�P = [y1;y2; :::;yP ] to be
processed by the detector.

Since the received samples have a 2-D structure,
the correlation coe�cients of these samples produce
a three-dimensional matrix. However, the algebraic
operation over the three-dimensional matrix is not as

Figure 1. An spatial image of a range Cell Under Test
(CUT) with K successive echoes, each echo consists of P
samples in the range direction.

Figure 2. A K � P matrix of CUT samples that is used
for detection.

straightforward as that of 1- and 2-dimensional arrays.
So, it is better to rearrange the received samples in a
vector form as:

yT = [yT1 ;y
T
2 ; :::;y

T
P ]; (1)

where T represents transpose operator. Here, vector y
has N = K � P elements containing all the samples of
the received signal. In the following, we use this form
of data for deriving the 2-D OLD.

2.1. Clutter model
The distribution used for the statistical modelling of
non-Gaussian clutter is compound Gaussian, whose pdf
is given by [28,29]:

fn(n)=
Z 1

0

1
�Ndet(M0)�N

exp
�
�nHM�1

0 n
�

�
f� (�) d�:

(2)

In the above equation, n = [nT1 ;nT2 ; :::;nTP ]T is a zero
mean N � 1 vector representing clutter samples, due
to K radar successive pulses and P samples from each
pulse. The nonnegative random variable, � (referred
to as texture), with unit mean value represents the
local power of the clutter in the CUT. Texture �
has pdf f� (�), which determines the non-Gaussian
behavior of the clutter. Also, M0 = E(n:nH) is
the N � N covariance matrix of n, where E(:) is
the statistical expectation operator and H denotes the
conjugate transpose (Hermitian). Exact evaluation
of the covariance matrix, M0, and its relation with
autocorrelation matrices of each vector, np; (Mpp; 1 �
p � P ) and their cross correlation matrices, Mij ; (1 �
i; j � P ) are informative. These correlation matrices,
Mij , have dimension K �K, as follows:

Mij = E(ni:nHj ); 1 � i; j � P: (3)

Regarding the above equation, it is clear that covari-
ance matrix M0 is formed from Mij matrices as follows:

M0 =

0@ M11 : M1P
: Mpp :

M1P : MPP

1A : (4)

The most common pdfs used for modelling the non-
Gaussian clutter, namely, the Weibull and K distribu-
tions, are compatible with the model (2). Precisely, the
Weibull amplitude pdf (apdf), as:

fW (u) = a:b:ub�1 exp(�a:ub); u; a; b > 0; (5)

is amenable to a compound-Gaussian representation
in the range of its shape parameter 0 < b � 2 [18].
Similarly, the K-distribution pdf, as:

fK(u) =
(av+1:uv)

(2v�1:�(v))
Kv�1(a:u); u � 0; a; v > 0;

(6)
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Figure 3. Samples of a target signal located in a CUT in
range and in successive pulsation time directions.

can be regarded for any positive value of its shape
parameter, v, as the apdf of a compound-Gaussian
process, where �(:) and Kv(:) are the Gamma function
and second-kind modi�ed Bessel function of order v,
respectively [18]. For both distributions, a is a scale
parameter related to the common variance, �2, of the
clutter quadrature components.

2.2. Signal model
Swerling described four statistical models for repre-
senting the uctuation of radar targets [30]. These
models are divided into the slowly and rapid uctuating
cases. We can extend the conventional models of
uctuating radar targets [1,30,31] to the case of a 2-D
signal sampling in range and azimuth directions [32].
According to the slowly uctuating target models
(including Swerling I and III), samples of the (prob-
able) target signal over each CUT can be shown in
Figure 3.

Thus, for slowly uctuating targets, the complex
sample of the target signal, corresponding to the (k; p)
sample of 2-D CUT, can be written as:

skp = A�(p)exp(j('+ (k � 1)
));

1 � k < K ; 1 � p < P; (7)

where A and ' denote the random amplitude and phase
of the target echo, respectively, and 
 is the phase due
to the Doppler shift of target (fd) normalized to the
Pulse Repetition Frequency (PRF), as follows:


 = 2�
fd

PRF
: (8)

In Eq. (7), �(p) (only depends on the radar pulse shape
and time of sampling) includes the amplitude of the
emitted pulse samples. Although the time of arrival of
the signal is unknown, the two-dimensional processing
interval (data window) is consecutively moving in the
range direction, sample by sample, and adaption be-
tween the �lter and signal occurs in the signal location
certainly. As previously described, by rearranging the
signal matrix, we obtain a vector form of target signal

s as follows:

sT = A exp(j'):[�(1)�T ; :::; �(p)�T ; :::; �(P )�T ]; (9)

where vector � depends only on the Doppler shift phase
of target as:

� = [1; ej
; ej2
; :::; ej(K�1)
]T : (10)

In this work, fd (and equivalently 
 and �) is assumed
to be known. This is a rational assumption, because,
using a �lter bank in conventional radar systems is
common and the value of fd corresponding to each sub-
band can approximately be assumed constant.

In a realistic radar scenario, the complex signal
amplitude, Aej�, is unknown and uctuates from scan
to scan. We assume that phase ' is an uniformly ran-
dom variable in the interval [0; 2�) and the amplitude
of the target samples has the pdf fA(a) which depends
on the selected swerling model. A widespread choice for
the target amplitude model is the so called, Swerling-I,
wherein, modulus A is modeled as a Rayleigh random
variable as:

fA(a) =
2a
PA

e�
a2
PA a � 0: (11)

Here, PA is mean square value of A. In, Swerling-
III model, A is a chi random variable with degrees of
freedom 4 pdf, as:

fA(a) =
8a3

PA
2 e
� 2a2
PA a � 0: (12)

3. Two-dimensional optimal linear detector

In this section, we propose a novel detector called 2-
D OLD for a slowly uctuating target embedded in
compound Gaussian interference (clutter plus noise).
The problem of radar signal detection in a clutter
domain environment can be posed using the following
binary hypothesis test model:8<:H0 : y = n;

H1 : y = s + n;
(13)

where y, s, and n denote the N � 1 complex vectors
of the samples from the baseband equivalent of the
received signal, target signal, and interference, respec-
tively. So, we assume that under H0 hypothesis, the
received signal contains only the interference, while,
under H1, the target signal is also added to the
interference in the received signal.

The general structure of a coherent linear detector
is as follows:

jWH :yj ?H1H0
T: (14)

Here, the complex weighting vector, W, contains the
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detector coe�cients and T is a threshold corresponding
to the desired false alarm probability (Pfa). In OLD,
vector W should be determined, so that the optimum
detection performance is achieved. Regarding N-P
criterion, we should �nd an optimum W for the test
Eq. (14), so that it maximizes the detection probability
(Pd) for every desired Pfa. Suppose that the output of
the linear �lter is a random variable, x, with absolute
value, q, or, mathematically:

q = jxj = jWH :yj: (15)

We can use the following equations to calculate the Pd
and Pfa of the detector:8<:Pfa = Pr(q > T jH0)

Pd = Pr(q > T jH1)
(16)

For an interference with pdf fn(n), these probabilities
can be written as follows:

Pr(q > T jHi) =
Z
q>T jHi

: : :
Z
fn(n) dn; i = 0; 1;

(17)

and for a zero mean compound Gaussian interference,
substituting Eq. (2) into Eq. (17) yields:

Pr(q > T jHi)=
Z 1

0

�Z
q>T jHi

: : :
Z

1
�N det(�M0)

exp
�
�nH(�M0)�1n

�
dn
�

f� (�) d�; i = 0; 1: (18)

To calculate Pfa under H0, we have:

Pfa =
Z 1

0
Pr(q > T jH0;n s N (0; �M0))f� (�) d�:

(19)

The internal term Pr(q > T jH0;n s N (0; �M0)) is
equal to Pfa, in the case of Gaussian interference with
covariance matrix �M0, as below (see Appendix A):

Pr(q > T jH0;n s N (0; �M0)) = exp(� T 2

�Pn
); (20)

where Pn is the interference power at the output of the
linear �lter, which can be easily calculated as:

Pn , �2
x = WHM0W; (21)

where �2
x is the variance of x. Substituting Eq. (20)

into Eq. (19), we obtain:

Pfa =
Z 1

0
exp(� T 2

�Pn
)f� (�) d� , H(

T 2

Pn
): (22)

It can be easily shown that the H(�) is a strictly
increasing function in � and, hence, is invertible. So, it
is possible to obtain threshold T as follows:

T 2

Pn
= H�1(Pfa): (23)

To calculate Pd from Eq. (18) under H1, we have:

Pd =
Z 1

0
Pr(q > T jH1;n s N (0; �M0))f� (�) d�:

(24)

The internal term Pr(q > T jH1;n s N (0; �M0)) is
equal to Pd in the case of Gaussian interference with
covariance matrix �M0 as below (see Appendix B):

Pr
�
q > T jH1;n s N (0; �M0)

�
=Z

�S
Q
 r

2
�
W ;

r
2
�Pn

T

!
fs(s) ds; (25)

where 2
W

is the temporal signal to interference power
ratio at the output of the linear �lter as follows:

2
W
, Psjs

Pn
=

WHssHW
WHM0W

; (26)

and �S and fs(s) are the sample space and pdf of all
random parameters of s, respectively. In Eq. (25),
Q(�;�) is Marcum's Q-function, which is a strictly
increasing function of the positive variable, �, for every
constant and arbitrary value of �.

Q(�;�) =
Z 1
�

x exp
�
�x2 + �2

2

�
I0(�x) dx; (27)

where I0(:) is the �rst-kind modi�ed Bessel function of
order zero. Substituting Eq. (25) into Eq. (24) and
replacing T 2

Pn with that of Eq. (23), we have:

Pd =
Z 1

0

Z
�S
Q
 r

2
�
W ;

r
2
�
H�1 (Pfa)

!
� fs(s) dsf� (�) d�: (28)

So, according to the N-P criterion and the strictly
increasing characteristic of the Q- function in W , we
should maximize Pd for a desired Pfa in order to
achieve the 2-D OLD.

3.1. Perfectly known signal
In this case, Eq. (28) is simpli�ed as below:

Pd =
Z 1

0
Q
 r

2
�
W ;

r
2
�
H�1 (Pfa)

!
f� (�) d�;

(29)
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and 2
W

becomes equal to the average signal to inter-

ference ratio (SIR). Since Q�q 2
� W ;

q
2
�H�1 (Pfa)

�
is a strictly increasing function in W , if we can �nd
a vector, W, which maximizes W for each arbitrary
value of � , this W maximizes Pd too. Therefore, the
optimum value of vector W is the one which maximizes
the following equation:

Wopt = arg
�

max
W

�
WHssHW
WHM0W

��
: (30)

Using Cauchy-Schwartz inequality, we obtain:

Wopt = M�1
0 � s�: (31)

Regarding the above equation, we conclude that for a
2-D known signal, the 2-D OLD is equivalent to the
2-D matched �lter.

3.2. Slowly uctuating target
The optimum value of W is the one which maximizes
Pd in Eq. (28), where W is given by Eq. (26). For
slowly uctuating targets, ssH can be obtained from
Eq. (9) as ssH = A2�, where:

� =

264 �2(1)��H : : : �(1)�(P )��H
...

. . .
...

�(P )�(1)��H : : : �2(P )��H

375 : (32)

Since matrix � is known and positive de�nite, we can
decompose it as � = LLH . Hence, substituting s sH =
A2LLH into Eq. (26), we achieve W

2 = A2 ��2
W

, where
�2
W

is de�ned as:

�2
W

=
WHLLHW
WHM0W

: (33)

In this case, we can rewrite Eq. (28) as:

Pd =
Z 1

0

"Z 1
0
Q
 r

2
�
A�W ;

r
2
�
H�1 (Pfa)

!
fA(A) dA

#
f� (�) d� (34)

Here, fA(A) is the pdf of the amplitude of the target
samples and depends on the selected Swerling model.

Q�q 2
�A�W ;

q
2
�H�1 (Pfa)

�
is a strictly increas-

ing function in �W for each arbitrary value of �
and A for a constant Pfa. According to Eq. (34),
since Pd is the average of the non-negative function
Q�q 2

�A�W ;
q

2
�H�1 (Pfa)

�
on the domain of two

non-negative variables, A and � , with non-negative
weight function, fA(A)f� (�), we can easily show that
Pd is also a strictly increasing function in �W . Hence,

if we �nd a W which maximizes �W , this W also
maximizes Pd. Therefore, the optimum value of vector
W is the one which maximizes the following equation:

Wopt = arg
�

max
W

�
WHLLHW
WHM0W

��
: (35)

Using Cauchy-Schwartz inequality, we obtain:

Wopt = M�1
0 � L� (36)

Considering Eq. (35) shows that in the case of a slowly
uctuating target and compound Gaussian interfer-
ence, the 2-D OLD is a detector which maximizes the
output SIR.

4. Simulation results

In this section, we evaluate the performance of 2-
D OLD using the Monte Carlo simulation. We �rst
compare the detection performance of the proposed de-
tector with that of four conventional AND, OR, �-out-
of-n and 1-D OLD detectors. Then, we illustrate the
sensitivity of 2-D OLD, with respect to the parameters
of clutter and target signal.

In our discussion, we use the following notations
for calling the related parameters or variables in the
simulations: SP = clutter shape parameter, Swer =
number of swerling model, Dist = clutter distribution
(W for Weibull and K for K distributed clutter), F
= target Doppler shift normalized to PRF ( fd

PRF ),
SCBWA and SCBWR = power spectral bandwidths
of clutter samples in azimuth and range directions,
respectively, normalized to PRF, SIR= signal to in-
terference power ratio (= E(jsj2)

E(jnj2) ), K = number of
successive reected echoes from a cell (or number of
pulses in the coherent processing interval), and P =
number of extracted samples from each radar range
cell in every pulsation.

We �rstly notice that the clutter covariance
matrix, M0, is a Toeplitz matrix and its spectrum
shape is Gaussian [10]. Hence, we assume that the
correlation matrix, M0, is completely determined in
terms of the normalized azimuth and range power
spectral bandwidths of clutter, SCBWA and SCBWR.
Commonly, the clutter samples are more correlated
in an azimuth direction in comparison with the range
direction. Also, for simulation purposes, the baseband
equivalent of the transmitted waveform is a rectangular
(coherent) pulse train.

For obtaining the detection performance curves,
each simulation is statistically repeated with 105 it-
erations. In each iteration, we �rst generate a K � P
matrix of interference (clutter) samples with compound
Gaussian distribution and Gaussian correlation in both
range and azimuth directions using the methods pro-
posed in [15,18], corresponding to the CUT data under
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H0 hypothesis. Afterwards, another K � P matrix is
produced by adding the interference matrix to a K�P
matrix of signal samples (generated based on Eq. (9))
for providing the CUT data under H1 hypothesis. Both
CUT data matrices are processed by all the detection
algorithms.

After implementing all iterations, we determine
an ordered thresholds set. For each detection method,
we compute two Pfa and Pd sets corresponding to
the thresholds set using the detection processing out-
put under H0 and H1, respectively. The Receiver
Operating Characteristic (ROC) curves can easily be
obtained by these Pfa and Pd sets. The detection
processing output of the proposed detector is obtained
using Eq. (14). In the other detectors, �rst, a Matched
Filter (MF) corresponding to �(t) is acted on each
raw of the CUT data (in range). Then, in the 1-D
OLD, all K results obtained by MF are integrated (in
azimuth) and compared with the threshold. In the
AND, OR, and \� out of n" detectors, each of the K
results obtained by MF is compared with a common
threshold, separately, and K initial decisions are fused
by AND, OR, or \� out of n" rules for a �nal decision.

At �rst, the performances of �ve previously men-
tioned detectors are evaluated and compared with each
other in Figures 4-7. To this end, the ROC curves are
used for comparing the performances of the detectors.
As seen, the 2-D OLD outperforms others for various
values of parameters of clutter and signal. Among
others, AND and OR detectors have the best and worst
performance, respectively.

The ROC of these detectors are shown in Fig-
ures 4 and 5 for a Weibull clutter with SCBWR = 0.2
and 0.5, respectively, when P = 10, K = 5, SIR = 5

Figure 4. Performance comparison of the 2-D OLD, 1-D
OLD, AND and OR detectors in Weibull clutter. The
parameters are set to: P = 10, K = 5, SIR = 0 dB, F =
0.1, SCBWA = 0.15, SCBWR = 0.2 and � = 4.

dB, Swer = 1, F = 0.1, SCBWA = 0.15, and � = 4.
Through these �gure, we see that increasing SCBWR or
decreasing the correlation of clutter samples in a range
direction improves the performances of all detectors
without any change in their ranks. Nevertheless,
this is not a regular rule, because the structure of
all detectors depends on the covariance matrix of
interference (related to SCBWA and SCBWR).

Similar comparison between the detectors per-
formance is implemented in Figures 6 and 7 for a
K-distributed clutter with SCBWA = 0.2 and 0.12,
respectively, when P = 15, K = 6, SIR = 0 dB,

Figure 5. Performance comparison of the 2-D OLD, 1-D
OLD, AND and OR detectors in Weibull clutter. The
parameters are set to: P = 10, K = 5, SIR = 0 dB, F =
0.1, SCBWA = 0.15, SCBWR = 0.5 and � = 4.

Figure 6. ROC comparison of the 2-D OLD, 1-D OLD,
AND and OR detectors in K-distributed clutter. The
parameters are set to: P = 15, K = 6, SIR = -5 dB, SP =
1.5, Swer = 3, F = 0.1, SCBWR = 0.5, SCBWA = 0.2
and � = 5.
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Figure 7. ROC comparison of the 2-D OLD, 1-D OLD,
AND and OR detectors in K-distributed clutter. The
parameters are set to: P = 15, K = 6, SIR = -5 dB, SP =
1.5, Swer = 3, F = 0.1, SCBWR = 0.5, SCBWA = 0.12
and � = 5.

Figure 8. Performance evaluation of the 2-D OLD in
K-distributed clutter for di�erent values of SCBWA. The
parameters are set to: K = 4, P = 10, SIR = 0 dB, SP =
1, Swer = 3, F = 0.1 and SCBWR = 0.2.

SP = 1.5, Swer = 3, F = 0.1, SCBWR = 0.5, and
� = 5. Here, we see that when SCBWA decreases or
correlation between samples in the azimuth direction
increases, the performance of all detectors slightly
degrades. Similarly, this observation also is not a
regular rule. Figure 8 illustrates the sensitivity of 2-D
OLD, with respect to the power spectral bandwidth of
clutter samples in the azimuth direction (or SCBWA).
The simulation was run with: K = 4, P = 10, SIR =
0 dB, Dist = K, SP = 1, Swer = 3, F = 0.1, SCBWR
= 0.2 and di�erent values of SCBWA. It is seen that
for SCBWA = 0:13 (the biggest correlation), the 2-D

Figure 9. Performance evaluation of the 2-D OLD in
Weibull clutter for di�erent values of SCBWR. The
parameters are set to: K = 4, P = 10, SIR = 0 dB, Dist
= W, SP = 1, Swer = 1, F = 0.1 and SCBWA = 0.13.

OLD has the best performance. Although increasing
SCBWA from 0.13 to 0.5 degrades the performance,
further increase of SCBWA from 0.5 improves the
performance, unlike the previous procedure.

In Figure 9, the e�ect of the power spectral
bandwidth of clutter samples in the range direction (or
SCBWR) is investigated on the 2-D OLD performance
for: K = 4, P = 10, SIR = 0 dB, Dist = W,
SP = 1, Swer = 1, F = 0.1, SCBWA = 0.15 and
di�erent values of SCBWR. It is observed that, at
�rst, increasing SCBWA from 0.03 to 0.05 decreases
the performance, but, by increasing SCBWA from 0.05
to 1, the performance considerably improves.

We have also used the curves of probability of
detection (Pd) versus SIR for a desired constant,
Pfa, to evaluate the detector performance. Figure 10
illustrates the sensitivity of 2-D OLD, with respect to
the number of samples in each pulsation (P ), compared
with the 1-D OLD, wherein: K = 5, Pfa = 10�3,
Dist = W, SP = 1, Swer = 1, F = 0.1, SCBWA =
0.12 and SCBWR = 0.3. The curves illustrate that
increasing P , signi�cantly increases the performance
of the detector. Precisely, in comparison between 1-
D OLD and 2-D OLD performances, the 1-D OLD
requires an additional SIR of about 19 dB to obtain Pd
= 0.9 for a constant Pfa = 10�3 in the case of P =15.

All the above curves show that the 2-D OLD
largely outperforms the conventional 1-D OLD for all
parameters, which has been shown in our simulations.

5. Conclusion

In this paper, we realized a two-dimensional optimal
linear detector. Briey speaking, the most important
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Figure 10. Performance comparison of the 2-D OLD and
1-D OLD in Weibull clutter for di�erent values of P . The
parameters are set to: K = 5, Pfa = 10�3, SP = 1, Swer
= 1, F = 0.1, SCBWA = 0.12 and SCBWR = 0:3.

di�erence between conventional and 2-D OLDs is that
the latter uses sample correlation in both range and
azimuth directions completely. But, the conventional
OLD, because of its structure, ignores the sample
correlation in the range direction. With high sampling
along the range direction, correlation of the clutter
samples in the range direction is signi�cant and by
considering this correlation, the detection performance
will improve signi�cantly. Simulation results demon-
strate that the superiority of 2-D OLD in comparison
with 1-D OLD is maintained for various values of signal
and clutter parameters. This superiority is due to
using sample correlation in both azimuth and range
directions.
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Appendix A. Pfa of linear detector for
Gaussian interference

The pdf of a zero mean complex Gaussian random
vector with covariance matrix M0 is as:

fn(n) =
1

�Ndet(M0)
exp

�� nHM�1
0 n

�
: (A.1)

According to Eq. (15), the random variable, x =
WH :y, will be Gaussian, too, under H0. Assuming
signal vector s as a known vector, we can calculate
mean mx and variance �2

x of x easily, as follows:

mx =

(
0 for H0;
WHs for H1;

(A.2)

�2
x = WHM0W; for H0 and H1: (A.3)

So, random variable x has the following pdf:

fx(x) =
1
��2

x
exp

�
� (x�mx)H(x�mx)

�2
x

�
: (A.4)

As a result, random variable q = jxj has a pdf equal
to [33]:

fq(q) =
2q
�2
x

exp
�
� 1
�2
x

(q2 + jmxj2)
�
I0

�
2jmxj
�2
x

q
�
;

(A.5)

in which I0(:) is �rst-kind modi�ed Bessel function
of order zero. Under H0, q has simply a Rayleigh
distribution as follows:

fq(qjH0) =
2q
Pn

exp
�
� q2

Pn

�
; (A.6)

where Pn is the interference power at the detector
output, which is calculated as:

Pn = �2
x = WHM0W: (A.7)

Substituting Eq. (A.6) into Eq. (16), Pfa can be easily
calculated as:

Pfa =
Z 1
T

2q
Pn

exp
�
� q2

Pn

�
dq = exp

�
�T 2

Pn

�
:

(A.8)
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Appendix B. Pd of linear detector for Gaussian
interference

Under H1, and for perfectly known signal s in zero
mean Gaussian interference with covariance matrix,
M0, random variable x is still Gaussian, but with a
non-zero mean. So, random variable q has the Rician
distribution with power Pn + Ps as follows:

fq(qjH1) =
2q
Pn

exp
�
� (q2 + Ps)

Pn

�
I0

�
2
p
Ps

Pn
q
�
;

(B.1)

where:
Ps = jmxjH1 j2 = jWHsj2 = WHssHW: (B.2)

Substituting Eq. (B.1) into Eq. (16), Pd of the detector
is calculated as:

Pd =
Z 1
T

2q
Pn

exp
�� (q2 + Ps)

Pn

�I0

�
2
p
Ps

Pn
q
�
dq

= Q�r 2
Pn

mx;
r

2
Pn

T
�
;

(B.3)

and substituting Pn and mx from Eqs. (21) and (A.2)
in Eq. (B.3), we have:

Pd = Q
�p

2W ;
r

2
Pn

T
�
; (B.4)

where 2
W

is the signal to interference power ratio at
the detector output as follows:

2
W

=
Ps
Pn

=
WHssHW
WHM0W

: (B.5)

We can easily extend Eq. (B.4) for random signal s as
below:

Pd =
Z

�S
Q
�p

2W ;
r

2
Pn

T
�
fs(s) ds; (B.6)

where fs(s) and �S are the pdf and sample space of the
random parameters of s.
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