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Abstract. Spanners generated by the greedy algorithm - or greedy spanners - not only
have good theoretical properties, like a linear number of edges, low degree and low weight,
but also, as previous experimental results show, they are superior to spanners generated
by other algorithms in practice. Because of the good properties of greedy spanners, they
found several applications like in protein visualization.

The major issue in computing greedy spanners is the high time and space complexity
of algorithms that compute it. To construct the greedy spanner on a set of n points, the
original greedy algorithm takes O(n3 log n) time. In 2005, an improvement was proposed by
Farshi and Gudmundsson [Lecture Notes in Computer Science, Vol. 3669, pages 556-567]
that works much faster in practice, but later it was shown that it has same theoretical time
complexity. In 2008, Bose et al. [Lecture Notes in Computer Science, Vol. 5124, pages
390-401] discovered a near-quadratic time algorithm for constructing greedy spanners. In
this paper, we compare time complexity of these three algorithms for computing the greedy
spanner in practice.

© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

A network on a set V of n points (in Euclidean space)
can be modeled as an undirected graph G with vertex
set V of size n and an edge set E of size m where every
edge e = (u,v) has a weight wt(e). A network is called
a geometric or Euclidean network if the weight of the
edge e = (u,v) is the Euclidean distance |uv| between
its endpoints u and v.

There are several ways to measure the quality of
a network; one is the dilation or stretch factor of the
network. For each pair of points u,v € V, the ratio
of the length of the shortest path between w and v
in G, denoted by dg(u,v), to the Euclidean distance
between u and v is called the dilation between u and
v in G. The length along a path is sum of lengths of
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all edges on the path. The maximum dilation between
all pairs of vertices of G is called the dilation of G.
Informally, in a network with low dilation, the amount
of detour one might need to take to travel from one
node to another node of the graph, when it is only
allowed to travel along edges of the graph, is close to
the actual Euclidean distance between the nodes.

Let t > 1 be a real number. A network & is called
a t-spanner on vertices of G, if the dilation of G is at
most ¢. In other words, a graph G(V, E) is a t-spanner
of V, if for each pair of vertices u,v € V, there exists
a path in G between u and v of weight at most ¢ - |uv|.
We call such a path a t-path between u and v.

Obviously, with this measure of quality, we need
to have a lot of edges in the graph to have good
networks which means they are expensive to build. So
the main objective of studying spanners is to construct
sparse t-spanners with ¢ sufficiently close to 1. To
measure sparseness, one can consider different criteria
like the weight of the spanner, i.e. sum of weights of
all of its edges, the number of edges and the maximum
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degree. Spanners have applications in several fields:
from robotics, network topology design, distributed
systems and design of parallel machines to metric space
searching [1], protein visualization [2] and broadcasting
in communication networks [3].

There are several algorithms that given a set of
points and a t > 1, compute a t-spanner of the point set
in R? (see [4]). Different algorithms generate spanners
with different properties, most of them contain a linear
number of edges, and some of them have low weight
and degree. Next to theoretical results, algorithms are
compared in experiments based on different properties,
like number of edges, maximum degree and weight of
generated graph and also the running time of them
(see [1,5,6]).

The greedy algorithm is not only the simplest
algorithm to generate a spanner, but the generated
spanners also have a linear number of edges, constant
degree and optimal weight in theory. Experiments
also show that the greedy algorithm generates spanners
which have superior properties compared to other
algorithms [5]. The only problem with the algorithm
is its time and space complexity, the original greedy
algorithm requires cubic time and quadratic space
complexity which makes it impossible to compute the
greedy spanner. Greedy spanner is generated by the
greedy algorithm, on sets of points that contain more
than a few thousand points using the original greedy
algorithm. In [5] Farshi and Gudmundsson proposed
an improvement (we will refer to the improved variant
as FG-Greedy) that worked well in practice, however,
it was later shown [7] that this improvement does not
improve the theoretical worst-case bound. In the same
paper, Bose et al. introduced an algorithm that gener-
ates the greedy spanner in O(n? logn) time using O(n?)
space. To the best of our knowledge, this algorithm
had not been implemented before (Independently of
our work, Bouts et al. [8] have recently implemented
this algorithm).

Recently, Alewijnse et al. [9] proposed an
algorithm that computes the greedy spanner in
O(n?log®n) time using linear space (note that all
previous greedy algorithms use quadratic space). They
also implemented the algorithm and showed the prac-
tical behaviour of the algorithm on point sets with dif-
ferent distributions and up to one million points which
was a big progress since the highest number of points
that the greedy spanner generated before this contains
only 13,000 points [5]. They also showed that the
expected time complexity of their algorithm is linear for
uniformly distributed point sets. There is also another
recent and independent work by Bouts et al. [§] that
provides a theoretical framework for analyzing greedy
spanner algorithms. In particular it provides improved
analytical bounds for two of the algorithms discussed
in this paper. For the FG-Greedy algorithm it provides

a bound in terms of the spread of the point set; this
resolves the question why the FG-Greedy performs well
in practise and also explains its performance in the
experiments on uniformly distributed data. For NQT-
Greedy, the paper proves a tighter bound in terms of
t. It also reports on some experiments on the three
algorithms discussed in this paper.

In this paper we compare the Bose et al. greedy
algorithm with two other algorithms that generate
greedy spanner, based on their running time in prac-
tice. We did not consider the linear space algorithm
introduced by Alewijnse et al. [9].

We should mention that there exist an algorithm
with near-linear worst-case time complexity, namely
approximate greedy algorithm [4,10], that generates
spanners with theoretical properties similar to the
greedy spanner but, as previous experiments show
(see [5]) in practice it is far worse than the greedy
spanner especially when ¢t is close to 1 and points are
uniformly distributed.

The paper is organized as follows. First we briefly
describe the implemented algorithms together with the
theoretical bounds and implementation details. In
Section 3 we discuss the experimental results. Finally,
we discuss possible improvements and future research.

Throughout the paper, ¢ will be assumed to be
a small constant. In the experiments we used values
of t between 1.02 and 2, because in most applications
t is close to 1. Also for larger values of ¢ there are
other options like the Delaunay triangulation which is
known to have dilation 1.998 [11]. Also, we know that
any 2-spanner is a t-spanner for each ¢ > 2.

2. Greedy spanner algorithms

Here, we give a short description of each of the
algorithms implemented together with their theoretical
bounds. For a detailed description of each algorithm,
considered in this section, please refer to the book by
Narasimhan and Smid [4] and papers by Farshi and
Gudmundsson [5], Bose et al. [7] and Bouts et al. [8].

2.1. The original greedy algorithm
The greedy algorithm was introduced independently by
Althofer et al. [12] and Bern in 1989, and since then,
other researchers worked on it (see [10,13-17]). The
graph constructed using the greedy algorithm will be
called a greedy graph or a greedy spanner. Note that,
as we will see, if no pair of points in the input set
has same distance, then the greedy spanner is unique.
Otherwise, we can have several greedy spanners. But,
if we fix an order on pairs with equal distances, then
again we can assume that the greedy spanner is unique.
Intuitively, the original greedy algorithm con-
structs the graph in a natural way, like producing the
road network between cities generated by humans. It
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starts to check cities that are close to each other and
adds a road between them if there is no short route
between them on existing roads, and continues to check
pairs that are farther apart. More formally, the original
algorithm starts with a graph with no edges. Then, it
considers all pairs of points in increasing order based
on the distance between a pair of points. In other
words, it sorts all pairs of points with respect to their
increasing distances, and then processes them in that
order. To process an edge (u,v), it performs a shortest
path query in G between w and v, and if there is no
t-path between u and v in G, i.e. the length of the
shortest path between u and v is more than ¢.Juv|, then
(u,v) is added to G, otherwise it is discarded. Since the
original greedy algorithm checks (7)) pairs of points,
and for each pair, it performs one shortest path query
(using Dijkstra’s algorithm implemented by Fibonacci
heap), which takes O(;77 + nlogn) time (since there
are O(;77) edges in G), the time complexity of the
algorithm is O(% +n3logn) and it uses O(n?) space.

The greedy approach can also be used to prune a
given graph G = (V, E), that is, instead of considering
all pairs of points (see Algorithm 1), the algorithm only
considers those which are endpoints of the edges in E.

2.2. The FG-greedy algorithm
Because of the cubic time complexity of the original
greedy algorithm, it is practically impossible to con-

struct greedy spanner on point sets with more than a
few thousand points. For example, based on the ex-
periments in [5,18], constructing the greedy 2-spanner
on a set of 4,000 uniformly distributed points in the
Euclidean plane, using the original greedy algorithm,
takes more than 12,000 seconds and constructing 1.1-
spanner on the same point set takes almost 42,000
seconds.

To make it possible to do experiments on larger
point sets, Farshi and Gudmundsson [5,18] proposed a
simple technique to improve the running time of the
original greedy algorithm. The new algorithm, which
we will call FG-greedy algorithm, works similar to the
original greedy algorithm, except it uses a matrix to
store the length of the shortest path between pairs of
points. The matrix is updated when the algorithm
performs a single-source shortest path query. Each
time the algorithm wants to check if there is a t-
path between a pair of points, it first checks the
matrix to see if the path length between the points
is less than ¢ times the Euclidean distance between the
points. If the path length is small enough, it skips
the edge without performing the single-source shortest
path query. Otherwise, it performs the shortest path
query and then it updates the distance matrix and
then decides whether the edge should be added to
the graph or not (see Algorithm 2). Note that the
distance matrix is not up-to-date, so if the distance

Input: V and t > 1.
Output: t-spanner G = (V, E).

E’ : = all pairs of points in V sorted increasingly based on their distances; /* ties are broken arbitrarily */

1
2 F:=g;

3G :=(V,E);

4 foreach (u,v) € E’ do

5  if Shortest Path Length (G, u,v) > t.|uv| then
6 E:= EU{(u,v)};

7 end

8 end

9 return G = (V, E);

/* in sorted order */

Algorithm 1. The original greedy algorithm.

Input: V and t > 1.

Output: t-spanner G = (V, E).
1 foreach (u,v) € v? do
2 Weight (u,v) := oo

3 end

4 E' : = all pairs of points in V sorted increasingly based on their distances; /* ties are broken arbitrarily */
5 FE := g

6 G:=(V,E);

7 foreach (u,v) € E' do /* in sorted order */
8 if Weight (u,v) > t.|u’u‘ then

9 Compute the single-source shortest path with source v in Gj

10 foreach w € V do

11 update Weight (u,w) and Weight (w, u);

12 end

13 if Weight (u,v) > t.|uv| then

14 E:=FEU{(u,v)};

15 end

16 end

17 end

18 return G(V, E);

Algorithm 2. The FG-greedy algorithm.
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between a pair of points is not small enough, it updates
the matrix for the pair of points and then makes its
decision.

As experiments show, [5,18], this improved algo-
rithm uses around 35 and 100 seconds to compute 2-
spanner and 1.1-spanner on a set of 4,000 uniformly
distributed points which shows a big improvement.
Using this improvement, the greedy spanner on point
sets containing up to 13,000 points was constructed.

Note that, as shown by Bose et al. [7], this im-
provement does not improve the worst-case theoretical
time complexity of computing greedy spanners.

2.3. The NQT-greedy algorithm

In 2008, Bose et al. [19] proposed a near-quadratic time
algorithm to compute the greedy spanner which was
based on the FG-greedy algorithm. Their algorithm
makes the following changes. It partitions the (;) pairs
of distinct points in V' into buckets, such that within
each bucket, distances differ by at most a factor of
two; then, the algorithm processes the buckets one after
another.

Consider the current bucket contains all pairs
whose distances are in the interval [L,2L). For each
point u of V., it performs the bounded Dijkstra’s
algorithm with source w and distance 2tL, and stores
all operations performed by the Dijkstra’s algorithm in
a stack. Thus, for each vertex v, such that dg(u,v) <
2tL, the value of dg(u,v) is known, which is stored
as weight(u,v) in the distance matrix. When the
algorithm adds an edge (u,v) to the greedy spanner,
it takes all points, p, for which the distance between
p and one of the endpoints of the edge (u,v) is less
than (¢ — %)L and updates corresponding distances. To
update the distances, instead of running the bounded
Dijkstra’s algorithm with source p and distance 2tL
from scratch, it uses the stack stored with p to undo
the execution of the bounded Dijkstra’s algorithm (in
the graph prior to the insertion of the edge (u,v))
until the minimum key in the priority queue is at most
min((t—3)L, L). Then, it restarts Dijkstra’s algorithm
from this state, using the graph that contains the new
edge (u,v), and terminate as soon as the minimum key
in the priority queue is larger than 2¢tL; during the
execution, it stores the sequence of all operations in
the stack associated with p.

A detailed description of the algorithm is given in
Algorithms 3-5. The time complexity of this algorithm
is O(n?logn) and it uses O(n?) space [7].

2.8.1. Implementation

The implementations of the first two algorithms are
straight-forward. Implementing the third algorithm
is a bit tricky, because of the undo/redo operations
that have to be done when performing the Dijkstra’s
algorithm. We used some (extra) data structures to

be able to do this operation without increasing the
complexity of the algorithm.

We implemented the algorithms in C++ and
compiled the code using -o argument. The data
structures needed were implemented using the pseudo-
codes of [20], some of which are with minor changes. To
keep the graph, we used an adjacency matrix and to be
able to find all neighbours of a vertex, we also kept all
neighbours of each vertex in a linked list. Using this, we
can check adjacency between vertices in constant time
and we can traverse all neighbours of a vertex in time
proportional to the degree of the vertex. The priority
queue is implemented using a min-heap (see [20]), and
to make it possible to find an specific vertex in the
priority queue in constant time, we maintain an array
of pointers which keep a pointer to vertex 7 in the
priority queue in its ith entry of the array. The stack
is implemented using a linked list. For the list of pairs
of points, we use a structure that stores indices of the
points with their Euclidean distance.

The experiments were done on two different ma-
chines. For point sets up to 4,000 points in the
Euclidean plane, the code is compiled using G++
version 4.6 and runs on a Intel E2200 (2.2 GHz
x2) machine with 3 GB of RAM and Ubuntu 12.04
operating system. For larger point sets, we needed
more memory, so we ran the code on a Intel Xeon
E5620 (2.4 GHz) with 24 GB RAM and Debian 6.0.3
operating system and G++ version 4.4.

The experiments are done on uniformly dis-
tributed point sets; for point sets up to 4,000 points
the range of each coordinate is between 0 and 10,000,
and for larger point sets, the range of each coordinate
is between 0 and 30,000. For each case, we run the
algorithms on 3 to 10 different point sets and we take
average between them and use maximum and minimum
values between them to see how much the difference
between different point sets is.

Note that all algorithms mentioned here produce
exactly the same networks, so we do not need to com-
pare the networks generated by different algorithms.

3. Running time comparison

The results of the experiments are presented in Ta-
bles 1, 2 and 3 for different point sets and different ¢’s.
The time in all tables and diagrams are in seconds.

The first thing one can see in the tables is that
the FG-greedy is faster than NQT-greedy algorithm
in practice for all #'s which are big enough. We
expected this result, since the amount of overhead
of the NQT-greedy algorithm is higher than the FG-
greedy algorithm.

But, for low values of ¢, as shown in Figure 1, the
NQT-greedy algorithm runs faster than the FG-greedy
algorithm. The improvement is 50 percent for ¢t = 1.02
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Input: V and t > 1.
Output: ¢-spanner G = (V, E).
1 foreach v € V do
2 weight (u,u) := 0;
3 end
4 foreach (u,v) € V? with u # v do
5 weight (u,v) 1= oo;
6 end
7 E' := list of all pairs of distinct points in V, sorted in non-decreasing order of their distances;
81:=1;
9 while E'\(U.Z} Ei) # @ do
10 L; : = distance of the shortest pair in E’\( L;ll Er);
11 E; : = sorted list of all pairs in E"\( ;::11 E),) whose distances are in [L;,2L;);
12 =1+ 1;

13 end
141:=7—1;
15 F := g;

16 G := (V, E);

17 foreach v € V do
18 PQ, := priority queue storing all v € V with key weight (u,v);
19 T, = empty stack;

20 end

21 for¢:=1,.---,l do

22 foreach v € V do

23 if i« > 1 then

24 DIJKSTRA-Undo (7u, PQu, (t — %) Li_1);

25 end

26 DIJKSTRA-Bounded (G, w,2tL;, PQu,Tu);

27 end

28 foreach (u,v) € E; (in sorted order) do

29 if weight (u,v) > t.|uv| and weight (v, u) > t.|uv| then

30 E := EU{(u,v)};

31 foreach p € V do

32 if |pu| < (t— 1) Li or |pv| < (t — %) L; then

33 if weight (p, u) + |uv| < weight(p,v) then

34 DIJKSTRA-Undo (TP, PQ,,min ((t — %) L;, Li));
35 in PQ,, decrease the key of v to weight (p, u) + |uv|;
36 weight (p,v) := weight(p, u) + |uv|;

37 DIJKSTRA-Bounded (G, p, 2tL;, PQp, 7p);

38 end

39 if weight (p,v) + |uv| < weight(p, u) then

40 DIJKSTRA-Undo (Tp, PQp, min ((t — %) L;, Li));
41 in PQ,, decrease the key of u to weight (p,v) + |uv|;
42 weight (p, u) := weight(p, v) + |uv|;

43 DIJKSTRA-Bounded (G, p,2tL;, PQp, Tp)

44 end

45 end

46 end

47 end

48 end

49 end

50 return G(V, E);

Algorithm 3. The Near-Quadratic Time (NQT) greedy algorithm.

Input: graph G, vertex s, real number L > 0, priority queue PQ, stack 7.
Output: using PQ, continue Dijkstra’s algorithm with source s until all shortest-path distances
in G which are at most L have been computed; the algorithm stores all operations in 7
(the pseudocode does not explicitly mention this).
while the minimum key in PQ is at most L do
delete the element v with minimum key from PQ;
foreach node v adjacent to v in G do
if weight (s, u) + |uv| < weight(s,v) then
in PQ, decrease the key of v to weight (s,u) + |uv|;
weight (s,v) := weight(s, u) + |uv|
end
end
end

© 00Uk W

Algorithm 4. A bounded version of the Dijkstra’s algorithm.
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Input: stack 7, priority queue PQ, real number L > 0.

1 while the minimum key in PQ is larger than L do

2 pop the top element ¢ from T;
3 undo the changes based on the information in c;
4 end

Algorithm 5. The algorithm to undo previous operations of the Dijkstra’s algorithm.

Table 1. The running time (in seconds) of different greedy algorithms for different ¢’s and point sets up to 4,000 points.

. 4 Points NQT-greedy FG-greedy Original greedy
Average  Min Max Average  Min Max Average  Min Max

1.05 100 0.10 0.10 0.11 0.03 0.02 0.03 0.28 0.27 0.29
1.1 100 0.07 0.07 0.08 0.02 0.02 0.02 0.26 0.25 0.27
1.2 100 0.05 0.05 0.06 0.01 0.01 0.02 0.24 0.24 0.25
1.4 100 0.05 0.04 0.05 0.01 0.00 0.01 0.23 0.22 0.24
1.6 100 0.04 0.04 0.04 0.01 0.01 0.01 0.21 0.21 0.22
1.8 100 0.04 0.04 0.05 0.00 0.00 0.01 0.21 0.20 0.21

2 100 0.04 0.03 0.04 0.01 0.00 0.02 0.22 0.20 0.24
1.05 500 2.30 2.10 2.38 1.31 1.24 1.35 58.85 56.28 60.05
1.1 500 1.56 1.35 1.66 0.77 0.75 0.79 44.56 43.79 45.58
1.2 500 1.22 1.09 1.29 0.54 0.52 0.58 40.14 38.90 41.53
1.4 500 1.05 1.01 1.08 0.38 0.36 0.39 36.42 36.10 36.86
1.6 500 1.00 0.96 1.04 0.32 0.31 0.34 34.47 33.84 35.31
1.8 500 0.96 0.90 0.98 0.30 0.28 0.31 34.87 33.19 38.15

2 500 0.95 0.93 0.97 0.28 0.27 0.29 34.05 32.83 38.02
1.05 1000 8.13 7.60 8.49 7.29 7.02 7.43 712.34 698.98 722.84
1.1 1000 6.50 5.96 6.98 4.47 4.18 4.83 529.41 512.33  546.82
1.2 1000 4.95 4.39 5.32 2.81 2.79 2.87 407.11 398.36  426.22
1.4 1000 4.25 4.08 4.48 1.92 1.87 2.06 342.29 335.75  362.38
1.6 1000 4.05 3.92 4.10 1.57 1.54 1.64 311.99 306.22  323.72
1.8 1000 3.83 3.7 3.96 1.40 1.36 1.45 298.28 295.92  304.04

2 1000 3.86 3.74 3.92 1.33 1.29 1.39 290.52 287.81  296.97
1.05 2000 31.78 30.48 34.13 38.17 37.60 39.18 - - -
1.1 2000 24.98 23.20 28.02 23.10 22.19 24.04 5766 5667 5907
1.2 2000 20.16 18.28 22.09 14.18 13.85 14.37 4503 4431 4612
1.4 2000 18.19 17.44 18.91 9.28 8.87 9.71 3605 3541 3639
1.6 2000 16.76 15.77 17.32 7.71 7.22 8.04 3285 3096 3450
1.8 2000 16.25 15.52 16.60 6.59 6.52 6.64 2939 2913 2977

2 2000 15.58 15.16 15.89 6.14 5.98 6.30 2904 2849 2999
1.05 4000 139.11 127.08 147.13 183.60 179.70  188.93 - - -
1.1 4000 107.15 99.64 112.47 111.72 109.23  113.11 - - -
1.2 4000 92.76 89.40 96.43 70.27 68.84 72.31 - - -
1.4 4000 81.78 80.03 83.01 47.09 46.26 47.69 - - -
1.6 4000 71.85 69.63 75.01 38.46 37.17  39.59 - - -
1.8 4000 70.34 67.66 71.34 34.17 33.36 34.66 - - -

2 4000 68.54 68.22 69.30 31.55 30.75 32.37 - - -
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Table 2. The running time (in seconds) of different greedy algorithms for different ¢’s and point sets between 4,000 and
10,000 points.

4 Points ¢ NQT-greedy FG-greedy

Average  Min Max Average Min Max
4000 1.2 79.16 71.01 82.58 52.21 50.69 53.14
5000 1.2 125.99 117.36  132.01 97.25 95.49 98.51
6000 1.2 189.66 172.03  210.59 141.62 138.16  144.86
8000 1.2 341.87 300.64 369.78 272.96 262.92  288.20
10000 1.2 552.69 503.64  588.29 454.21 445.26  461.40
4000 1.6 64.94 62.61 66.01 30.86 30.26 31.16
5000 1.6 100.85 96.85  106.63 51.03 50.61 52.25
6000 1.6 154.50 147.87  156.55 75.44 74.99 76.41
8000 1.6 271.16 257.74  284.87 145.73 142.05  151.29
10000 1.6 445.26 423.18  459.23 245.15 241.75  249.70
4000 2 58.27 57.22 59.71 25.43 24.87 25.90
5000 2 94.62 92.88 95.91 41.49 41.10 41.91
6000 2 140.05 137.80  141.40 61.55 60.84 62.41
8000 2 252.35 245.62  259.85 119.15 116.86  121.22
10000 2 408.48 400.75  412.49 199.58 195.75  201.54

Table 3. The running time (in seconds) of different greedy algorithms for ¢ = 1.1 and point sets between 4,000 to 12,000
points.

4 Points NQT-greedy FG-greedy

Average  Min Max Average Min Max
4000 92.69 81.87 99.2 80.23 79.47 81.59
4250 105.15 96.39  110.82 92.47 91.05 93.23
4500 118.79 110.23  123.87 105.09 104.34 106.1
4750 135.53 132.75 138.93 118.97 118.46 119.6
5000 140.13 140.13  140.13 134.53 134.53  134.53
5250 173.96 171.19  176.72 150.21 148.36  152.06
5500 183 164.25 198.06 166.96 166.63  167.24
5750 185.38 172.36  195.22 189.27 185.58  194.11
6000 201.9 186.54  230.86 207.02 205.94  207.97
6250 231.24 212.48  241.87 227.25 225.71 229.01
6500 257.32 249.68  272.27 252.62 248.89  254.79
6750 296.72 280.39  307.89 275.88 275.69  276.05
7000 291.66 262.57  309.64 298.93 294.64  304.43
7500 357.79 313.06 381.77 354.96 353.2 355.94
8000 421.41 398.03  440.03 413.96 411 417.98
8500 453.82 421.89  489.69 485.4 479.95  489.27
9000 518.84 495.74  538.07 559.1 553.38  563.87
9500 550.65 538.63  562.8 636.53 630.95  643.44
10000 624.94 593.38  649.05 714.04 709.55  719.32
10500 733.63 695.52  768.48 810.66 805.91  814.42
11000 820.26 748.16  886.68 902.61 899.47  906.71

11500 895.16 837.77  977.79 1022.11 996.05 1052.36
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Figure 1. Comparing running time of the greedy algorithms for ¢ = 1.02 and ¢ = 1.05 for point sets up to 4,000 points.
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Figure 2. Comparing running time of the greedy algorithms for ¢t = 1.1.
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Figure 3. Comparing running time of the greedy algorithms for ¢ = 1.6.

on a point set with 4,000 uniformly distributed points,
and for t = 1.05, this improvement is 40 seconds on the
same set.

As shown in Figure 2 and Table 3, the FG-greedy
and the NQT-greedy algorithm take almost the same
time, but the NQT-greedy runs faster for large enough
point sets, say sets of more than 8,000 points.

For larger values of t, say ¢t > 1.2, the FG-
greedy algorithm is faster, and the difference increases
when ¢ grows. However, as one can see in Figures 3
and 4, the running time of the NQT-greedy algorithm
grows slower than the running time of the FG-greedy
algorithm, which means that one can expect that the
NQT-greedy algorithm works faster if the point set is
large enough, say with a few million points which is

consistent with the analytical bounds of the algorithms
on uniformly distributed points. We were not able
to do experiments on larger point sets because they
would have needed a lot of memory. For applica-
tions with large point sets, the space complexity is
one of the major bottlenecks, so we suggest to use
an algorithm with linear-space complexity introduced
recently (see [8,9]). The time complexity of this linear-
space algorithm is slightly more than the NQT-greedy
algorithm, but because of its low space complexity, it
works much better on large point sets.

From the application perspective, one might want
to know, for his special case, which algorithm works
faster. To see this, based on experiments, there is
a diagram in Figure 5, which shows which algorithm
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Figure 5. In the cases above the graph, the NQT-greedy
algorithm runs faster than the FG-greedy algorithm.

works faster based on the number of points and the
value of . In all cases that lie below the graph, the
FG-greedy algorithm runs faster and above the graph
the NQT-greedy algorithm runs faster.

To see how sensitive are the greedy algorithms
to the distribution of input point sets, we tested the
algorithms on clustered point sets too. To make a
clustered point set with n points, we selected /n
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uniformly distributed squares and in each square we
put 4/n points. As seen in Figure 6, the FG-greedy
algorithm works almost the same for uniform and
clustered point sets for t = 2. For lower values of
t, say t = 1.05, the FG-greedy algorithm is faster
on clustered point sets. However, the NQT-greedy
algorithm is slower on clustered point sets and as
t decreases, the difference between running time of
the algorithm on uniformly distributed point sets and
clustered point sets increases. As seen in Table 4, the
ratio of the time used by the NQT-greedy algorithm to
the time used by the FG-greedy algorithm decreases
when we decrease t or increase n. However, its
decrease rate is small, but one can expect that for
sufficiently large point sets and for low values of ¢, the
NQT-greedy algorithm runs faster than the FG-greedy
algorithm.

4. Space usage comparison

As seen in the algorithms, the FG-greedy algorithm
needs more space compared to the original greedy
algorithm, since it uses a matrix to store distance
between all pairs of points in the generated graph.
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Figure 6. Comparing running time of the greedy algorithms for t = 2 and ¢t = 1.05 between uniformly distributed and

clustered point sets.
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Table 4. The running time (in seconds) of different greedy algorithms for clustered point sets (1st and 2nd columns) and

the ratio between them (3rd column).

t # Points NQT-greedy FG-greedy NQT-greedy/FG-greedy

1.05 1000 13.35
1.05 2000 62.82
1.05 3000 166.79
1.05 4000 315.82
1.1 1000 9.88
1.1 2000 44.44
1.1 3000 105.89
1.1 4000 202.25
1.4 1000 5.37
1.4 2000 25.40
1.4 3000 59.70
1.4 4000 107.88
1.8 1000 4.96
1.8 2000 22.72
1.8 3000 49.97
1.8 4000 93.61
2 1000 5.09
2 2000 23.26
2 3000 55.68
2 4000 94.24

4.83 2.76
27.30 2.30
69.66 2.39
139.89 2.26
3.44 2.87
19.86 2.24
45.49 2.33
87.90 2.30
1.81 2.96
9.86 2.58
23.09 2.59
43.85 2.46
1.46 3.40
7.20 3.16
17.96 2.78
32.38 2.89
1.46 3.50
6.75 3.44
16.85 3.30
31.12 3.03

Table 5. The space usage of different greedy algorithms for different ¢’s and point sets up to 4,000 points.

# Points Algorithm t =1.05

t=1.1 t=1.2 t=1.5 t=2

Original greedy  61.6 MB

n = 2000 FG greedy 92.2 MB
NQT greedy 547.8 MB
FG greedy 367.3 MB
n = 4000
NQT greedy 2.2 GB

61.5 MB 61.4 MB 61.4 MB 61.3 MB
92.0 MB 92.0 MB 91.9 MB 91.9 MB
511.7 MB 479.6 MB 451.7 MB  440.9 MB

367.1 MB 366.9 MB 366.8 MB  366.7T MB
2 GB 1.9 GB 1.8 GB 1.7 GB

The NQT-greedy algorithm uses extra space to keep
all operations performed by Dijkstra’s algorithm with
source at any point to be able to make undo and fixing
the shortest path computation after adding an edge to
the graph. It is therefore expected that this algorithm
uses a large amount of memory. As shown in Table 5,
the experiment shows this behaviour, but the memory
used by the NQT-greedy algorithm is much more than
what is expected. Based on the experiments, memory
usage of the FG-greedy algorithm is 1.5 times the
memory used by the original greedy algorithm. This
amount blows up to 5-6 times more space when using
the NQT-algorithm. So the main obstacle of using the

NQT-greedy algorithm is its memory usage, and any
improvement on this will be the main interesting future
work.

5. Future works

As for future works, one can study improving the space
complexity of the NQT-greedy algorithm, or improving
the worst-case time complexity of one of the recently
introduced linear-space algorithms, see [8,9,21]. An-
other interesting question is to design an algorithm for
constructing the greedy spanner in I/O-model which is
an interesting model for processing big data.
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