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Abstract. In this article, a forced reduced-order modeling approach, suitable for active
optimal control of 
uid dynamical systems, based on the Proper Orthogonal Decomposition
and perturbation method on the Reynolds-Averaged Navier-Stokes equations, is presented.
Numerical simulation of turbulent 
ow equations is too costly for the purpose of
optimization and control of unsteady 
ows. As a result, the POD/Galerkin projection
and perturbation method on the RANS equations is considered. Using the perturbation
method, the controlling parameter shows up explicitly in the forced reduced-order system.
The feedback control of the controlling parameter is one of the objectives of this study.
With the perturbation method, the e�ect of the controller is sensed by the 
uid 
ow at
each time step. The e�ectiveness of this method has been shown on optimal control of
the re-circulation problem for a turbulent 
ow over a step with blowing/suction controlling
jets. Actuators are positioned at two di�erent locations; blowing/suction jets at the foot
and edge of the step, and blowing/suction jets at the wall of the step. Results show that
the perturbation method is fast and accurate in estimating the re-circulated turbulent 
ow
over a step. It is concluded that blowing/suction jets at the wall of the step are more
e�cient in mitigating 
ow separation.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Flow separation over a backward-facing step in a
channel has a very simple geometry and, in the �eld
of 
ow control, is gaining considerable attention. Var-
ious studies have been performed on controlling the
location of the reattachment point behind backward-
facing steps with both laminar and turbulent 
ow.
These studies include passive and active control mech-
anisms. Passive control mechanisms incorporate �xed
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attachments to reduce or remove the separation bubble
behind the backward facing step for a given range of
operating conditions. Work on passive control mech-
anisms include the use of a permeable reattachment
surface [1], various step heights [2], porous surfaces [3]
and a row of three-dimensional surface humps [4]. The
active control method is performed using a di�erent
mechanism. Such methods include the use of blow-
ing/suction jets, a synthetic jet actuator and pulsating
inlet velocity. Ravindran [5] used tangential blowing
and suction through a single slot on the horizontal part
of the forward facing step to control laminar 
ow at
a 
ow Reynolds number of 1000. In another article,
Ravindran [6] did further investigation into reduction
of the reattachment length behind the backward-facing
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step. Control action was achieved through the blowing
of mass on the wall of the step. In these analyses, a
reduced order modeling approach, suitable for active
control of 
uid dynamical systems based on proper
orthogonal decomposition, was used. The e�ectiveness
of this method in 
ow control applications is shown on
a recirculation control problem behind the step using
blowing or suction on the channel boundary. Ja�nour
and Jon�a�s [7] studied the e�ect of blowing or suction
jets at the foot of the step with a momentum coe�cient
of 0.06 on a separated recirculation zone behind the
backward facing step. Kiwan [8] investigated the
localized wall discharge (blowing/suction jet) to control
the recirculation zone and heat transfer characteristics
downstream of a backward-facing step. The actuator
was positioned on the wall opposite the step wall.
Standard k � " and RNG k � " models were used for

ow simulations. In the work presented by Dejoan and
Leschziner [9], the e�ects of a periodic perturbation
control strategy on step 
ow were investigated using
Large Eddy Simulation. The controlling jet at the
spanwise edge of the step, with zero-net-mass-
ow rates
and a Strouhal number of 0.2, was introduced into the
separated shear layer 
ow behind a backward-facing
step in a high-aspect-ratio channel. In agreement
with the experimental data, results show that the
computed reattachment length reduced by about 26%.
In order to further investigate turbulent 
ow over a
backward-facing step, Dejoan et al. [10] used large
eddy simulation and statistical turbulence closures. A
synthetic jet at the edge of the step, at an angle of 45
degrees relative to the 
ow direction, was introduced
as a control device. Computed results showed that
for a jet frequency with a Strouhal number of 0.2,
the separation bubble was reduced by almost 30%.
In the �eld of active 
ow control, �Saric et al. [11]
studied turbulent 
ow over a backward-facing step.
Alternative blowing/suction jets at the edge of the
step were used as an actuator. Large eddy simulation,
Detached eddy simulation, and transient Reynolds-
averaged Navier-Stokes techniques were proposed for

ow simulation. The 
ow Reynolds number was 3700.
The periodic blowing/suction jet velocity with zero-
net-mass-
ux was governed by a sinusoidal law: ve =
0:3Uc sin(2�fet), where Uc is the centerline velocity
in the inlet channel. Di�erent jet frequencies, fe,
corresponding to the Strouhal numbers (St = feH=Uc)
of 0.08, 0.19 and 0.30 were used as the controlling
parameter. Results show that the most e�ective case
was St=0.19.

Performing the control law on di�erent systems,
such as 
ow over a step in a channel, requires a large
amount of CPU time and memory. Recently, low
dimensional modeling by POD/Galerkin projection has
received more attention as a means to overcome this
problem. This method, which converts the system of

an in�nite dimension to a much smaller dimension, has
almost the same behavior as the original system, and
captures the essential dynamics of the reference system.
Hence, 
ow control is employed for this low order
model. Several researchers have investigated POD and
low dimensional modeling [5,12-16]. In addition, POD
has been applied for 
ow control purposes [5,6,15,17].
However, performing low dimensional modeling and
using it in the �eld of 
ow control presents two major
problems. First, the base functions or POD modes
can accurately reconstruct ensembles of data that were
employed in calculating POD modes. These ensembles
of data are used with speci�c control, or without taking
any controlling e�ects into consideration. Therefore,
the reconstructed POD modes will not contain the
e�ect of the controller. Second, the control input, such
as the 
ow rate of blowing/suction jets, does not show
up explicitly in the �nal low dimensional system, thus,
the �nal system is not ready for control purposes. To
handle these problems, the perturbation method on
the Reynolds-Averaged Navier-Stokes equations will be
introduced. The blowing/suction jet velocity, which is
known as the controlling parameter, will be considered
as a small perturbation on the boundary of the domain.
Therefore, control parameter will appear explicitly in
the reduced order model. This method is more e�cient
and accurate in the �eld of optimal control theory, with
respect to other schemes based on the POD/Galerkin
projection method. This paper presents an optimal
technique for reducing the problem of controlling the
separation bubble behind a backward facing step by
injecting and extracting 
uid near the step wall. It is
shown that the size of the separation bubble behind
the step is signi�cantly reduced by a pair of blowing
suction jets at the wall of the step.

In the following, 
ow simulation and the
POD/Galerkin projection method are described.
Then, the perturbation method and forced low dimen-
sional model are explained. The next part explains
the optimal control procedure and, �nally, the results
are compared with some available experimental data or
numerical results. Discussion about the e�ectiveness
of the perturbation method and controlled numerical
results are presented in the last section.

2. Simulation of the turbulent 
ow �eld

2.1. Governing equations
In order to analyze turbulent 
ow, within reasonable
CPU time consumption, over a backward-facing step
in the duct, a suitable turbulence model must be
chosen. In the present analysis, the Re-Normalized
Group theory (RNG) k�" turbulence model [18] is used
for 
ow simulation. The main feature of this turbulence
model is its capability of capturing separation and re-
circulated 
ow �elds e�ciently [19].
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Governing equations for incompressible 
ow in a
Cartesian coordinate system can be described as:

Continuity equation:

@�ui
@xi

= 0: (1)

Momentum equation:
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Here, �Lij is the laminar (molecular) constituent of the
stress tensor de�ned by:

�Lij = �
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and Sij is the strain rate tensor given by:
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Using the Boussinesq approximation [20], the turbulent
stress tensor appears as:
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� 2

3
�k�ij : (5)

�t is the turbulent viscosity de�ned by the RNG k � "
turbulence model. The last term within the turbulent
stress tensor plays a role similar to that of the pressure
in the total laminar stress tensor. Therefore, this
term will be referred to as the turbulent pressure and
denoted as pT = 2=3�k.

Turbulent kinetic energy [18]:
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Dissipation rate [18]:
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�e� = �t + � and S =
p

2SijSij :

Turbulent viscosity:

�t =
�c�k2

"
: (8)

R0 in Eq. (7) is de�ned as: R0 = c���3(1��=��)
1+��3

"2
k ,

� = Sk=", �� = 4:83, and � = 0:012 [18]. The other
experimental constants are: c� = 0:0845, c1" = 1:42,
c2" = 1:68, �k = �" = 0:718.

Variables with the over bar \-" are the time
averaged values. Hereafter, for the sake of simplicity,
the over bar on dependent variables will be omitted.

2.2. Computational domain and boundary
conditions

The computational domain and boundaries of this
study are illustrated in Figure 1. The computational
domain extends to l = 30Hs upstream of the step.
The outlet boundary should be far enough (L � 4xr,
where xr is a reattachment length) that the results will
be independent of the outlet boundary position. Step
height is Hs = 1 and duct height is H = 2Hs. The
boundary conditions over this geometry are as follows:

(1) At the in
ow boundary, �in, a constant normalized
velocity of u = 1:0 and v = 0:0 is imposed. For k
and ", a constant value of 0.01 and 0.05 is used.

(2) At the out-
ow boundary, �out, the out
ow condi-
tion is speci�ed (zero gradients of each 
ow vari-
able in the streamwise direction are considered).

(3) On the solid walls, �wall, a no slip condition (u =
0:0 and v = 0:0) is imposed. Values of k and "
for the �rst grid point near the walls are predicted
by the standard wall function. y+near the walls
(y+ = yu�=v where u� is the friction velocity)
is taken to be more than 30. The boundary

Figure 1. The computational domain
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conditions for k and " on the walls are: @k=@n = 0
and @"=@n = 0, where n is the normal coordinate
to the wall.

(4) For the surface actuation, two di�erent controlling
cases are considered (see Figure 1):

� Case C1: Blowing/suction jets are at the foot
and edge of the step with tangential and normal
velocities of (u; v) = (0;�"p);

� Case C2: Blowing/suction jets are at the step
wall, blowing at the foot of the step, and suction
at 0:7Hs, with tangential and normal velocities of
(u; v) = (�"p; 0).

The governing equations (Eqs. (1)-(8)) are solved
on a staggered grid system using the �nite volume
method with the SIMPLE algorithm [21]. The non-
dimensional equations are transformed into a curvi-
linear coordinate system. The conservation laws are
integrated over a control volume, and the Gauss theo-
rem is used to transform volume integrals into surface
integrals. The power law scheme is used in discretizing
convective terms of the governing equations. Di�usion
terms are discretized by central di�erencing. The
unsteady state 
ow �eld is obtained by solving 
ow
equations for each time step.

3. Reduced order system

3.1. Review of classical proper orthogonal
decomposition/Galerkin projection

POD and Galerkin projection are tools for producing
reduced order systems from the large data sets. The
central idea of POD is to obtain a subspace of the large
data sets in such a way that it optimally spans the data.
In other words, error in the projection of the data onto
the subspace of the POD modes is minimized. Details
and fundamentals of POD can be found in Berkooz et
al. [12]. In performing POD modes, it is necessary to
solve an eigenvalue problem as:Z



R(x; �)'nd� = �n'n(x) n = 1; 2; :::; (9)

R(x; �) is a two point correlation that must be pro-
duced from the experimental or numerical data sets,
x and � are vector coordinates of two points in
the domain of 
. �n and 'n are eigenvalues and
orthonormal eigenfunctions, respectively, and n is the
number of modes. Numerical simulation of the 
uid

ow is available atm discrete grid points and n di�erent
times. In this case, R(x; �) is replaced with a matrix
Pij = 1=n

Pn
k=1 u(xi; tk) u(xj ; tk), i; j = 1; 2; :::;m and

the eigenvalue problem based on Eq. (9) is reduced
to �nding eigenvalues and eigenfunctions of the P
matrix. Solving the eigenvalue problem for the m�m

matrix over the computational domain is intensive, and
the method using snapshots, which was introduced by
Sirovich [22], can be used. Based on this method, it
su�ces to solve the n-dimensional eigenvalue problem,
where n is the number of snapshots. The eigen system
takes the form:

U!i = �i!i; (10)

where the correlation matrix, U , is de�ned as:

Uij =
1
n

(ui;uj) i; j = 1; 2; :::; n

ui = [u(x1; ti) � � � u(xm; ti)] : (11)

U is a non-negative Hermitian matrix, so it has a
complete set of orthogonal eigenvectors, !i. Thus, the
POD mode is assumed to be a linear combination of
the data vectors:

'1 =
nX
i=1

!1
i ui '2 =

nX
i=1

!2
i ui � � � 'n =

nX
i=1

!ni ui:
(12)

For the inner product h:; :i, it is now easy to check:

h'i; 'ji =

8<:1 i = j

0 i 6= j
(13)

See [6] for details.
Once the POD modes are obtained, as described

here, the velocity vector at any speci�c instance can be
reconstructed by POD modes as:

u(x; t) =
nX
j=1

aj(t)'j(x); (14)

where, aj(t) is the time dependent coe�cient of the
POD decomposition and 'j(x) is the vector of POD
modes.

It is also customary to remove the average value,
u�, from snapshots prior to calculation of the POD
modes:

u(x; t) = u� +
nX
j=1

aj(t)'j(x): (15)

The reduced order model is developed by Galerkin
projection on the Reynolds-Averaged Navier-Stokes
(RANS) equations. Consider the following dy-
namical system, which is governed by the Time-
Averaged incompressible Navier-Stokes equations in
non-dimensional form:

@u
@t

= �rp+ L1(u) +Q(u;u) + L2(u); (16)

where, L1 and Q are linear and quadratic bilinear
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operators, respectively:

L1(u) =
1

Re
r2u;

Q(u;u) = �(u:r)u;

and :

L2(u) =r:
�
��t
Re

(ru +ruT )
�
:

��t is non-dimensional turbulent viscosity, and p is
a combination of the pressure term and turbulent
pressure, pT = 2=3�k.

Substituting Eq. (15) into the RANS equations
and taking the inner product of the resultant equation,
with respect to 'i, the set of nonlinear Ordinary
Di�erential Equations (ODEs) is obtained as a result
of the orthonormal property of the POD modes:

_ai = hR;'ii;
R = L1(u) + L2(u) +Q(u;u)�rp: (17)

The inner product is de�ned as:

hc1; c2i =
Z



c1(x):c2(x)d
: (18)

An important property of orthonormal POD mode
functions is that, if every snapshot satis�es a given
linear constraint, then, the POD modes will satisfy that
constraint also. An example of that constraint is the
divergence free condition for velocity in incompressible

ow. Therefore, for incompressible 
ow, using the di-
vergence free property of the POD modes, the pressure
term can be reduced to [14]:

hrp;'ii =
Z



'i:rpd
 =

Z



div(p'i)d


=
Z
@

p'i:nds: (19)

The main advantage of Eq. (14) is that the pressure
term will be needed solely on the boundary of the
domain, @
, and for zero velocity and zero mode
function on the boundary, the pressure term in Eq. (17)
will vanish. Finally, after some manipulations, the
reduced order system (Eq. (17)) can be written as
follows:

_ai = �i + �ijaj + 
ijkajak; (20)

where:

�i = hL1(u�) + L2(u�) +Q(u�;u�);'ii;
�ij=hL1('j)+L2('j)+Q(u�;'j)+Q('j ;u

�);'ii;

ijk = hQ('k;'j);'ii:

3.2. Introducing perturbation method
Eq. (20) is in the state space format, which is applicable
for control purposes. However, this set of equations
is autonomous and the e�ect of the actuator is still
buried in the boundary conditions. Besides, the POD
modes are obtained without any controlling e�ects.
In this section, the perturbation method proposed to
remedy these problems is investigated. Considering
control input as a small perturbation in the boundary
conditions, the objective is to �nd the resulting changes
in the 
ow due to these disturbances. Let us perturb
the dependent variables by "p:

u = uo + "pu1;

p = po + "pp1; (21)

where variables with subscripts \o" and \1" are the
time averaged 
ow variables without any control input
(or with a speci�c controller) and with controlling
e�ects, respectively. It is important to notice that the
simple step or impulse controlling jet is inserted on
the boundary conditions of the perturbation equations
and "p is introduced as the perturbation parameter.
Substituting the perturbed 
ow variables in the incom-
pressible Time-Averaged Navier-Stokes equations and
ignoring terms with powers of "p greater than one, the
following equations will be obtained:

r: (uo + "pu1) = 0;

@(uo + "pu1)
@t

=�r (po+"pp1)+
1

Re
r2 (uo+"pu1)

+r:
�
�t
Re

(r(uo + "pu1)

+r(uo + "pu1)T )
�
� (uo:r)uo

� "p(uo:r)u1 � "p(u1:r)uo: (22)

The coe�cients of the power of "op("op = 1) and "1
p("1

p =
"p) should be set equal to zero, since they are linear
independent. Therefore, two sets of equations will be
obtained.

1) Uncontrolled time-averaged Navier-Stokes equa-
tions, which are labelled as equations A:

r:uo = 0

@uo
@t

=�rpo +
1

Re
r2uo

+r:
� �t

Re
(ruo +ruTo )

�� (uo:r)uo:
(23)
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2) Time-averaged linear perturbation equations,
which are labelled as equations B:

r:u1 = 0

@u1

@t
=�rp1 +

1
Re
r2u1

+r:
� �t

Re
(ru1 +ruT1 )

�
� (uo:r)u1 � (u1:r)uo: (24)

The set of equations A are the incompressible nonlinear
RANS equations governed by the uncontrolled 
ow
�eld (or 
ow �eld with speci�c control input), and they
will be solved with the RNG k � " turbulence model.
Besides, the set of linear equations B is calculated based
on the solution of the set of equations A. The control
inputs will be imposed on the boundary conditions
of the perturbed equations. In addition, a turbulent
model should be used in solving the set of equations
B. Here, the RNG k � " equations are not perturbed.
Actually, they will be solved in each iteration process of
the solution algorithm. This will cause the e�ect of the
blowing/suction jet on 
ow turbulence to be considered
in �t (turbulent viscosity coe�cient). It is noteworthy
that �t will be solely timed to the perturbation velocity
(Eq. (24)). Therefore, the e�ect of the new �t with
blowing/suction will not be considered on the RANS
equations (Eq. (23)). Turbulent 
ow separation over
the backward-facing step is controlled by a pair of
blowing/suction jets, and the jet velocity on the solid
walls is introduced as a control input. The value of the
control inputs or the velocity of the blowing/suction
jets are not known at this stage and, because of the
linearity of the set of equations B, a simple step or
impulse can be used as a control input. Finally, the
full controlled 
ow �eld can be estimated based on
Eq. (21). The accuracy of the perturbation method
is investigated for the turbulent 
ow over a backward-
facing step at di�erent 
ow Reynolds numbers of 20000
and 44000 (see Section 5.2).

3.3. Forced reduced order model
If
�
'j 2 Hjj = 1; 2; :::; n

	
are POD modes calculated

by POD analysis of the ensembles fuo(x; tk) 2 Hjk =
1; :::; ng with averaged values of u�, the velocity �eld,
considering the e�ects of the control inputs from a pair
of blowing/suction controlling jets, can be expanded
as:

u(x; t) = u�(x) +
nX
j=1

aj(t)'j(x) + "pu1(x; t): (25)

u1(x; t) is the response of the set of equations B to im-
pulse input as a boundary control input. Substituting

Eq. (25) into 
ow �eld equations (RANS equations)
and taking the inner product, with respect to the
mode function, 'i, the non-autonomous forced low
dimensional model will be obtained because of the
orthonormal property of the POD mode functions:

_ai = �i + �ijaj + 
ijkajak + �i"p + �ijaj"p; (26)

where:

�i = hL1(u�) + L2(u�) +Q(u�;u�);'ii;
�ij=hL1('j)+L2('j)+Q(u�;'j)+Q('j ;u

�);'ii;

ijk = hQ('k;'j);'ii;
�i=hL1(u1)+L2(u1)+Q(u�;u1)+Q(u1;u�)� _u1;'ii;
�ij = hQ(u1;'j) +Q('j ;u1);'ii:

In these nonlinear ODEs, the controlling input or
perturbation parameter, "p, appears as the coe�cient
of the terms �i and �ij , and optimal control theory
can be applied to these equations. Obviously, based
on the perturbation method, two sets of ensembles,
fuo(x; tk)g and fu1(x; tk)g, should be gathered in
performing the control procedure.

4. Optimal control

The blowing/suction jet velocity is the controlling
parameter, which is presented as "p in the forced low
dimensional model (Eq. (26)). The control problem
is to �nd the time variation of "p on a speci�c time
interval, [to; tf ], in such a way that cost function, J , [15]
is minimized:

J =
1
2

Z tf

to

�Z


�2d
 +R"2

p

�
dt; (27)

where, � is the vorticity and R is a positive constant
regarding the control input, "p. The vorticity �eld can
be expanded by mode functions:

� =
nX
i=1

ai(t)�i(x); (28)

where, �i is the vorticity of the ith mode and ai is
the coordinates of � in subspace S. After substituting
Eq. (28) into the cost function equation, J , Eq. (27)
reduces to:

J =
1
2

Z tf

to

�
aTQa+ "TpR"p

�
dt; (29)

where:Z


�i�jd
 = Qij : (30)

Optimal control of the forced low dimensional model
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can be performed by introducing the Hamiltonian
functional [23]. The Hamiltonian functional comprises
a reduced order model (Eq. (26)) and index function
(Eq. (29)). By di�erentiating the Hamiltonian func-
tional, the state, co-state and stationary condition
equations will be obtained. The perturbation parame-
ter, "p, is derived from the linear algebraic stationary
condition equation:

"p = �i�i + �ij�iaj ; (31)

where:

�i = � �i
2R

;

�ij = ��ij
2R

:

After performing some manipulations on the state,
costate and stationary condition equations, the non-
linear set of ODEs, which govern the optimal be-
haviors of the forced reduced order system, will be
obtained:

_ai =�i + �ijaj + 
ijkajak + �i�j�j + �i�hj�haj

+ �ij�k�kaj + �ij�kh�kajah;

_�i = (Qij +Qji) aj + �ij�j + (
kji + 
kij)aj�k

+ �ki�k�k�j + �ki�lj�lak�k: (32)

The initial conditions are:

a(t = to) = ao;

�(t = tf ) = 0:0: (33)

�i is the ith costate variable or Lagrange multiplier.
These sets of equations are nonlinear with split initial
conditions. The method of Quasi-linearization of
Kirk [23] in an iterative manner will be used to solve
them (see Appendix A). Finally, the value of "p will
be computed at the time interval, �t� > �t (�t is
the time step size of 
ow simulation), for each positive
value of constant R in Eq. (27). In the following,
the step by step procedure of calculating "p and the

owchart of the control procedure (Figure 2) at each
time interval, �t�, are given.

i. Computing the snapshots fuo(x; tk)g by solving
RANS equations with a RNG k� " model without
any control input (or with speci�c controller), and
calculating POD modes by solving an eigenvalue
problem;

ii. Setting the index of time step i to 1 (i = 1) and
letting "pi = 1;

Figure 2. Feedback control procedure.

iii. Computing snapshots fu1(x; tk)g by solving the
perturbed RANS equations (set of equations B)
with the RNG k � " turbulent model, and control
input parameter, "pi, set as a boundary condition;

iv. Solving the set of Eq. (32) and (33) by the quasi-
linearization algorithm of Kirk [23] and calculating
a new value for "p(i+1) (Eq. (31));

v. If error = j"pi+1 � "pij � 10�5, the iterative
procedure has converged and goes to step vi,
otherwise add 1 to i and go to step iii;

vi. The procedure is completed and the control input
parameter is obtained.

5. Example: Turbulent 
ow over
backward-facing step

5.1. Validation of the 
uid 
ow simulation
code

The veracity of the developed SIMPLE code is ex-
amined by computing the 
ow �eld over a backward-
facing step at the 
ow Reynolds number of 44000. The
numerical results should be independent of grid size.
Therefore, di�erent grid distributions are studied (see
Figure 3). Based on a grid independency check, the
computational domain is discretized by 199 � 53 grid
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points. The computed reattachment length by this
grid is estimated as xr = 7Hs, while Kim et al. [24]
reported it as between 6:5Hs and 7:5Hs (Hs is step
height). Comparison of the predicted velocity pro�le
with the experimental results of Kim et al. [24] at
di�erent distances of x = 2:66, 5.33, 6.22 and 8.00
from the step position is presented in Figure 4. Results
show that RNG k�" code developed in this article has
good agreement with experimental results. In these
calculations, y+ near the walls (y+ = (yu�=v where u�
is the friction velocity) is taken to be more than 30.

5.2. Accuracy of the perturbation method on
the RANS equations

In order to investigate the accuracy of the perturbation
method, a steady state turbulent 
ow over a backward-
facing step is simulated by two di�erent methods. For
both methods, the 
ow Reynolds number is taken to
be 20000 and 44000, and a pair of blowing/suction jets
is introduced as a controller.

Method i: RANS equations are solved with the RNG

Figure 3. x-velocity contours with di�erent grid
distributions. Solid line: 199� 53 grid points; dashed line:
209� 80 grid points, and dashed-doted line 299� 100 grid
points.

k�" turbulent model, and a pair of blowing/suction jets
with constant velocity of "p is used as controller. (Cases
C1 and C2 presented in Figure 1 are investigated.)

Method ii: At �rst, RANS equations with the RNG
k�" turbulent model (Eq. (23)) without any controller
(Case C1) or with a speci�c controlling jet (Case
C2) are solved. Then, the perturbed 
ow equations
(Eq. (24)) are solved with a pair of blowing/suction
controlling jets with constant velocity of one (per-
turbed 
ow equations are solved with the RNG k � "
turbulent model). The resulting 
ow �eld, with a
di�erent controlling jet velocity of "p, is computed
using Eq. (21).

X-velocity pro�les near the lower wall of the step,
at y = 0:04 and 0 � x � 40, for di�erent perturbation
parameters of "p = 0:1 and 0.5 for Case C1, and 
ow
Reynolds numbers of 20000 and 44000, are presented in
Figure 5. Results of the perturbation method (Method
ii) are in good agreement with 
ow simulations based
on the RANS equations and the reattachment length
is estimated properly. It should be noted that as the
perturbation parameter grows, the deviation of the 
ow
�eld between the two methods is more pronounced.
Still, the results are good enough for the purpose of the
control procedure, with respect to the existing methods
in which the e�ect of a controller on the 
ow �eld is
not taken into account.

For Case C2, the set of equations A is solved
with a speci�c controlling jet (u; v) = (�1; 0). X-
velocity pro�les at y = 0:04 near the lower wall of
the step are simulated by Methods (i) and (ii) for
perturbation parameters of "p = 0:5, 1, 1.5 and 2,
which are presented in Figure 6. Computational results
show good agreement between the RANS solution and
the perturbation method. It can be concluded that
the perturbation method with controlling jets on the
wall of the step is more e�cient in predicting the 
ow

Figure 4. Comparison of numerical and experimental values of x-velocity pro�les at di�erent locations. (� Experimental
results of Kim et al. [24], | present numerical results).
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Figure 5. Comparison of the x-velocity pro�les computed
by di�erent methods for Case C1. � Method i and - - -
Method ii.

Figure 6. Comparison of the x-velocity pro�les computed
by di�erent methods for Case C2. � Method i and - - -
Method ii.

�eld over the step. This is mainly due to the smaller
separation zone, with respect to Case C1.

5.3. Flow simulation by POD/Galerkin
projection method

Unsteady turbulent 
ow over a backward-facing step
at a Reynolds number of 44000 is estimated by solving
RANS equations with the RNG k� " turbulent model.
The time step size is taken to be �t = 0:005. POD is
carried out on 40 snapshots of the solutions obtained
by simulating the Reynolds Averaged Navier-Stokes
system in the nondimensional time interval [4.8,5].
Eigenvalues that represent the average energy of snap-
shots gained by each base function are presented in
Figure 7. The x-velocity contours reconstructed by
40 POD modes for a speci�c snapshot at a non-
dimensional time of t = 5 are compared with the RANS
solution in Figure 8(a) and (b) presents the comparison
of x-velocity contours reconstructed by 5 POD modes.
As shown in this �gure, a good agreement with the

Figure 7. Variation of the eigenvalues.

Figure 8. Comparison of the x-velocity contours. Solid
line: RANS solution and dashed line: POD analysis at
non-dimensional time t = 5: (a) 40 POD modes; and (b) 5
POD modes.

Figure 9. Comparison of the x and y-velocity contours.
Solid line RANS solution and dashed line: POD analysis
at non-dimensional time t = 4:9.

RANS solution for 5 POD modes is also achieved. The
results show that di�erent cases with 40 and 5 POD
mode functions estimate the turbulent 
ow �eld over
a step accurately. In order to study the accuracy
of the POD/Galerkin projection method, the POD
modes with 40 snapshots in the non-dimensional time
interval [4,4.2] are generated to obtain the 
ow �eld at
a non-dimensional time of 4.9. The obtained results are
in good agreement with the RANS solution, as shown
in Figure 9.

In order to study the stability of the reduced order
model, the evolution of the time coe�cients, a1 and
a2, of the �rst two POD modes at non-dimensional
time interval [0,5] are shown in Figure 10. As is
apparent, the time-dependent coe�cients asymptote to
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a constant steady-state value as time increases, and
COR tends to 1 as time increases.

Root Mean Square Error (RMSE) and correlation
coe�cients (COR) are de�ned as:

RMSE =

sPng
i=1(ui � upodi)2

ng
; (34)

COR =
Png
i=1(ui � �u)(upodi � upod)pPng

i=1(ui � �u)2
pPng

i=1(upodi � upod)2
;
(35)

where, ng is the number of grid points and ui and
upodi are RANS and POD reduced order model so-
lutions, respectively. �u and upod are time averaged
solutions corresponding to the RANS solution, and
POD reduced order model results over non-dimensional
time interval [0,5]. The RMSE and COR between
the RANS solution and the reconstructed 
ow �eld by
POD/Galerkin projection are presented in Figure 11.
It is clear that RMSE is reduced and that COR reached
1 as time increased.

5.4. Flow control results
Reduction of the reattachment length or removing the
separation bubble is the main goal of the 
ow control
over a backward-facing step. In this article, a 
ow
Reynolds number of 44000 is investigated. To simulate
the performance of the controller, two sets of snapshots

Figure 10. Evolution of the time coe�cients a1 and a2.

Figure 11. Variation of RMS and COR with respect to
non-dimensional time.

should be taken; one from the solution of RANS
equations with the RNG k � " turbulent model, with
zero controlling a�ects for Case C1, and with a constant
jet velocity of one for Case C2 (hereafter referred to
as unforced snapshots). The next snapshots are taken
from the solution of the perturbed RANS equations
with the RNG k � " turbulent model (Eq. (24)).
A control input with constant jet velocity of 1 is
introduced in the boundary condition of the perturbed

ow equations. They will be called forced snapshots.
Forty snapshots for each set of equations A and B
are taken in the time interval of �t� = 1. A pair
of blowing/suction jets is introduced as controlling
jets. At �rst, the POD modes are calculated based on
unforced snapshots. Then, the unknown parameters,
such as �i, �ij and 
ijk in Eq. (26), are computed.
The parameters, �i and �ij , are obtained by forced
snapshots. Substituting the results into Eq. (32), the
resulting equations are solved by the quasi-linearization
algorithm of Kirk [23] (The algorithm is presented in
Appendix A). Finally, the perturbation parameter, "p,
is computed for each time interval, �t�, by Eq. (31).
This procedure is repeated until the speci�c value
for the perturbation parameter is obtained. In this
study, two di�erent controlling devices are investigated,
namely, Cases C1 and C2 (see Figure 1). The selection
of the position for blowing/suction jets is crucial for the
e�ectiveness of the control. Here, controlling results for
Cases C1 and C2 and the e�ects of controlling jets on
the reattachment length behind the backward-facing
step are discussed.

Case C1: Here, we analyze the controlling results of
the blowing/suction jets at the foot and edge of the
step. The perturbation parameter or blowing/suction
controlling jet velocity variation, with respect to time,
for di�erent values of positive constant R (Eq. (29)), is
presented in Figure 12. Control input or jet velocity
becomes larger with time as the separation bubble
grows and becomes constant after transient e�ects
decay. The sensitivity of the 
ow control problem
is analyzed for a di�erent number of snapshots, such
as 10, 20 and 40, in Figure 13. It is obvious that
for a di�erent number of snapshots for speci�c time
interval �t� and positive constant R, the results
are similar, and jet velocity becomes larger as the
separation region grows. Values of the reattachment
length, with and without control, for di�erent values of
the positive constant R are listed in Table 1. Results
show that controlling jets perform better as positive

Table 1. Reattachment length with and without control for di�erent values of the positive constant R (Case C1).

R 2:0� 10�6 1:0� 10�6 9:0� 10�7 8:0� 10�7 No control
xr 6.76 5.07 4.35 3.14 6.95

Reduction 2.7% 27% 37% 54% |
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Figure 12. Control input variation with respect to time
for di�erent values of positive constant of R for Case C1
(t s is a time of steady state 
ow).

Figure 13. Control input variation with respect to time
for speci�c value of �t� and di�erent number of snapshots
for Case C1.

Figure 14. Variation of reattachment length with respect
to time with and without controlling blowing/suction jets
for Case C1 (t s is a time of steady state 
ow).

constant R becomes smaller. The separation region
is reduced by 54% for the case with R = 8 � 10�7.
Time variation of the reattachment length in di�erent
controlling conditions, based on di�erent values of the
positive constant R (see Figure 12) and without a
controller, is presented in Figure 14. It is obvious
that the separation zone is suppressed at all times for
unsteady 
ow over the step. Streamlines with and
without control behind the step, at di�erent times, are
presented in Figure 15. They clearly indicate that the
separation bubble is suppressed by the action of the
controller. For further investigation of the accuracy of

Figure 15. Streamlines and x-velocity contours at
di�erent times for Case C1 (left without control, right
with blowing/suction jet control, R = 8:0� 10�7).

the proposed model, the results of the controlling case
using the perturbation method, for two di�erent times
(at R = 8:e � 7), are compared with RANS solutions
in Figure 16. We conclude that the accuracy of the
perturbation method will be increased as the "p and
non-dimensional time are reduced.

The next objective is to comment on the CPU
time required for solving the perturbed RANS equa-
tions in comparison to the RANS equations with
blowing/suction jet actuators. For the 
ow Reynolds
number of 44000, the residual histories for solving
the set of equations A and B with the impulse input
as the controlling jet velocity in steady state form,
are shown in Figure 17. From this �gure, perturbed

ow equations that are linear successfully accelerate
convergence, compared to solving nonlinear RANS
equations. Therefore, in performing optimal control
theory, the consumption of CPU time for computing
perturbed equations is much less than that for cases of
solving RANS equations.

Case C2: The computational domain is similar to
Case C1. The blowing/suction jets are located at
the wall of the step (blowing at the foot and suction
at 0:7Hs). Optimal control input or perturbation
parameter variation, with respect to non-dimensional
time, and for di�erent values of positive constant R,
is shown in Figure 18. Controlling results indicate
that the perturbation parameter increases with time
and becomes constant when steady state condition is
reached. The horizontal velocity contours, with and
without control, at a non-dimensional time of 50, are
shown in Figure 19. As indicated in velocity contours,
the separation region has been e�ectively eliminated
by the action of the controlling jets for the case of
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Figure 16. Comparison of the x-velocity pro�les
computed by di�erent methods of the RANS solution and
perturbation method with a pair of blowing/suction
controlling jets for Case C1.

Figure 17. Residual histories for solving RANS
equations: (a) Perturbed RANS equations, (b) with
impulse input as control input in steady state form for
Case C1.

R = 1:e � 9. It is obvious that the location of the
blowing/suction jets is crucial for the optimal perfor-
mance of the controller. Unlike Case C1, the curvature
of the streamlines is smooth and the controlling jets
completely suppress the separated region.

From the CPU time analysis, it can be concluded
that application of the perturbation method on the

Figure 18. Control input variation with respect to time
for Case C2 with a Reynolds number of 44000.

Figure 19. x-velocity contours with and without control
for Case C2.

RANS equations in solving the optimal control problem
is bene�cial. Besides, it can be shown that the
perturbation method is more accurate in comparison
to the classical POD method used by Ravindran [6].
To study the performance of the perturbation method,
the simulation of 
ow control over backward-facing is
carried out. The control is performed through blowing
on the portion of the boundary near the step foot in
the form:

(u; v) =

8<:
�
c(t)30y(1

4 � y); 0
�

0 � y � 1
4

(0; 0) 1
4 < y � 1

: (36)

Values of control input or perturbation parameter,
c(t), for turbulent 
ow over a step with 
ow Reynolds
number of 44000 can be estimated by the perturbation
parameter, "p, presented in Figure 12. A speci�c case,
with positive constant R = 8:0 � 10�7, is chosen for
further investigation. To study the performance of the
perturbation and POD methods, turbulent 
uid 
ow
over a step is simulated by three di�erent methods:

Method 1. RANS simulation: The turbulent 
ow
over the step with 
ow Reynolds number of 44000 is
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simulated by solving RANS equations with the RNG
k�" turbulent model. A blowing jet near the step foot
in the form of Eq. (36), with c(t) = "p, for a speci�c
case of R = 8:0� 10�7, is used as a controller.

Method 2. Perturbation method: RANS equations
(set of equations A) are solved �rstly without any
control input. Then, perturbed 
ow equations (set of
equations B) are solved with the controlling jet. In
this case, impulse input or perturbation parameter,
c(t) = "p = 1 (Eq. (36)), is used as the controller.
Finally, the 
ow �eld with a speci�c control input of
c(t) = "p is computed by Eq. (21).

Method 3. POD method: From the POD method of
Ravindran [6], the velocity expansion is de�ned as:

u(x; t) = u�(x) +
nX
j=1

aj(t)'j(x) + c(t)uc(x); (37)

where:

uc(x) =
uc1(x)� uc0(x)

c1 � c0 ; (38)

and uc1(x) is a steady state 
ow velocity with a blowing
controlling jet in the form of c(t) = 1, and uc0(x)
is steady state 
ow velocity with c(t) = 0 for the
blowing controlling jet. The snapshots are de�ned
as u(x; tk) � c(tk)uc(x). Overall, by inserting the
velocity expansion (Eq. (37)) into RANS equations and
using a Galerkin projection method, a set of ordinary
di�erential equations for the time coe�cients, aj(t),
is obtained. By calculating these coe�cients and
using the controlled values of c(t) = "p, similar to
the perturbation method (Figure 12), the 
ow �eld
can be simulated by applying Eq. (37). The �rst
and second POD modes used in these calculations
are plotted in Figure 20. Results of the di�erent
simulation methods are presented in Figure 21. X-
velocity pro�les at di�erent stations behind the step
show that the perturbation method is more accurate
than the POD method. This is mainly because the
e�ect of a controller on the 
ow �eld is partially
considered (through the perturbation method).

6. Conclusion

The control of turbulent 
ow separation behind a
backward-facing step using a POD low dimensional
model and the perturbation method has been pre-
sented. The POD Galerkin projection reduces RANS
equations to a low dimensional model. The disadvan-
tages of this model are that the controlling parameter
or inputs, such as blowing/suction jet velocity, do not
show up explicitly in the resulting system and the 
ow
�eld will not sense the e�ect of the controller in an

Figure 20. First and second POD modes.

Figure 21. The controlled and uncontrolled 
ow velocity
pro�les at di�erent stations (RANS solution, POD method
and perturbation method).

optimal control process. The perturbation method
introduced in this article on RANS equations is capable
of handling these problems. In this way, the control
parameter is inserted into the reduced order system
explicitly, which is useful for control purposes, and
the e�ect of the controller will be sensed by the 
ow
�eld during the optimal control process. Therefore,
the system can capture the time varying in
uence of
the control input and predict RANS responses to an
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actuator accurately. This method is more accurate
than the classical POD method used previously. Nu-
merical results show that the perturbation method
is more e�cient and faster (can save about 50% of
CPU time) in predicting controlling parameters for
the turbulent 
ow over the step. In addition, it can
be concluded that if the separation region is small,
the perturbation method can predict the 
ow �eld
more accurately. Two di�erent controlling cases are
investigated: Blowing/suction jets at the foot and the
edge of the step and blowing/suction jets at the wall
of the step. Results show that the position of the
actuator is essential for the best performance of the
controller. A blowing/suction jet at the wall of the step
is more e�ective, and the separation region is removed
completely as a result of the surface actuator.
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Appendix A

Quasi-linearization algorithm of Kirk [23]:
Consider the 2n set of nonlinear di�erential control
equations (Eq. (32)) as:

_a(t) = f1 (a(t);�(t); t) ;

_�(t) = f2 (a(t);�(t); t) ;

a(to) = ao�(tf ) = �f : (A.1)

As described by Kirk [23] for the �rst step, it is neces-
sary to linearize these nonlinear di�erential equations
by expanding them in Taylor series about a known
trajectory ai(t), �i(t) and retaining only �rst order
terms in the expansion:

_ai+1(t) =f1
�
ai(t);�i(t); t

�
+
@f1

@a
�
ai(t);�i(t); t

�
�
ai+1(t)� ai(t)

�
+
@f1

@�
�
ai(t);�i(t); t

�
�
�i+1(t)� �i(t)� ;

_�
i+1

(t) =f2
�
ai(t);�i(t); t

�
+
@f2

@a
�
ai(t);�i(t); t

�
�
ai+1(t)� ai(t)

�
+
@f2

@�
�
ai(t);�i(t); t

�
�
�i+1(t)� �i(t)� : (A.2)

The above equations can be re-ranged in the following
form:

_ai+1(t) = A11ai+1(t) +A12�i+1(t) +A13;

_�
i+1

(t) = A21ai+1(t) +A22�i+1(t) +A23; (A.3)

where the coe�cient matrices are:

A11 =
@f1

@a
; A12 =

@f1

@�
;

A13 = �A11a(t)�A12�(t) + f1;

A21 =
@f2

@a
; A22 =

@f2

@�
;

A23 = �A21a(t)�A22�(t) + f2: (A.4)

The coe�cient matrices are evaluated based on ai(t)
and �i(t) which are known. An initial guess should
be de�ned to evaluate these matrices at the beginning
of the �rst iteration. The next step is to solve
homogeneous di�erential equations as:

_ai+1(t) = A11ai+1(t) +A12�i+1(9t);

_�
i+1

(t) = A21ai+1(t) +A22�i+1(t): (A.5)

By numerical integration, these set of equations should
be solved with the following form of boundary condi-
tions:

aH1(to) = ::: = aHn(to) = 0;

�H1(to) =
�
1 0 0 ::: 0

�T :::�n1(to)

=
�
0 0 0 ::: 1

�T : (A.6)

Solutions of these homogeneous set of equations will
be de�ned as (aH1;�H1), � � � , (aHn;�Hn). After that,
it is recommended to generate one particular solution
with boundary condition of ap(to) = ao, �p(to) =
0. The solution at this stage is denoted by ap and
�p. As we linearized original equations, the complete
solution of Eq. (A.1) can be estimated using principle
of superposition. The solution will be written as:

ai+1(t) = !1aH1(t) + :::+ !naHn(t) + ap(t);

�i+1(t) = !1�H1(t) + :::+ !n�Hn(t) + �p(t): (A.7)

For the next stage the values of ! =
�
!1 ::: !n

�
should be determined. As discussed by Kirk [23] we
have:

! =
�
�H1(tf )

... :::
...�Hn(tf )

��1

[�f � �p(tf )] : (A.8)

Then, by substituting values of ! into Eq. (A.7), the
new trajectory will be obtained. The solution of the
original nonlinear equations can be obtained iteratively
until converged solution is performed. In conclude the
system of Eq. (A.1) must be solved using the following
boundary conditions:

a(to) = ao; �(to) = !: (A.9)

The iterative procedure for solving nonlinear two-point
boundary-value problems can be summarized as:

1. Guess the initial trajectory for the state and costate
variables ai(t) and �i(t) where t 2 �t0; tf � and i =
1;

2. Evaluate the coe�cient matrices of Eq. (A.4) on the
trajectory ai(t) and �i(t);

3. Numerically integrate set of homogenous di�eren-
tial Eq. (A.5) for t 2 �t0; tf � using n sets of initial
conditions as Eq. (A.6). Particular solution is
obtained by solving sets of Eq. (A.3) with boundary
conditions of ap(to) = ao and �p(to) = 0;

4. Use the values found in step 3 to determine the
vector ! from Eq. (A.8);

5. Use ! in step 4 and Eq. (A.7) to determine (i+1)st
trajectory;
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6. Compare the ith and (i+ 1)st trajectories by eval-

uating the norm error=
���������ai+1

�i+1

�
�
�
ai

�i
��������� < 10�5;

7. If error < 1:e � 5, the iterative procedure has
converged; go to step 7, otherwise add 1 to i and
go to step 2;

8. Integrate Eq. (A.1) with initial condition of a(to) =
ao and �(tf ) = !.
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