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Abstract. In this study, the Homotopy Perturbation Transform Method (HPTM) is
performed to give approximate and analytical solutions of the �rst order linear and
nonlinear system of a time fractional partial di�erential equation. The HPTM is a combined
form of the Laplace transform, the homotopy perturbation method, and He's polynomials.
The nonlinear terms can be easily handled by the use of He's polynomials. The proposed
scheme �nds the solutions without any discretization or restrictive assumptions, and is free
of round-o� errors, which, therefore, reduces the numerical computations to a great extent.
The speed of convergence of the method is based on a rapidly convergent series with easily
computable components. The fractional derivatives are described here in the Caputo sense.
Numerical results show that the HPTM is easy to implement and accurate when applied
to a time-fractional system of partial di�erential equations.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Fractional order ordinary di�erential equations [1-4],
as generalizations of classical integer order ordinary
di�erential equations, are increasingly used to model
problems in uid ow, mechanics, viscoelasticity, biol-
ogy, physics and engineering, and other applications.
Fractional derivatives provide an excellent instrument
for the description of memory and the hereditary
properties of various materials and processes. Half-
order derivatives and integrals have proven to be more
useful for the formulation of certain electrochemical
problems than classical models [4-6].

The homotopy perturbation method was intro-
duced and applied by He [7-11]. Recently, many
researchers [12-17] have obtained the series solution
of the fractional di�erential equation using HPM.
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The proposed method is a coupling of the Laplace
transformation, the homotopy perturbation method
and He's polynomials, mainly due to Ghorbani [18-
19]. In recent years, many authors have paid atten-
tion to studying the solutions of linear and nonlinear
partial di�erential equations using various methods
and a combination of the Laplace transform. Among
these are Laplace decomposition methods [20-21] and
the homotopy perturbation transform method [22-
25]. The system of partial di�erential equations
has attracted much attention in a variety of applied
sciences. The general ideas and essential features of
this system are of wide applicability. These systems
were formally derived to describe wave propagation,
control shallow water waves and examine the chemical
reaction-di�usion model of Brusselator [13]. Recently,
Baitainah et al. [26] applied HAM to obtain the
solutions of linear and nonlinear systems of �rst and
second order PDEs, and compared their results with
the results of Wazwaz [27] and Ray [28] who used
VIM and ADM, respectively. Recently, Yildirim et
al. [29-30], Younesian et al. [31] and Khan et al. [32]
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solved many physical models using di�erent meth-
ods.

The main aim of this article presents an ap-
proximate analytical solution of linear and nonlinear
homogenous and non-homogenous time fractional par-
tial di�erential equations using the homotopy pertur-
bation transform method. We discuss how to solve
fractional homogenous and nonhomogeneous equations
using HPTM.

De�nition 1. The Mittag-Le�er function, E�(z),
with � > 0, is de�ned by the following series repre-
sentation, valid in the whole complex plane [33]:

E�(z) =
1X
n=0

zn

�(�n+ 1)
: (1)

De�nition 2. The Laplace transform, L[f(t)], of
the Riemann-Louisville fractional integral is de�ned as
follows [2]:

L[I�t f(t)] = s��F (s): (2)

De�nition 3. The Laplace transform, L[f(t)], of the
Caputo fractional derivative is de�ned as follows [2]:

L[D�
t f(t)] =s�F (s)�

n�1X
k=0

s(��k�1)f (k)(0);

n� 1 < � � n: (3)

2. Basic idea of the new homotopy
perturbation transform method

In order to elucidate the solution procedure of the
fractional Laplace homotopy perturbation method, we
consider the following nonlinear system of fractional
di�erential equations:8<:Dn�

t u(x; t) +R1(u; v) +N1(u; v) = q1(x; t);

Dn�
t v(x; t) +R2(u; v) +N2(u; v) = q2(x; t);

n� 1 < n� � n; t > 0; (4)

with the initial conditions:

u(x; 0) = f(x);

v(x; 0) = g(x); (5)

where Dn�
t = @n�

@tn� is the �rst order linear operator in
x, R1 and R2. N1 and N2 are linear and nonlinear
operators, and q1(x; t) and q2(x; t) are source terms.
Now, the methodology consists of applying the Laplace
transform �rst on both sides of Eq. (4). Thus, we get:

8<:L[Dn�
t u(x; t)]=L[q1(x; t)]�L[R1(u; v)+N1(u; v)];

L[Dn�
t v(x; t)]=L[q2(x; t)]�L[R2(u; v)+N2(u; v)]: (6)

Now, using the di�erentiation property of the Laplace
transform, we have:8>>>><>>>>:
L[u(x; t)]=s�1f(x) + s�n�L[q1(x; t)]

�s�n�L[R1(u; v) +N1(u; v)];

L[v(x; t)]=s�1g(x) + s�n�L[q2(x; t)]
�s�n�L[R2(u; v) +N2(u; v)]:

(7)

Operating the inverse Laplace transform on both sides
in Eq. (7), we get:8<:u(x; t)=G1(x; t)�L�1(s�n�L[R1(u; v)+N1(u; v)]) ;

v(x; t)=G2(x; t)�L�1(s�n�L[R2(u; v)+N2(u; v)]) ; (8)

where G1(x; t) and G2(x; t) represent the term aris-
ing from the source term and the prescribed initial
conditions. Now, applying the classical perturbation
technique [7-11], we can assume that the solutions can
be expressed as a power series in p, as given below:

u(x; t) =
1X
n=0

pnun(x; t);

v(x; t) =
1X
n=0

pnvn(x; t); (9)

where the homotopy parameter, p, is considered a small
parameter (p 2 [0; 1]). The nonlinear terms, N1 and
N2, can be decomposed as:

N1(u; v) =
1X
n=0

pnH1;n(u; v);

N2(u; v) =
1X
n=0

pnH2;n(u; v); (10)

where H1;n(u; v) and H2;n(u; v) are He's polynomials,
which can be calculated by the following formula:

H1;n(u; v) =
1
n!

@n

@pn

"
N

 1X
i=0

piui

!#
p=0

;

H2;n(u; v) =
1
n!

@n

@pn

"
N

 1X
i=0

pivi

!#
p=0

;

n = 0; 1; 2; 3; :::

Substituting Eqs. (9) and (10) in Eq. (8) and using
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HPM [7-11], we get:8>>>>>>>>>>><>>>>>>>>>>>:

P1
n=0 p

nun(x; t)=G1(x; t)�p
�
L�1(s�n�L

(R1(u; v)+
P1
n=0 p

nH1;n(u; v))
�
;P1

n=0 p
nvn(x; t)=G2(x; t)�p

�
L�1(s�n�L

(R2(u; v)+
P1
n=0 p

nH2;n(u; v))
�
:

(11)

This is a coupling of the Laplace transform and ho-
motopy perturbation method using He's polynomials.
Now, equating the coe�cient of the corresponding
power of p on both sides, the following approximations
are obtained:

p0 :

8<:u0(x; t) = G1(x; t);

v0(x; t) = G2(x; t);

p1 :

8<:u1(x; t)=�L�1 fs�n�L[R1(u0; v0)+H1;0(u; v)]g ;
v1(x; t)=�L�1 fs�n�L[R2(u0; v0)+H2;0(u; v)]g ;

p2 :

8<:u2(x; t)=�L�1 fs�n�L[R1(u1; v1)+H1;1(u; v)]g ;
v2(x; t)=�L�1 fs�n�L[R2(u1; v1)+H2;1(u; v)]g ;

p3 :

8<:u3(x; t)=�L�1 fs�n�L[R1(u2; v2)+H1;2(u; v)]g ;
v3(x; t)=�L�1 fs�n�L[R2(u2; v2)+H2;2(u; v)]g :

Proceeding in the same manner, the rest of the com-
ponents, un(x; t) and vn(x; t), n � 4 can be completely
obtained and the series solutions are, thus, entirely
determined.

Finally, we approximate the analytical solution,
u(x; t) and v(x; t), by the truncated series:

u(x; t) = lim
N!1

NX
n=1

un(x; t);

v(x; t) = lim
N!1

NX
n=1

vn(x; t): (12)

The above series solutions generally converge very
rapidly.

3. Numerical examples

In this section, three examples of nonlinear frac-
tional order homogeneous and non-homogeneous time-
fractional equations are solved to demonstrate the
performance and e�ciency of the HPM using a coupling
of the Laplace transform and He's polynomials.

Example 1. We consider the following homogeneous
linear system of time-fractional PDEs [34] as follows:8<:D�

t u+Dxv � (u+ v) = 0;

D�
t v +Dxu� (u+ v) = 0;

0 < � � 1; (13)

with initial conditions, u(x; 0) = sinhx and v(x; 0) =
coshx. The system of Eq. (13) has the exact solution,
u(x; t) = sinh(x + t) and v(x; t) = cosh(x + t) for the
value of � = 1.

Now, applying Laplace transform on both sides in
Eq. (13), we get:8<:L[u(x; t)] = s�1sinhx+ s��L[Dxv � (u+ v)];

L[v(x; t)] = s�1coshx+ s��L[Dxv � (u+ v)]: (14)

The inverse Laplace transform on both sides implies
that:8<:u(x; t) = sinhx+ L�1 (s��L[Dxv � (u+ v)]) ;

v(x; t) = coshx+ L�1 (s��L[Dxv � (u+ v)]) : (15)

Now, we apply the homotopy perturbation method:8>>>><>>>>:
P1
n=0 p

nun(x; t) = sinhx
+p
�
L�1 (s��L[

P1
n=0 p

nH1;n(u; v)])
�
;P1

n=0 p
nvn(x; t) = coshx

+p
�
L�1 (s��L[

P1
n=0 p

nH2;n(u; v)])
�
;

(16)

where H1;n(u; v) and H2;n(u; v) are He's polynomials,
and all components of He's polynomials can be ob-
tained by H1;n(u; v) = vnx � un � vn and H2;n(u; v) =
unx � un � vn, 8n 2 N .

Now, equating the coe�cient of the corresponding
power of p on both sides of Eq. (16), we get:

p0 :

8<:u0(x; t) = sinhx;

v0(x; t) = coshx;

p1 :

8<:u1(x; t)=�L�1 (s��L[H1;0(u; v)])=coshx t�
�(�+1) ;

v1(x; t)=�L�1 (s��L[H2;0(u; v)])=sinhx t�
�(�+1) ;

p2 :

8<:u2(x; t)=�L�1 (s��L[H1;1(u; v)])=sinhx t2�
�(2�+1) ;

v2(x; t)=�L�1 (s��L[H2;1(u; v)])=coshx t2�
�(2�+1) ;

p3 :

8<:u3(x; t)=�L�1 (s��L[H1;2(u; v)])=coshx t3�
�(3�+1) ;

v3(x; t)=�L�1 (s��L[H2;2(u; v)])=sinhx t3�
�(3�+1) ;

p4 :

8<:u4(x; t)=�L�1 (s��L[H1;3(u; v)])=sinhx t4�
�(4�+1); :::

v4(x; t)=�L�1 (s��L[H2;3(u; v)])=coshx t4�
�(4�+1); :::
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Using the above terms, solution u(x; t) is given as:

u(x; t) =sinhx
�

1+
t2�

�(2�+1)
+

t4�

�(4�+1)
+:::

�
+coshx

�
t�

�(�+1)
+

t3�

�(3�+1)
+:::

�
;

v(x; t) =coshx
�

1+
t2�

�(2�+1)
+

t4�

�(4�+1)
+:::

�
+sinhx

�
t�

�(�+1)
+

t3�

�(3�+1)
+:::

�
:

Hence:

u(x; t) =sinhx
�
E�(t�) + E�(�t�)

2

�
+ coshx

�
E�(t�)�E�(�t�)

2

�
; (17)

v(x; t) =coshx
�
E�(t�) + E�(�t�)

2

�
+ sinhx

�
E�(t�)� E�(�t�)

2

�
: (18)

As � = 1, this series has the closed form u(x; t) =
sinh(x+ t) and v(x; t) = cosh(x+ t) which is an exact
solution of the given homogenous system of the partial
di�erential equation (Eq. (13)) for � = 1.

Example 2. In this example, we consider the follow-
ing non-homogeneous linear system of time-fractional
PDEs [34] as follows:8<:D�

t u�Dxv � (u� v) = �2;

D�
t v �Dxu� (u� v) = �2;

0 < � � 1; (19)

with initial conditions u(x; 0) = 1 + ex and v(x; 0) =
�1 + ex. This system of the non-homogenous equation
(Eq. (14)) has the exact solution, u(x; t) = 1+ex+t and
v(x; t) = �1 + ex�t, for the value of � = 1.

Taking the Laplace transform on both sides in the
system of Eq. (19) and, then, using the di�erentiation
property of the Laplace transform and given initial
conditions, we get:8<:L[u(x; t)]=s�1(ex+1)�2s�(�+1)+s��L[u�v+Dxv];

L[v(x; t)]=s�1(ex�1)�2s�(�+1)+s��L[u�v+Dxu]:(20)

Applying the inverse Laplace transform on both sides
in Eq. (20), we get:8<:u(x; t)=(ex+1)� 2t�

�(�+1)+L
�1(s��L[u�v+Dxv]) ;

v(x; t)=(ex�1)� 2t�
�(�+1)+L

�1(s��L[u�v�Dxu]) :(21)

Now, we apply the homotopy perturbation method:8>>>>>>><>>>>>>>:

1P
n=0

pnun(x; t) = (ex + 1)� 2t�
�(�+1)

+p
�
L�1 (s��L [

P1
n=0 p

nH1;n (u; v)])
�
;

1P
n=0

pnvn(x; t) = (ex � 1)� 2t�
�(�+1)

+p
�
L�1 (s��L [

P1
n=0 p

nH2;n (u; v)])
�
;

(22)

where Hn(u; v) and Hn(u; v) are He's polynomials, and
all components of He's polynomials can be obtained by
H1;n(u) = un � vn + Dxvn and H2;n(v) = un � vn �
Dxun, 8n 2 N .

Now, equating the coe�cient of the corresponding
power of p on both sides in Eq. (22), we get:

p0 :

8<:u0(x; t) = ex � 2t�
�(�+1) + 1;

v0(x; t) = ex � 2t�
�(�+1) � 1;

p1 :

8<:u1(x; t)=L�1(s��L[H1;0(u; v)])=(2+ex) t�
�(�+1) ;

v1(x; t)=L�1(s��L[H2;0(u; v)])=(2�ex) t�
�(�+1) ;

p2 :

8<:u2(x; t)=L�1(s��L[H1;1(u; v)])=ex t2�
�(2�+1) ;

v2(x; t)=L�1(s��L[H2;1(u; v)])=ex t2�
�(2�+1) ;

p3 :

8<:u3(x; t)=�L�1(s��L[H1;2(u; v)])=ex t3�
�(3�+1) ;

v3(x; t)=�L�1(s��L[H2;2(u; v)])=�ex t3�
�(3�+1) :

Using the above terms, the solution u(x; t) is given as:

u(x; t) =ex
�

1+
t�

�(�+ 1)
+

t2�

�(2�+1)

+
t3�

�(3�+1)
+ :::

�
+1=exE�(t�)+1;

v(x; t) =ex
�

1� t�

�( alpha+ 1)
+

t2�

�(2�+1)

+
t3�

�(3�+1)
+ :::

�
�1=exE�(�t�)�1:

Now, for a standard case, i.e. for � = 1, this series
has the closed form of the solution, u(x; t) = ex+t + 1
and v(x; t) = ex�t� 1 which is an exact solution of the
given non-homogenous system of the partial di�erential
equation (Eq. (16)) for � = 1.

Example 3. In this example, we consider the fol-
lowing non-homogeneous nonlinear system of time-
fractional PDEs [34] as follows:8<:D�

t u� vDxu� u = 1;

D�
t v + uDxv + v = 1;

0 < � � 1; (23)
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with initial conditions u(x; 0) = e�x and v(x; 0) = ex.
This system of the nonlinear non-homogenous equation
(Eq. (23)) has the exact solution u(x; t) = e�x+t and
v(x; t) = ex�t for the value of � = 1.

Taking the Laplace transform on both sides in
Eq. (23) and, then, using the di�erentiation property
of the Laplace transform and given initial conditions,
we get:8<:L[u(x; t)]=s�1e�x+s�(�+1)+s��L[u+ vDxu];

L[v(x; t)]=s�1ex+s�(�+1)�s��L[v+ vDxv]: (24)

The inverse Laplace transform on both sides implies
that:8<:u(x; t)=e�x + t�

�(�+1) +L�1 (s��L[u+vDxu]) ;

v(x; t)=ex + t�
�(�+1)�L�1 (s��L[v+uDxv]) : (25)

We represent u(x; t) and v(x; t) by the in�nite series
Eq. (21). Then, by inserting these series into both sides
of Eq. (25), and using HPM [5-9], we get:8>>>>><>>>>>:

P1
n=0 p

nun(x; t)=e�x+ t�
�(�+1)

+ p
�
L�1 (s��L[

P1
n=0 p

nH1;n(u; v)])
�
;P1

n=0 p
nvn(x; t)=ex+ t�

�(�+1)

� p
�
L�1 (s��L[

P1
n=0 p

nH2;n(u; v)])
�
;
(26)

where H1;n(u; v) and H2;n(u; v) are He's polynomials,
which represent nonlinear terms u+vDxu and v+uDxv,
respectively. We have a few terms of He's polynomials
for u+ vDxu and v + uDxv which are given by:

H1;0 = u0 + v0u0x;

H1;1 = u1 + v1u0x + v0u1x;

H1;2 = u2 + v0u2x + v1u1x + v2u0x;

H1;3 = u3 + v0u3x + v1u2x + v2u1x + v3u0x; :::

H2:0 = v0 + u0v0x

H2;1 = v1 + u1v0x + u0v1x;

H2;2 = v2 + u0v2x + u1v1x + u2v0x;

H1;3 = v3 + u0v3x + u1v2x + u2v1x + u3v0x; :::

Now, equating the coe�cient of the corresponding
power of p on both sides of Eq. (26), we get:

p0 :

8<:u0(x; t) = e�x + t�
�(�+1) ;

v0(x; t) = ex + t�
�(�+1) ;

p1 :

8>>>>><>>>>>:
u1(x; t) = L�1 (s��L[H1;0(u; v)])

= (e�x � 1)
�

t�
�(�+1) � t2�

�(2�+1)

�
;

v1(x; t) = �L�1 (s��L[H2;0(u; v)])
= �(ex + 1)

�
t�

�(�+1) + t2�
�(2�+1)

�
;

p2 :

8>>>>>>>>>>>><>>>>>>>>>>>>:

u2(x; t) = L�1 (s��L[H1;1(u; v)]) =
(2e�x � 1) t2�

�(2�+1) +
�

3� e�x�(2�+1)
(�(�+1))2

�
t3�

�(3�+1) + e�x�(3�1)
�(�+1)�(2�+1)

t4�
�(4�+1) ;

v2(x; t) = �L�1 (s��L[H2;1(u; v)]) =
(2ex + 1) t2�

�(2�+1) +
�

3 + ex�(2�+1)
(�(�+1))2

�
t3�

�(3�+1) + ex�(3�1)
�(�+1)�(2�+1)

t4�
�(4�+1) :

Proceeding in this manner, the rest of the components
un(x; t) and vn(x; t), n � 3, can be completely
obtained, and the series solutions are, thus, entirely
determined. Finally, we approximate the analytical
solution, u(x; t) and v(x; t), by the truncated series:

u(x; t) = lim
N!1

NX
n=1

un(x; t);

v(x; t) = lim
N!1

NX
n=1

vn(x; t): (27)

The above series solutions generally converge very
rapidly.

4. Numerical result and discussion

In this section, Figures 1-4 show approximate solutions
for di�erent fractional Brownian motions, � = 0:7, 0.8,
0.9, and, also, for the standard motion, � = 1. The
numerical values of u(x; t) and v(x; t) vs. time t at x =
1 are shown by Figures 1-4. It is seen from Example 1,
which is described by Figures 1 and 2, that u(x; t) and

Figure 1. Plot of u(x; t) vs. time t at x = 1 for di�erent
values of � for Example 1.
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Figure 2. Plot of v(x; t) vs. time t at x = 1 for di�erent
values of � for Example 1.

Figure 3. Plot of u(x; t) vs. time t at x = 1 for di�erent
values of � for Example 2.

Figure 4. Plot of v(x; t) vs. time t at x = 1 for di�erent
values of � for Example 2.

v(x; t) increase with an increase in t for di�erent values
of �.

However, for Example 2, the nature of the approx-
imate solution, u(x; t), which is depicted in Figure 3,
is similar to Example 1, and the behavior of the
approximate solution, v(x; t), which is depicted in
Figure 4, is remarkably opposite. It is observed that
the approximate solution, u(x; t), increases with the
increase in t for di�erent values of �, and the approx-
imate solution, v(x; t), decreases with the increase in t
for di�erent values of �.

5. Concluding remarks

This paper develops an e�ective modi�cation of the
homotopy perturbation method, which is coupled with
the Laplace transform and He's polynomials, and its
validity is studied over a wide range, with three exam-
ples of linear and nonlinear time fractional homogenous
and non-homogenous PDEs. It is clear that the Laplace
homotopy perturbation method yields very accurate
approximate solutions using only a few iterates. Thus,
it can be concluded that the LHPM methodology
is very powerful and e�cient in �nding approximate
solutions, as well as numerical solutions.
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