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1. Introduction

Abstract. This paper deals with the problems of attitude determination, parameter
identification and reference sensor calibration simultaneously. An LEO satellite’s attitude,
inertia tensor as well as calibration parameters of Three-Axis-Magnetometer (TAM)
including scale factors, misalignments and biases along three body axes are estimated
during a maneuver designed to satisfy the condition of persistency of excitation. The
advanced nonlinear estimation algorithm of Unscented Kalman Filter (UKF) is a good
choice for nonlinear estimation problem of attitude determination, but its computational
cost is considerably larger than the widespread low accurate Extended Kalman Filter.
Reduced Sigma Point Filters provide good solutions and also decrease the run time of the
UKF'. However, in contrast to the nonlinear problem of attitude determination, parameter
identification and sensor calibration have linear dynamics. Therefore, a new marginal UKF
is proposed that combines utility of Kalman Filter with Modified UKF (MUKF) which
is based on Schmidt orthogonal algorithm. The proposed Marginal MUKF (MMUKF)
utilizes only 14 sigma points to achieve the complete 25-dimensional state vector estimation.
Additionally, a Monte Carlo simulation has demonstrated a good accuracy and lower
computational burden for concurrent estimation of attitude, inertia tensor as well as TAM
calibration parameters utilizing MMUKEF with respect to the sole utilization of the UKF.

(© 2014 Sharif University of Technology. All rights reserved.

fication of MOI is considered a vital task for many

Acceptable performance of a variety of tasks of a space-
craft such as photography, pointing, data transmission,
etc. are strongly dependent on the accurate knowledge
of spacecraft attitude, attitude time rate, and system
parameters. Moments Of Inertia tensor (MOI) is an
important system parameter that significantly affects
satellite rotational dynamics. In this sense, identi-
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spacecrafts. Since more accurate measurements pro-
vide higher pointing performance, the identification of
the parameters of measurement system has significant
importance. As operational conditions of satellites
vary in orbit, from those presumed in simulations, on-
line estimation of dynamic and measurement systems’
parameters is more important than off-line determina-
tion. Estimation of spacecraft attitude and its rate
is regarded a task of Attitude Determination (AD)
subsystem, while estimation of moments of inertia is
the task of system Parameter Identification Module
(PIM), and the sensor alignment parameters is es-
timated by Measurement Sensor Calibration (MSC)
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module. A lot of studies have been devoted to each
of these topics in the past decades. Identification of
MOT is the only concentration of Refs. [1-4]. While
Wertz and Lee [1] have utilized least square method to
identify MOI of a satellite, Zarringhalam et al. [2] have
compared recursive least square, recursive Kalman
filter, gradient, and Extended Kalman Eilter (EKF)
for estimation of mass, MOI, and location of center
of gravity. They have concluded that EKF is the
most reliable method for omline identification of ve-
hicle inertial parameters. Mohammed et al. [5] have
described various steps of design and implementation
of an attitude determination system based on Kalman
filter for Alsat-1. Gyro calibration as well as AD
based on a vector sensor like star tracker using EKF
or Unscented Kalman Filter (UKF) is considered in [6-
9]. [10-12] have focused just on MSC of Gyro, star
tracker, and Three-Axis-Magnetometer (TAM) using
recursive estimation algorithms like EKF. Soken et
al. [13] have proposed a reconfigurable UKF to calibrate
TAM parameters and then estimate attitude of a pico-
satellite based on rate gyro and TAM measurements.
In contrast with above references which have mainly
focused on one of the mentioned tasks or at most
two of them, Kutlu et al. [14] has utilized gyro
measurements, as well as TAM and sun sensor data
for estimation of attitude, and bias vector of gyro via
EKF. Subsequently, the center of mass position vector
and the inertia tensor were determined using least
square method, but Myung et al. [15] used a single
algorithm to calibrate gyro measurements, determine
attitude of the satellite and identify MOI simultane-
ously using EKF based on gyro measurements and
star tracker. These references are common in utilizing
expensive and heavy star tracker sensor in order to
calibrate the gyro. Since cost and weight are serious
constraints for a large number of the present and
future space projects, utilizing light and inexpensive
sensors is becoming an attraction. Lowering weight and
cost must not degrade the performance of navigation
and control subsystems, so sensors data fusion and
precise calibration of sensor packages utilizing reliable
advanced estimation algorithms are effective ideas to
achieve acceptable performance.

The presented paper focuses on AD, MSC and
PIM, simultaneously. Measurement data is provided
by a centralized fusion of TAM and sun sensor. TAM
measurements are contaminated by various sources of
error such as scale factor, misalignment, bias, as well
as random white noise. As the governing equations of
kinematics and dynamics of satellite are nonlinear and
the state space equations of parameters are linear, a
marginal filter, that is a combination of KF and Mod-
ified UKF called MMUKF, is developed for accurate
and fast estimation process.

The structure of this paper is organized as follows.

Attitude kinematics and dynamics are described in Sec-
tion 2. Measurement model is introduced in Section 3.
Section 4 is devoted to development of marginal modi-
fied UKF. Section 5 provides the numerical simulation
results. Section 6 summarizes the results and draws
recommendations for further research.

2. Attitude kinematics and dynamics

2.1. Attitude dynamics

The nonlinear attitude dynamics of a rigid satellite can
be described by the well known Euler law. Expressing
this law in the satellite body coordinate system results
in [16]:

N B-1,— . B— .
WBI:IB (T—WBIXIBWBI)‘F’LUW,

T=Tc+ Ta, (1)
where
[m:r Izy [:cz
Ig = ]zy Iyy Iyz )
I;rz Iyz Izz

w,, is the process noise taken as a zero mean Gaus-
sian white with covariance Q—. It is assumed that
aerodynamic drag and gravity gradient forces are the
most effective forces producing torques for a LEO
satellite.

2.2. Attitude kinematics

Attitude kinematics describes how the attitude of a
satellite changes under the influence of its angular
velocity. There are various methods to represent
attitude of a body [17]. Quaternion parameters are
the most desired and widely used method to this
aim. This is due to linear propagation behavior of the
quaternion as well as its non-singular characteristics.
The constraint of unit norm is the only disadvantage
that must be observed. Quaternion parameters are
propagated in time as [18]:

. 1.~
{1} = 5 92Emi)ia}, 2)
where:
Ke W,  —wy Wy
wpr) = —w, Ke wy wy
BLJ = wy —wp Ke w, |’

—w, —wy —w, Ke

e=1-{qg}"{q},

q4 is the scalar part of the quaternion vector. Diagonal
elements of Q(GBI) guarantee maintenance of unit
norm of the quaternion even in the presence of rounding
errors. K is a constant selected such that KAt <1 (At
is integration time step).

{0} = a1 @2 43 qa], K = cte,
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2.3. Disturbing moments
The aerodynamic drag induced disturbing torque in the
satellite body coordinate system is modeled as:

To=D ([0.)7 x [551"), 3)

where [u,]? is the unit vector of satellite velocity in the
body coordinate system, [gcp]B is the position vector
of the satellite pressure center with respect to satellite
center of mass, and D = 0.5pv2SCp. It is assumed
that required data regarding the satellite position
and velocity is provided via the orbit determination
subsystem.
Also, the gravity gradient torque is modeled as:

Tgg = ﬁ(% X Igc?,), (4)

where c3 is the third column of the inertial to body
transformation matrix.

3. Measurement model

Measurement system congsists of a centralized fusion
of TAM and sun sensor. TAM measures the Earth
magnetic field modeled as:

[Bmeas]B = (E + M)TBI[BModel]l + 0+ EB, (5)

where:
A b2 O3
M= (b0 X 23], (6)
|_531 632 )\3J

E is a 3 x 3 identity matrix and 75! is the inertial (1)
to body (B) transformation matrix, defined in terms of
its corresponding quaternion parameters:

G —G—3+aG 2@102+9301) 20193 —q2q4)
TP'=2(q2—@3s) ~G+B—B 40 2@s+aa) (7)
7
2qgs+200) 2205~ q1as)  —ai—a3+e3+a;
Baodel 18 a function of the satellite orbital position,
derived from the International Geomagnetic Reference
Field (IGRF) model. v p is the measurement noise of
TAM, assumed to be zero mean white Gaussian with
variance 0% along each axis.

Sun sensor is the other reference sensor used in our
measurement package. It is assumed that calibration
parameters of sun sensor are negligible in comparison
with those of TAM. sun sensor measures direction of
the sun light with respect to satellite onboard sensor.
Its output in body coordinate system is modeled as:

[us]? = TP us) + vy, (8)

[ﬂs]l is the sun direction vector in inertial coordinate
system, and 55 is the sun sensor measurement noise
modeled as zero mean Gaussian white noise with
variance o2 along each axis. In addition, no correlation
is assumed to exist between v g and v ;.

4. Marginal modified unscented Kalman filter

Nonlinear problem of spacecraft attitude determination
is studied extensively in the past decade. Extended
Kalman Filter (EKF) is the most desired and widely
used algorithm for this application. EKF is based
on linearization of nonlinear models of dynamic and
measurement systems, so applying EKF to nonlinear
problems is usually accompanied with two potential
threats of filter divergence and estimation performance
degradation. In recent years, more advanced non-
linear filters such as sampling approaches have been
developed independent of the need for calculation of
Jacobian matrices. Specific disadvantage of these filters
is numerical cost requirements, so that only a few
certain of them can be applied to actual onboard
implementations. Unscented Kalman Filter (UKF)
is the most efficient algorithm among them. UKF
uses a deterministic set of weighted sigma points to
approximate system probabilistic characteristics. Stan-
dard UKF uses 2n + 1 sigma points to estimate an
n-dimensional state vector. Computational cost of
the sample based algorithms like UKF is proportional
to the number of required sigma points. Regarding
this, and in order to reduce the computational efforts,
several strategies known as Reduced Sigma Point Fil-
ters (RSPF) have been developed, through lowering
number of sigma points, such as the simplex point
selection strategies that utilize only n+2 points. These
strategies contain a zero central point. In contrast to
the central point strategies, other schemes have evolved
using only n+1 equally weighted sigma points, without
the need of any central point. It is also proved that [19]
equally weighted, negative weighted-free sigma point
sets are numerically more stable and accurate while
being more efficient. Although RSPFs are efficient
algorithms for practical applications, marginalization
of partially linear systems, such as that of MSC, can
effectively reinforce further reduction in computational
complexity. The basic idea behind marginalization is

to partition the state vector into two parts of linear El
and 7 nonlinear. Using Bayes’ rule the linear state
variables can then be marginalized out and estimated
using the Kalman Filter (KF) that is optimal for linear
cases. The nonlinear state variables are estimated using
RSPF which is called Modified UKF here. This way,
marginal RSPF only needs one set of sigma points
that adequately describe the statistic properties of the
nonlinear part of the states. This technique is also
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referred to as Rao-Blackwellization. While the basic
idea of marginal filters and Rao-Blackwellization is seen
to have been more utilized for Particle Filters (PF), its
application in UKF is new and rare [20].

4.1. Modified Unscented Kalman Filter

(MUKF)
It is convenient to introduce Modified UKF (MUKF)
before presenting Marginal MUKF (MMUKF) algo-
rithm. As mentioned previously and proved [21],
n + 1 sigma points are sufficient to represent mean
and covariance completely. The MUKF is a new
simplex Unscented Transform (UT) based on Schmidt
orthogonal algorithm. Computational time and effort
of this filter is less than UKF, simplex UKF (SUKF),
and EKF, but has the same performance as UKF and
SUKF. MUKEF uses a minimum number of sigma points
set with the same weights to provide efficient and
unbiased estimates.

The nonlinear discrete time system considered in
MUKEF can be presented as:

Ek+1 = f(zlﬁglﬁk) + Elﬁ (93“)

Zh=h(zp, k) + v, (9b)

where 1z, is n-dimensional state vector, zj is m-

dimensional observation vector, and f and h are
nonlinear functions. wy, and v, are the corresponding
process and measurement noise vectors. It is assumed
that the noise vectors are zero mean Gaussian white
with covariances given by Q) and Ry, respectively.

At any time index k, the estimation of state

vector is represented z, and the state covariance is
given by Pj. Since Py is positive definite, its Cholesky
decomposition is given by Py, = S,SF, where Sy, is a
positive lower triangular matrix.

n + 1 sigma points are selected in three steps as
follows [21]:

1. Choose equal weights @w; = 1/(n+1);i =1,...,n+1.
2. Construct scale vectors as:

Ay =V + 1|[ii + D)7, [iG + 1)]7°2,

i

1
— (05 0, 0],
7 ——

3. Sigma points are arranged in n x (n + 1) matrix,

Xk =1® Tp+ SpA, where @ represents Kronecker
product.

Once the sigma points are chosen, they are prop-
agated through the nonlinear dynamic system via:

X2+1/l\ :f(X;wk)v (10)

where X}c+l/k represents the ith column vector of the
matrix Xp41/x (4 =1,2,...,n+1). Then, the predicted

state vector Ek+1 is computed as the weighted mean
of the predicted sigma points:

. n+1
Thy1 = ZXZH//CWr (11)
i=1

Predicted S, ; (square-root of covariance P, ) will be
calculated using QR decomposition and the cholupdate
function as below [22]:

Sea =ar (VRS - Ton) V@), (12

~ —

S = cholupdate(Sk_H,x}C_l_l/k - 5k+17 Vo).
(13)

Subsequently, the sigma point’s matrix is recon-
structed:

Xet1 = 1@ Typy + S A (14)

Each of the predicted sigma points passes through the
observation model to produce:

Shr1 = h(Xhy1: k). (15)

The predicted measurement and square root of mea-
surement covariance is:

~ = n+1

L1 = Z%2+1wi7 (16)
i=1

52,k+1 =qr ([@(gifrl - 2k+1) \/R]) ) (17)

S. k+1=cholupdate ([SM.H7 %iﬂ —Z i1,V ) .
(18)

Cross correlation matrix is determined by:

n+1 . o
P;ngkﬂ: Z wi[X;c-H/k - $k+1][3}c+1 - Zk+1]T~
i=1 (19)

UKF gain is given by:

T R4l Z k41

Kppr = (P— ~ /st +1) /S ki1 (20)

The update state mean is given by:

Tip1 = Ty + K1 (Zig1 — Zigr)- (21)
Square root of state covariance update is computed by:

U= Ki415: k+1,

Sk+1 = cholup date(S,, U, —1). (22)
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4.2. Marginal Modified UKF (MMUKF)

To introduce MMUKEF, the dynamic and measurement
systems described in previous sections are rewritten in
discrete-time form as:

Ek+1 = () + wp, (23a)
.1 —n_—l
$k+1:A§c(xk>$k+wica (23b)
- _n —n_—l
Ze = hu(z),) + Cu(@ ) T ), + vk, (23¢)
where:
5k ~ N(O7Rk)’ WE = |:w]lC:| ~ N(O7Qk)7
Wi
Qy 0

a-| .

fTlo QL

—n )

r is nq-dimensional nonlinear part of state vector, x
is no-dimensional linear part of state vector (n; +ne =
n), Z is m-dimensional observation vector, and f,
h, A' and C are the nonlinear functions. wy and
vy are the corresponding process and measurement
noise vectors. Similarly, it is assumed that the noise
vectors wy, and v are zero mean Gaussian (white)
with co-variances given by @) and Ry, respectively.
The pseudo code of the proposed MMUKF algorithm
is presented in Table 1.

5. Simulation studies

This section is devoted to the simulation and estima-
tion of the parameters of dynamic and measurement
systems (as part of the augmented state vector), in

addition to the pertinent attitude dynamic states.
While the nonlinear part of the state vector consists

—n )

_BI
of + = [{¢} w MOI], linear part contains = =
[A 6 b], where MOI = [I,, Ly I, Iy I, [yz]7
A= [)\1 A2 /\3], 6 = [512 013 021 23 031 532]7 and

b = [b1 by bs].

Complete observability of the described system
demands satellite maneuver. In other words, in order
to estimate MOI and TAM parameters, persistent
excitation must be guaranteed. A constant body rate
vector or one with constant direction will not satisfy
this requirement. As one of the reference maneuver
trajectories, satisfying persistent excitation condition,
the following rate trajectory is proposed [15] and
utilized in this work:

Weomm = 195 -(1- cos(ﬁ))ﬁ X 5 + 5 sin(d),

sin(wit) sin(wat)

2 = |cos(wit)sin(wet) |, 9= at, (24)
cos(wat)
where:
a = 04r [rad/s], w; =0.01 [rad/s],

we = 0.004 [rad/s].

The reference maneuver trajectory is shown in Figure 1.
The overall maneuver time is 15 minutes. Required
control torque to implement this command is provided
using fuzzy self-tuning PID controller. Figure 2 depicts
time history of controller gains and Figure 3 shows the
time history of control torque components.

Table 1. The marginalized modified unscented Kalman filter.

1. Initialize for:=1,.... N =n1 +1

~n ~n ~l Al

z (0) = @y, P(0) =

3. Time update
a) Nonlinear part: Egs. (10)-(13)
b) Linear part:

~l ~l

Tiqie = ALT e
Prsie = AL Pe (AT + Qf
4.Measurement update

a) nonlinear part: FEqgs. (21) and (22)

b) linear part:
~1 ~1 ~ 1

o= a1+ Ke(Zk — b — Crz 1)
Pk = Prje—1 — K Cr Prjr—1
Ki = P 1O (Cr Py OF + Ri) ™!

P¢ 0
0 P

2. Introducing weight and sigma points matrix

spset o

; Sy = chol(Py, lower')
0 P
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Table 2. Initial simulation conditions.
State Initial true value Initial estimated value
Angular velocity (rad/s) [0 -0.0011 0] [1e-3 -0.002 1le-3]
Quaternion parameters  [-0.0739 -0.7032 -0.5495 -0.4450]  [0.4063 0.7592 -0.3573 -0.3617]
[200 50 -30 [160 20 -20
MOI (kg.m?) 50 240 10 20 160 -20
-30 10 100] -20 -20 160]
Scale factors (ppm) [65-1 -2]e+4 [000]
Misalignments (arcs) [648 1296 972 648 -648 1296] [0 0000 0]
Bias (nT) [1500 1000 500] [0 0 Q]
Table 3. Simulated LEO orbit properties.
Element Value Element Value
Semi major axis (km) 7078.145  Eccentricity 0.07
Inclination (deg) 70 Longitude of ascending node (deg) 57
Argument of perigee (deg) 0 Mean anomaly (deg) 0
15 : : : 200 . . . . . , ,
£ 0 M
1.0
-200 . . . . . .
0 100 200 300 400 500 600 700 800 900
05
<
g >
E <
L 00 &
g
£ -200 L L L L . L . .
38 0 100 200 300 400 500 600 700 800 900
-0.5
200 T T ™ 3 T T T T
-1.0 &
we
-200 . L L n , \
-1.5 | | I . . . | L 0 100 200 300 400 500 600 700 800 900
0 100 200 300 400 500 600 700 800 900 t (s)
t
. &l ) Figure 3. Time history of control torque components.
Figure 1. Body angular rate command trajectory.
TAM and sun sensor noises are modeled as zero
8 T mean Gaussian white with standard deviations of
2 . .
i 6l 6.5 50 nT and 1.8°, respectively. The geomagnetic field
4 5 is modeled using 13th order IGRF 11 [23]. Table 2
2 =00 <00t 200 80 0 g 1o 15 shows initial conditions for the simulation. Initial
%10~3 %10—3 conditions to orbit simulation are also presented in
1.5] - 1.5 y
Table 3.
= . . .
< 10| Lo /N Measurement sampling interval is taken 0.2 sec.
0.5 0.5 Q7 is considered as diagonal matrix with diagonal ele-
0 200 400 600 800 o Loz 3 4B ments equal to (1le — 3)2 for body angular velocity and
«10% w104 zero for the other nonlinear states. Since parameters

2.0 1.5

< o |

050300 400 600 800 0 5 10
t (s) t (s)

Figure 2. Time history on controller gains

(proportional-differential-integral gains).

15

20

are modeled as random constants, Q! is a 12 x 12
diagonal zero matrix as well.

It is worth mentioning that the standard UKF
algorithm was also initially applied to simultaneous
PI, MSC and AD, but was subsequently replaced
by Modified UKF (MUKF), and then by Marginal
Modified UKF (MMUKF) to improve run time effi-
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Table 4. Root mean square error of state vector.

State Root mean square error State Root mean square error
Angular velocity (rad/s) 4e-3 Scale factors (ppm) [250 200 2000]
Rotation angle (deg) 1.4 Misalignments (arcs) [100 200 800 270 200 200]
[1.6 0.5 0.01
MOI (kg.m?) 0.5 1.9 0.02 Bias (nT) 1 25 4]
0.01 0.02 0.83]
5 lm*"‘ . h“l‘l{r’ﬁwﬂ*ﬁetﬂ‘rm le' A b @ R g 2 h-uv\.wlummww\lw.\wul‘.;)f«].m pv*l“ "‘“"\'\—-I,_ ' ' ’ I
RN, ™ $ o
0 3(.( AR A AT, ,(Jlln\w’<’~'~vm M ey |
0 05 RS 20" 100 200 300 400 500 600 700 800 900
o MR N
& 0.00 ey - .
0,05 NALHAREAIEY . a
0 100 200 300 400 500 600 700 800 900 ?
<
3;1 -2 ( 1 ‘ 1 1 ‘“‘I 1 1 1 1
0 100 200 300 400 500 600 700 800 900
-~ 2 r : T r T T T T
= NI e o VT T T AN bt i aen v o
3 A ' s o
0'05 I RIS o I‘ "'-.'“J'I Yl 'Ih'.--,‘ M 1 n prar Ah““__“_F/_,_N«'N'M"'-JW\W"N"'"“"““"""’
70 100 200 300 400 500 600 700 80 900 3 -2 S !

t (sec)

Figure 4. Quaternion parameters estimation errors in
MMUKF with &+ 30 error bounds.

ciency. Despite similar accuracy level of the three
algorithms, mean average run time of the MMUKF
over 10 simulations was only about 1615 sec, as opposed
to 3588 sec for the MUKF, and 4957 sec for standard
UKEF. This indicates that the MMUKF has made a 68%
reduction in the run time relative to standard UKF,
and 55% relative to MUKF which is definitely more
efficient and advantageous for online applications. This
problem is solved on a PC computer with 4 G RAM
and a CPU of 2.53 GHz.

To demonstrate the efficiency of the proposed
MMUKEF, the results of its Monte Carlo simulations
are presented. Figures 4 through 9 show estimation
errors of state vector (solid lines) along with 3¢
error bounds (dashed lines) taken from the covariance
matrix at every time step. This convergence verifies
good performance of the utilized algorithm and shows
that each variable has a different convergence time
constant. Figures 4 and 5 show that attitude and body
angular velocity estimation errors converge to within
their respective 3o value after only 40 sec that indicates
MMUKF is performing in a near optimal fashion.
Similarly, Figures 6 through 8 show convergence to
30 bounds in 60 sec for MOI estimation, 30 sec for
scale factors and 20 sec for misalignment parameters.
In contrast to fast convergence of the states and
mentioned system parameters, it takes about 300 sec

1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
t (sec)

Figure 5. Body angular velocity estimation errors in

MMUKF with & 30 error bounds.

S o4 S S 4 -
g 2 o1 e ]
o0 o0
& 0 & 9
s -2 > -2
&g ~—=—1 2 4 ——— _
0 200 400 600 800 0 200 400 600 800
&4 = o 4
REEY WY s g 2 .
£ 0 £ o —
W 2 g - L -2 -
- S < -4 :
0 200 400 600 800 0 200 400 600 800
~ 4 —~ 4
N A s B ey )
g 2 \ B o2 S
5 -
X 0 %‘i 0
n _2 N _2 -
5 4 ————— 3 4

""0 200 400 600 800
t (sec)

0 200 400 600 800
t (sec)

Figure 6. Moments of inertia estimation errors in

MMUKF with & 30 error bounds.

to have a converged bias estimation error. Table 4 also
summarizes the root mean square error of state vector.
It is notable that to calculate the attitude estimation
error, error quaternion is calculated first as {6q} =
q ® 1. Since the fourth elements of quaternion
is the scalar part; according to quaternion definition
that g4 = cos(¢/2), and ¢ is the rotation angle, error

estimation of rotation angle is 6¢ = 2 cos 1 ({8q}4).
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4
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0 100 200 300 40 500 600 700 800 900

t (sec)
Figure 7. Scale factors estimation errors in MMUKF
with £ 30 error bounds.
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Figure 8. Misalignments estimation errors in MMUKF
with £ 30 error bounds.
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0
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Figure 9. TAM bias estimation errors in MMUKF with

+ 30 error bounds.

6. Conclusion

This paper has focused on concurrent Attitude Deter-
mination (AD), Parameter Identification of dynamic
system (PI) and Measurement Sensor Calibration
(MSC). Accordingly, moments of inertia tensor for the
attitude dynamic system, scale factor, misalignment
and biases of the Three-Axis-Magnetometer (TAM)
is recursively estimated based on central data fusion
of TAM and the sun sensor. As the governing
model of the considered problem is a mixture of
linear and nonlinear equations, or in other words a
partially linear problem, an advanced marginal un-
scented Kalman filter consisting of Kalman Filter (KF)
and a Modified Unscented Kalman Filter (MUKF) is
proposed and introduced as Marginal Modified UKF
(MMUKF). MMUKF is implemented as a robust tool
to reach acceptable accurate estimations. MMUKF
utilizes only 14 sigma points to estimate a full 25-
dimensional state vector, while standard UKF needs
52 sigma points and MUKF requires 26 sigma points
for the same problem. Application of MMUKF re-
duces the run time to about 68% with respect to the
standard UKF, while preserving the same accuracy
level.

Stability and success of the proposed system and
filter algorithm are demonstrated via a Monte Carlo
analysis for a LEO satellite. The achieved levels of
accuracy, through the proposed scheme, satisfy the
qualification requirement of navigation, and control
subsystems of LEO satellites.

Nomenclature

b Bias vector (nT)

Cp Drag coefficient

15 Moment of inertia tensor in

body axes (kg.m?)

{q} Quaternion parameters
Orbital radius of the satellite (m)

S Cross section area (m?)

WBI Angular velocity of body frame relative
to inertial frame (rad/s)

T Total exerted torques (N.m)

Te Control torque (N.m)

T4 Disturbance torque (N.m)

p Air density (kg/m?)

v Magnitude of the satellite velocity
(m/s)

A Scale factor

6 mmisalignment parameter
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Quantity expressed in body

coordinate system
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