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Abstract. In this paper experimental and analytical explorations of an R-2L-2D circuit
were carried out. The responses from the ordinary em RL-Diode and R-2L-2D circuits
were characterized and compared for a wide parameter region. As a new circuit, R-2L-2D
has an additional

inductor and a diode. The circuit had di�erent attractors compared with the ordinary
RL-Diode circuit. It was proven that the new circuit exhibited wider chaotic regions
on the parameter space (i.e. input voltage, Vf , and frequency, f). Both even and odd
subharmonic responses were observed following the multiple periodic doublings. The
bifurcation analysis revealed the dominance of feeding frequency by means of the center
manifold theory. However, periodic and chaotic attractors di�ered for each circuit. In
fact, the new circuit generated symmetric trajectories. A detailed investigation proved
that the chaotic responses in the proposed circuit could start at the peak-to-peak voltage
of Vf = 1:35 V, at frequency 40 kHz, which was nearly half of the frequency value found
for the ordinary circuit. Besides, a wide range of chaotic behavior was observed beyond
Vf = 0:675 V and f = 200 kHz. Chaotic trajectories dominated the dynamics up to
f = 500 kHz.
c 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Nonlinear circuits have attracted wide interest due to
their many applications in engineering [1-8]. While
main objectives focus on encryption, signal mask-
ing and synchronization studies, important e�orts for
understanding chaos phenomena can also be men-
tioned [5-12]. Following the invention of chaos in a
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basic circuit of the RL-diode by Linsay [13], many
theoretical and experimental studies have been under-
taken in order to shed a light on the chaotic features of
such a basic circuit and potential applications in secure
communications and encryption [14-17]. Historically,
the initial observations of Linsay [13] and Testa et
al. [14] have proven that periodic steady state behavior,
with the same period as the voltage source, occurs as
long as the source amplitude, Vf , is su�ciently small.
However, if a certain feeding value of Vf is adjusted
to the circuit input, the actual period of the steady
state doubles. Thus, for Vf values which are just above
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critical voltage, the output voltage over the resistor
shows an l/2 subharmonic, so called \bifurcation".
When Vf is further increased, an entire sequence of
period-doubling bifurcations can be observed, such as
1/4, 1/8, 1/16 subharmonics. At the end of continuous
bifurcations, the previous steady state can no longer
be observed. Strictly speaking, the output signals
are chaotic, except for some small transient periodic
windows. Note that odd subharmonics were also
observed for increasing voltages [13,14].

Azzouz et al. made a theoretical survey on
the same circuit in order to identify the subharmonic
features of the outputs [15]. They modeled the
diode as a varactor diode and observed even and
odd subharmonics. They also underlined the e�ect
of nonlinear diode capacitances of the diodes rather
than the e�ect of sharp delay [15]. Other studies
undertaken into this nonlinear circuitry have focused
on the route to chaos, which includes successive bifur-
cations just before the chaotic regime [18-21]. Many
research papers have considered the determination of
the so-called Feigenbaum parameters, which explains
the universal recurrence relation of the trajectories in
the bifurcating regime [16-19]. It has been proven that
the bifurcation diagram obtained from the RL-diode
circuit exhibits an ideal cycle with the Feigenbaum
parameter, �=4.669 [14]. The RL-diode circuit has
been used, not only for determination of bifurcation,
but also for intermittency and quasi-periodicity [17-
21]. From the point of time series analysis, there exist
remarkable studies on the output voltages of the RL-
Diode (RLD) circuit. For instance, one author of this
paper explored the nonlinear responses of the RLD
circuit via a statistical test by introducing an embed-
ding dimension and applying it to the output [20,21].
Thereby, a nonlinear classi�cation of the output signals
was realized in a statistical manner. Although di�erent
orientations of RL-diode circuits have been studied
in recent years [22,23], there are no studies on the
e�ects of forward and reversed biased diode systems.
In addition the analytical mechanism which causes a
bifurcation in a diode current on the route to chaos,
after successive period doublings, has not been studied
before in such a circuit. It has been understood that
the frequency of input signal and the resistor play
an important role in de�ning the bifurcation point of
the system, as in earlier �ndings in traditional RLD
circuits [13,15,22,23]. The �ndings from the proposed
circuit can be used in chaos synchronization circuits
and jerk circuits, which can �nd many engineering
applications in control and communication [6-8,24,25].

In the present paper, a new RLD circuit, namely
R-2L-2D, is proposed, and a comparison between
the dynamic responses of the ordinary and proposed
circuits is presented. The proposed circuit has two
diodes operating inversely, and two inductors. This

study is novel, since no studies exist in the literature
on such connected circuit elements. The forward and
reverse directed connections of the diodes and their
e�ects on the phase space have not been discussed
before. In addition, the proposed circuit exhibits a
wider chaotic region compared to the traditional R-L-
D circuit. The new circuit has a wider chaotic region,
from f=40 kHz to 500 kHz in the parameter space,
when the appropriate voltage amplitude is adjusted to
the circuit.

The paper is organized as follows: Section 2
briey describes the theoretical background of the
proposed circuit. The equilibrium properties and
bifurcation analysis are also handled in this section.
The experimental details are presented in section 3.
The main results and discussions are given in the next
section. Finally, the paper ends with a brief conclusion
on the main �ndings.

2. Theory of the proposed R-2L-2D circuit

The traditional RLD circuit, which is shown in Fig-
ure 1 (a), can be modeled by the following equations:

VD + VL + VR = Vf ;

ID = I0
�

exp
�
eVD
kT

�
� 1
�
; (1)

where Vf ; VD; VL and VR are the input voltage, and
voltages across the diode, inductor and resistor, re-
spectively. For such a model, period doubling can
be found by measuring the voltage drop across the
diode, with respect to the frequency or amplitude of
the input signal, Vf . While I0 is the saturation current
of the diode, the denominator of the exponential
function gives the heat energy at the junction of the
diode, which is always accepted as a constant value in
theoretical studies. Since the proposed R-2L-2D circuit
includes additional elements, shown in Figure 1(b), the
formulation is modi�ed to the following:

VR + VLD = Vf ; (2)

where VLD denotes the voltage across the branches
of the inductor and diode. Note that the diodes are
inversely attached to the inductors and parallel to each
other. While current I splits into I1 and I2 on each
diode branch, di�erent parts of the sinusoidal signal
pass through di�erent branches over the entire period
of the input signal. Therefore, one reads as:

VLD = VD1 + L
dI1
dt
; and VLD = VD2 � LdI2dt : (3)

Considering Figure 1 and the equations above, one
arrives at:
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Figure 1. The circuit diagrams of the traditional R-L-D and the R-2L-2D circuits.

dI1
dt

=
VD1

L
+
Vf
L

sin(!t)� R
L

(I1 + I2);

dI2
dt

=
�Vd2

L
+
Vf
L

sin(!t)� R
L

(I1 + I2): (4)

Here, I1 and I2 denote the branch currents, and I =
I1+I2 exists, and VD1 and VD2 are used for the voltages
over the diodes. VD1 and VD2 are de�ned by the
following functions:

VD1 =
kT
e

ln
�
I1
Is

+ 1
�
;

VD2 =
kT
e
ln
�
I2
Is

+ 1
�
: (5)

So that the nonlinear features of the diodes come
into play when currents ow through them in forward
directions. Note that this equation is also valid for
backward directions, since it includes a saturation
current term, denoted by IS . This term is IS = 2:55nA
on average for the 1N4007 diode, which has been used
in our experiments [26].

Considering the dimensionless forms of the above
expressions, one arrives at:

dI1
dt0 =

kT
eL

ln(
I1
Is

+ 1) +
Vf
L

sin(
t0)� R
L

(I1 + I2);

dI2
dt0 =

�kT
eL

ln(
I2
Is

+ 1) +
Vf
L

sin(
t0)� R
L

(I1 + I2):
(6)

In order to provide a dimensionless set of equations
for analytical and numerical studies, one requires new
de�nitions for variables. Therefore, time scaling t0 = �t
can be considered, and � is determined by the circuit
element characteristics, such as � = L=R. Without
using such a time scaling process, the equations cannot
be analyzed parametrically, since the dimensionless
parameters can either become too small or too large.
Note that � is nothing else than the natural period of
the circuit and is not related to the period of externally
applied voltage (i.e. 2�=!). By simplifying the above

equations, one reads as:

dI1
dt

= � ln(
I1
IS

+ 1) + � sin(!t)� (I1 + I2);

dI1
dt

= �� ln(
I2
IS

+ 1) + � sin(!t)� (I1 + I2): (7)

The resulting system of equations can be written as
follows:

_x = � ln(x+ 1) + � sin(z)� (x+ y);

_y = �� ln(y + 1) + � sin(z)� (x+ y);

_z = 

L
R
: (8)

The third equation in Eq. (8) determines the main ex-
perimental parameter-frequency of the external signal.
Note that x and y denote currents In and the relations
x = I1=IS and y = I2=IS exist. The feeding frequency
of the exciting voltage source is determined as a �rst-
order variable, z. In addition, the parameters read as:

� =
kT
eIsR

; and � =
Vf
RIs

: (9)

Here, while � denotes the inverse of the resistance, �
mostly characterizes the feeding voltage.

2.1. Equilibrium properties and bifurcation
analysis

In this section, an analytical analysis of the three-
dimensional continuous system given by Eq. (8) will
be presented. The solution of the equilibrium points
can be realized as follows:

0 = � ln(x+ 1) + � sin(z)� (x+ y);

0 = �� ln(y + 1) + � sin(z)� (x+ y);

0 =

L
R
: (10)

Here, the system variables are considered to satisfy _x =
0; _y = 0 and _z = 0, as usual. Then, the equilibrium
point is found as S1(x; y; z) = (0; 0; 0).
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One can de�ne the Jacobean matrix at S1(0; 0; 0)
in the form of:

J =

�������� 1 �1 �
�1 ��� 1 �
0 0 0

������ : (11)

In order to describe the bifurcation scenario, one has
to de�ne a bifurcation parameter. In our case, � is
considered the main bifurcation parameter, as in many
previous studies, since it controls the input voltage of
the circuit. Eigenvalues � of Eq. (13) can be found as
follows:

J =

�������� 1� � �1 �
�1 ��� 1� � �
0 0 ��

������ = 0 : (12)

After the calculation of this determinant, one reads as:

�1 = 0;

�2 = �1�p1 + �2;

�3 = �1 +
p

1 + �2; (13)

for the eigenvalues. According to these eigenvalue sets,
while the �rst two eigenvalues give zero and negative
results, the third one becomes positive and drives the
system to chaos, as will be shown in Figure 8 later.
Note that the resistor is in � (i.e. 1=R). Thereby,
for very high resistances, � will diverge to zero and
the system will then be regular again. In our case,
it gives �3 � 45000, which is high enough from zero.
Eq. (13) can be obtained as the root of the third order
determinant expression from Eq. (12), as follows:

(�� 1� �)f(�+ 1 + �g � � = 0: (14)

In order to carry out the bifurcation analysis on
the equilibrium point S1, we need to �nd out the
eigenvectors of Eq. (15). In addition, the bifurcation

parameter, � = 0, should be ascertained. Thus, we
arrive at:

(x1; x2; x3) = [0; 0; 1];

(x1; x2; x3) = [��+
p

1 + �2; 1; 0];

(x1; x2; x3) = [���p1 + �2; 1; 0]; (15)

for the corresponding eigenvectors. Then, one should
transform the Jacobean matrix into its standard form.
Using the eigenbasis of Eq. (15), the transformation
matrix is de�ned as follows:0@xy

z

1A=

0@0 ��+
p

1+�2 ���p1+�2

0 1 1
1 0 0

1A0@x1
x2
x3

1A :
(16)

Eq. (9) is transformed into:0BBBBBB@
:
x1
:
x2
:
x3

1CCCCCCA =

��������
0 0 0
0 � 1��+

p
1+�2)2

(2
p

1+�2)
�

(
p

1+�2)

0 �
(
p

1+�2) � (�1+�+
p

1+�2)2

(2
p

1+�2)

��������
�
0@x1
x2
x3

1A+

0@g1
g2
g3

1A ;
(17)

by use of the transformation matrix. Here, g1; g2
and g3 are de�ned in Eq. (18) shown in Box I. Since
the de�nitions, g, include all system dimensions, the
stability of the equilibrium point, S1, near � = 0,
should be examined. From the point of the central
manifold theory, the stability of the equilibrium points
(i.e. S1) at the vicinity of � = 0 can be found by
applying a one-parameter family of �rst-order ordinary
di�erential equations on a center manifold. Therefore,
we de�ne:

x2 = h1(x1; �) = �1x2
1 + �2x1� + �3�2 + h:o:t;

x2 = h2(x1; �) = b1x2
1 + b2x1� + b3�2 + h:o:t; (19)

g1 =

L

R2
p

1 + �2
;

g2 =
��(ln(1+x2+x3)+(��p1+�2) ln(1+x2(��+

p
1+�2)�x3(�+

p
1+�2)))+�(1� �+

p
1+�2) sinx1

2
p

1+�2
;

g3 =
��(ln(1+x2+x3)+(��p1+�2) ln(1+x2(��+

p
1+�2)�x3(�+

p
1+�2)))��(�1+�+

p
1+�2) sinx1

2
p

1+�2
:

(18)

Box I
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in order to �nd out the vector �eld on the center
manifold. According to the de�nition of the center
manifold theory, one can �nd out a graph over the x3
and � bifurcation parameter, as follows:

Wc(0) = f(x2; x2; x3; �) 2 R4jx1

= h1(x1; �); x2

=h2(x1; �); jx1j <�; j�j
< ��; hi(0; 0)=0; i=2; 3g; (20)

for � and �� which are small su�ciently. From the study
of Wiggins [27], such a center manifold must satisfy the
statement:

N(h(x; �)) = Dh0g1 �Bh� g = 0; (21)

where:

h =
�
h1
h2

�
; g =

�
g2
g3

�
; and

B =

2664� (1��+
p

1+�2)2

(2
p

1+�2)
�

(
p

1+�2)

�
(
p

1+�2) � (�1+�+
p

1+�2)2

(2
p

1+�2)

3775 : (22)

Substituting Eqs. (19) into Eq. (21) and using h; g and
B in Eq. (22), we get the terms with x1;x2

1; x1�; �2 and
relevant constants from the expression below:2664 :

h1
:
h2

3775 :g1�
2664� (1��+

p
1+�2)2

(2
p

1+�2)
�

(
p

1+�2)

�
(
p

1+�2) � (�1+�+
p

1+�2)2

(2
p

1+�2)

3775 : �h1
h2

�

�
�
g2
g3

�
= 0 : (23)

Following expressions for the constants from the above
equation, one gets:

x1 : a1

L

R
p

1 + �2
= 0;! a1 = 0;

x2
1 :
�

�
2
p

1 + �2
+

(1� �+
p

1 + �2)
2
p

1 + �2

� (��2 + �
p

1 + �2)(��+
p

1 + �2)
2
p

1 + �2

�
a1

= 0;! a1 = 0;

x1� : �2 :
�

(1� �+
p

1 + �2)2

2
p

1 + �2

� (��2 + �
p

1 + �2)(��+
p

1 + �2)
2
p

1 + �2

�
2
p

1 + �2

�
� 1� �+

p
1 + �2)

2
p

1 + �2
= 0;

! a2 =
1

1 + �2 +
p

1 + �2 � �p1 + �2
;

�2 :
�

(1� �+
p

1 + �2)2

2
p

1 + �2
+

�
2
p

1 + �2

� (��2 + �
p

1 + �2)(��+
p

1 + �2)
2
p

1 + �2

�
� a3 = 0;! a3 = 0:

x1 : b1

L

R
p

1 + �2
= 0;! b1 = 0

x2
1 :
�

�
2
p

1 + �2
+

(�� 1 +
p

1 + �2)2

2
p

1 + �2

� (2�3 + 2�2
p

1 + �2 + �)
2
p

1 + �2)

�
b1

= 0;! b1 = 0;

x1� : b2 :
�

(�� 1 +
p

1 + �2)2

2
p

1 + �2

� (2�3 + 2�2
p

1 + �2 + �)
2
p

1 + �2)

+
�

2
p

1 + �2

�
� �� 1 +

p
1 + �2)

2
p

1 + �2
= 0;! b2 =

1� ��p1+�2

2(�1+�+�3+
p

1+�2��p1+�2+�2(�1+
p

1+�2))
;

�2 :
�

(�� 1 +
p

1 + �2)2

2
p

1 + �2
+

�
2
p

1 + �2

� (2�2 + 2�2
p

1 + �2 + �)
2
p

1 + �2

�
b3 = 0;! b3 = 0: (24)

Then, we obtain the de�nitions below for h1; h2 and
h3:
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x2 = h1(x1; �) = a2x1� + :::

x3 = h2(x1; �) = b2x1� + ::: (25)

Consequently, if one substitutes the above expressions
into Eqs. (19) and (17), the vector �eld reduced to the
centre manifold is obtained as follows:

x1 =

L

R2
p

1 + �2
;

_� = 0: (26)

This result proves that the feeding frequency of the
circuit plays an important role in understanding the
bifurcation branches for the amplitude of feeding volt-
age.

3. Experimental

A schematic diagram of our experimental setup is
shown in Figure 1 for the new circuit. For the ordinary
RLD circuit, the setup is easy to apply, as in the
literature. For both circuits, the circuit elements
are de�ned as the resistances, R = 220
, and the
inductors, L = 10mH. In the case of diodes, the
diodes are selected as 1N4007. The circuit is driven
by a BK Precision 4017 function generator giving
a sinusoidal feeding with an adjustable frequency, f ,
and an amplitude, Vf . For the circuit measurements
and phase space observations, a Kenwood CS-4125
oscilloscope has been used.

According to the circuit structure of the proposed
circuit, the diodes operate parallel to each other. In
that case, while current passes through one of the
diodes in one direction, the other diode does not allow
the current. However, the current always ows through
one of the diodes for any frequency range. This reality
causes a �nite voltage on the resistance, R, for the
entire period of the circuit. Meanwhile, the period
doubling mechanism comes into play in two directions
when suitable frequencies are applied to the circuit
input.

Throughout the study, the parameter space (i.e.
the plane of Vf � f) has been explored in order to see
the entire responses of two circuits. At a constant
input voltage, the maximum potential over a diode
is observed when the driving frequency is the same
as the resonant one. During the parameter scan, a
number of period doubling behaviors have also been
observed as usual for both circuits. While the voltage
increment step is 0:45 V for the RLD circuit, it is
0:225 V for the R-2L-2D circuit, in order to get much
clearer results from the latter. In the entire study, the
frequency increment step is adjusted as 10 kHz for lower
frequency regions and 20 kHz for higher frequency
regions. Thus, the frequency and input voltage ranges

of f = 1 kHz � 560 kHz and Vf = 0V � 3:15V (for
RLD circuit), Vf = 0V� 1:575V (for R-2L-2D circuit)
have been scanned by the step of �f = 20 Hz and
�V = 0:05V, respectively.

4. Results and discussions

According to the experimental explorations, both
circuits generate di�erent types of attractors, from
periodic to chaotic, depending on the input signal.
Initially, we focus on the periodic attractors at low and
high frequencies, respectively. Figures 2 and 3 show
representative periodic attractors.

While the periodic attractors from the R-2L-
2D circuit (left plots in Figures 2 and 3) have a
symmetric trajectory, with respect to the center of
the attractor, at relatively low frequencies (see the left
plot in Figure 2), this symmetry changes to another
symmetric appearance at high frequencies, as shown
in the left plot in Figure 3. Strictly speaking, in the
latter case, symmetry can be found, with respect to an
almost vertical plane, which cuts the trajectories at the
middle of the attractor (see the left plot in Figure 3).
Note that two zigzag regions occur on the one-period
(1P) attractor (Figure 2 (left)). On the other hand, the
attractors from the ordinary RLD circuit di�er from
the ones from the R-2L-2D circuit by the lack of any

Figure 2. Periodic attractors from R-2L-2D (left) and
RLD (right) circuits. Here and in the following attractor
�gures, horizontal axis is the input voltage whereas the
vertical one is voltage across resistance VR: Vf = 0:9 V for
both plots and f = 7:66 kHz (left) and 3.2 kHz (right).

Figure 3. Periodic attractors with high harmonics: Three
periodic regimes (3P) for R-2L-2D circuit (left) and four
periodic regime (4P) for RLD circuit (right). Vf = 0:9 V
for both plots and f = 133:5 kHz (left) and 85.7 kHz
(right).
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symmetric trajectories (see the right plots in Figures 2
and 3).

From the literature [13,14], it is known that
the RLD circuit generates an asymmetric periodic
attractor, as in our experiment. However, inversely-
directed diodes cause a symmetrical appearance in the
attractors from the R-2L-2D circuit. It is obvious that
the voltage over resistor R takes di�erent values for any
values of input voltage.

A chaotic attractor having symmetry on the
vertical plane passing through the center of the phase
space is shown in Figure 4. This attractor appears
when the frequency of the input signal is increased
slightly from 133.5 kHz to 139.1 kHz.

Note that the overall shapes of trajectories resem-
ble the case in Figure 3 (left). However, complicated
trajectories complete the phase space representation. A
representative chaotic attractor from the RLD circuit
is shown in the right plot of Figure 4 at f = 88:7 kHz.
The trajectories carry the general form shown in the
right plot of Figure 4, especially, the trajectories in
the middle of the attractor are clearly seen having a
growing distance from each other.

In the lower frequency regime of the R-2L-2D
circuit, one can also see even periodic (i.e. period four
4P) behavior, as shown in the left plot of Figure 5.
It is known from the literature that both successive
even and odd periodic transitions can occur, depending
on the frequency [14]. Therefore either odd periodic
transitions (shown in the left plot of Figure 3) or

Figure 4. Chaotic attractors from R-2L-2D (left) and
RLD (right) circuits at relatively high frequencies.
Vf = 0:9 V for both plots and f = 139:1 kHz (left) and
88.7 kHz (right).

Figure 5. A 4P periodic (left) and quasi-periodic (right)
attractors from R-2L-2D and RLD circuits, respectively.
Vf = 0:9 V for both plots and f = 76:5 kHz (left) and
107.6 kHz (right).

even periodic ones can be observed in the new circuit.
Note also that the main appearance of the attractor
is preserved for all subharmonic cases. In the right
plot of Figure 5, a quasi-periodic regime is indicated
for relatively high frequency in the RLD circuit. After
the compilation of the periodic window, the circuit is
driven to another chaotic attractor, which di�ers from
the earlier one in Figure 4 (right).

When one increases the frequency further in the
higher frequency chaotic regime, the attractor which is
shown in Figure 4 is transformed into a complicated
form, as given in Figure 6. Note that the individual
trajectories in the left plot of Figure 4 cannot be
observed in the latter case, while the symmetrical
appearance, with respect to the vertical plane, persists.
However, the chaotic attractor obtained from the RLD
circuit does not have the symmetry as in the earlier
cases. An interesting chaotic attractor, which is
obtained at a relatively lower frequency regime, from
the R-2L-2D circuit, is shown in Figure 7. Note that
this attractor appears at f = 71:4 kHz, which is
slightly lower frequency, as the case in Figure 5. The
main di�erence between two chaotic regimes is that the
chaotic trajectories become much more complicated, by
coming near each other at a high frequency regime,
than usual. While the individual trajectories can
be selected to some extent at lower frequencies, this
feature disappears at high frequencies, as in the left

Figure 6. Chaotic attractors from R-2L-2D (left) and
RLD (right) at high frequencies f = 158:8 kHz (left) and
194.1 kHz (right). Vf = 0:9 V for both plots.

Figure 7. A chaotic attractor at low frequency regime
from R-2L-2D circuit: (Vf ; f) = (0:9V; 71:4 kHz).
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Figure 8. The experimental two-parameter bifurcation diagram as functions of feeding voltage (Vf ) and frequency (f) for
RLD (left) and R-2L-2D (right) circuits. The colors indicate the relevant dynamic reply of the circuits and can be seen
better in electronic version of the paper.

plot of Figure 6. The symmetry in the trajectories can
also be clearly seen in Figure 7.

In order to determine the entire dynamic response
in the parameter space (i.e. the input frequency f
and voltage Vf ), we produce a detailed two-parameter
bifurcation diagram in Figure 8 for both circuits. Such
diagrams can also be seen in earlier studies [3,23]
for the determination of the dynamic behavior of the
circuits. Since it contains two main system parameters
(i.e. f and Vf of input signal), it gives an overall
idea where the circuit exhibits periodic and chaotic
responses. In this diagram, the dynamic behaviors
of the circuits are indicated as separated regions,
which underline the periodic and chaotic regions, after
successive bifurcating points, for a wide range of input
signals. Note that the voltage values in the horizontal
axis of the diagram are peak to peak values, whereas
the frequency is in KHz.

It is proven that the chaotic region indicated by
black is enlarged down to relatively lower frequencies in
the proposed circuit compared to the traditional RLD
circuit. In addition, there exist large regions, where the
current owing through the main branch goes to chaos
directly from the 1P region. In a most recent study,
Manimehan and Philominathan [23] also observed such
regions in their own circuitry, when they considered
parallel-attached elements. It is also interesting that
the occurrence of chaotic regions in their study [23]
and the present one follows a similar rule, such as
Vf � (f�f0)2+a. Here, f0 denotes the frequency value,
where the minimal Vf sits, and a is a constant, which
carries the parabola upwards from the frequency axis.
In order to determine the exact function, a �tting curve
can be drawn for further studies. However, it is beyond
the present paper. While the yellow color represents 1P

output, the chaotic behavior is denoted by black. Note
that some higher periodic bifurcations can also be seen
adjacent to the chaotic region in general. In addition,
the proposed circuit can generate chaotic responses for
relatively low voltage and frequency values compared
to the RLD circuit. From the point of frequency, the
upper boundary for the chaotic responses does not
change too much compared to the �ndings from the
RLD circuit. There exist multiple chaotic regimes
among the several periodic windows including the
successive period doubling mechanism. Note, also,
that odd and even subharmonic behaviors are observed
in both circuits clearly, as also observed in previous
studies [14,15].

While the �rst chaotic response has been obtained
at (Vf ; f) = (1:35V; 40 kHz) at a low frequency regime,
the parameter set (Vf ; f) = (0:225 V; 160 kHz) also
gives a chaotic response at a low voltage region. In
addition, a wide region of chaos persists between the
values, (Vf ; f) = (1:125� 1:575 V; 200� 400 kHz), for
the scanned parameter region. We believe that these
chaotic responses can also dominate the dynamics for
much higher amplitudes. Thereby, this circuitry can
e�ciently serve to generate chaotic signals for a large
range of parameters.

5. Conclusions

A new circuit, namely R-2L-2D, with double inductors
and diodes, is introduced, and the dynamic responses
are discussed compared with the ordinary RLD circuit
using the same circuit elements. It has been found
that this new circuitry reects the characteristics of
the RLD circuit from the point of successive bifurcation
regimes and multiple chaotic regimes, with respect to



E. Kurt et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 935{944 943

the input voltage and frequency. This study is novel
in the sense that the literature does not contain any
information in regard to the proposed circuit with the
forward and reverse directed connection of the diodes.
This kind of connection yields to many symmetrical
attractors. In addition, the proposed circuit exhibits a
wider chaotic region compared to the traditional R-L-
D circuit. Strictly speaking, the attractors observed in
the R-2L-2D circuit have certain symmetries, according
to either the center of the attractor or the vertical
plane passing through the center of the phase space
apart from the ordinary RLD circuit. In addition,
the trajectories become much complicated for high
frequency inputs for both circuits. It can be also
concluded that the chaotic region enlarges toward the
lower frequencies in the proposed circuit, whereas the
dynamics resemble ordinary RLD circuits at higher
frequencies. In addition, new circuitry can generate
the chaotic dynamics at lower voltages compared to
the RLD circuit. Therefore we expect that this new
circuit can easily serve the fundamental theory of chaos
and bifurcation, since the dependence on the excitation
frequency determines the bifurcation scenario for a con-
stant excitation voltage. Due to its simple circuitry, the
proposed circuit can also be used for the educational
purposes of engineers and physicists in the labs.

References

1. Kurt, E. and Cant�urk, M. \Bifurcations and hy-
perchaos from a dc driven non-identical Josephson
junction system", Int. J. Bif. Chaos, 20(11), pp. 3725-
3740 (2010).

2. Kurt, E. and Cant�urk, M. \Chaotic dynamics of resis-
tively coupled DC-driven distinct Josephson junctions
and the e�ects of circuit parameters", Physica D: Nonl.
Phen., 238(22), pp. 2229-2237 (2009).

3. Kurt, E. \Nonlinearities a non-autonomous chaotic
circuit with a non-autonomous model of Chuas diode",
Phys. Scr., 74, pp. 22-27 (2006).

4. Kurt, E., Ozturk, M.K. and Kasap, R. \Investigating
the most appropriate parameters of the nonlinear
resistor circuit time series", J. Inst. Sci. & Tech. Gazi
Uni., 14(4), pp. 1261-1269 (2001).

5. Thompson, J.M.T. and Bishop, S.R., Nonlinearity and
Chaos in Engineering Dynamics, John Wiley and Sons,
England (1994).

6. Kennedy, M.P., Rovatti, R. and Setti, G. (edited by
Raton, B.), Chaotic Electronics in Telecommunica-
tions, CRC Press, FL (2000).

7. Uchida, A., Davis, P. and Itaya, S. \Generation
of information theoretic secure keys using a chaotic
semiconductor laser", Appl. Phys. Lett., 83(15), pp.
3213-3215 (2003).

8. Van Wiggeren, G.D. and Roy, R. \Communication
with chaotic lasers", Science, 279, pp. 1198-1200
(1998).

9. Dana, S.K., Sengupta, D. and Edoh, K. \Chaotic dy-
namics in Josephson junction", IEEE Trans. Circuits
Systems I: Fund. Theory and Appl., 48(8), pp. 990-996
(2001).

10. Kapitaniak, T., Controlling Chaos, Academic Press,
San Diego (1996).

11. Stojanovski, T., Pihl, J. and Kocarev, L. \Chaos
based random number generators - Part II: Practical
realization", IEEE Trans. Circ. Syst.-I: Fund. Theo.
Appl., 48, pp. 382-385 (2001).

12. Tsubone, T. and Saito, T. \Hyperchaos from a 4-D
manifold piecewise-linear system," IEEE Trans. Cir.
Syst.-I: Fund. Theo. Appl., 45, pp. 889-894 (1998).

13. Linsay, P.S. \Period doubling and chaotic behaviour in
a driven anharmonic oscillator", Phys. Rev. Lett., 47,
pp. 1349-1352 (1981).

14. Testa, J., Perez, J. and Je�ries, C. \Evidence for
universal chaotic behaviour of a driven oscillator",
Phys. Rev. Lett., 48, pp. 714-717 (1982).

15. Azzouz, A., Duhr, R. and Hasler, M. \Transition
to chaos in a simple nonlinear circuit driven by a
sinusoidal voltage source", IEEE Trans. Circuits Syst.,
CAS-30 (1983).

16. Su, Z., Rollings, R.W. and Hunt, E.R. \Universal
properties at the onset of chaos in diode resonator
systems", Phys. Rev. A, 40(5), pp. 2689-2697 (1989).

17. Van Buskirk, R. and Je�ries, C. \Observation of
chaotic dynamics of coupled nonlinear oscillators",
Phys. Rev. A, 31, pp. 3332-3357 (1985).

18. Huang, J.Y. and Kim, J.J. \Type-II intermittency in
a coupled nonlinear oscillator: Experimental observa-
tion", Phys. Rev. A, 36(3), pp. 1495-1497 (1987).

19. Kim, Y.H. and Kim, J.J. \Observation of quasiperiod-
icity in a single diode circuit", J. Korean Phys. Soc.,
27(2), pp. 225-227 (1994).

20. Kasap, R. and Kurt, E. \Investigation of chaos in
the RL-diode circuit by using the BDS test", J. Appl.
Math. Decision Sci., 2(2), pp. 193-199 (1998).

21. Kurt, E., Acar, S. and Kasap, R. \A comparison of
chaotic circuits from a statistical approach", Math.
Comp. App. J, 5(2), pp.95-103 (2000).

22. Inaba, N., Nishio, Y. and Endo, T. \Chaos via
torus breakdown from a four-dimensional autonomous
oscillator with two diodes", Physica D, 240(11), pp.
903-912 (2011).

23. Manimehan, I. and Philominathan, P. \Composite
dynamical behaviors in a simple series{parallel LC
circuit", Chaos, Solitons and Fractals, 45(12), pp.
1501-1509 (2012).

24. Munmuangsaen, B., Srisuchinwong, B. and Sprott,
J.C. \Generalization of the simplest autonomous
chaotic system", Physics Letters A, 375, pp. 1445-1450
(2011).



944 E. Kurt et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 935{944

25. Sprott, J.C. \A new chaotic jerk circuit", IEEE Trans.
Circuits and Systems-II: Express Briefs, 58(4), pp.
240-243 (2011).

26. http://www.buildinggadgets.com/1N4007.pdf

27. Wiggins, S., Introduction to applied nonlinear dynam-
ical systems and chaos, Springer-Verlag, New York
(1990).

Biographies

Erol Kurt completed his undergraduate studies at
Gazi University, Turkey, in 1998, and obtained his MS
degree from the Institute of Science and Technology of
the same university in 2001. He completed his PhD
degree in 2004, at Bayreuth University, Germany. He
is currently Professor in the Department of Electrical
and Electronics Engineering at the Technology Fac-
ulty of Gazi University, Turkey. His main teaching
and research areas include nonlinear phenomena in
electrical/electronic circuits, electric machine design,
mechanical vibrations, chaos, plasmas, fusion and mag-
netohydrodynamics. He has authored and co-authored
many scienti�c papers and has been guest editor of
several special issue journals. He is also Technical
Chairman of the annual International Conference of
Nuclear and Renewable Energy Resources (NuRER)

and Chairman of the European Conference and Work-
shop on Renewable Energy Systems (EWRES).

B�unyamin Ciylan was born in 1971 in Adana,
Turkey. He obtained BS, MS and PhD (2009) degrees
from the Department of Electronics and Computer
Education at Gazi University, Turkey, where he is
currently Assistant Professor. He is also Deputy
Director of the Continuous Educational Center. His
research interests include thermoelectric test systems,
measuring systems and arti�cial neural networks.

Omer Oguz Taskan graduated in 2013 from the
Department of Electrical Education at the Techni-
cal Education Faculty of Gazi University in Ankara,
Turkey, where he is currently an MS degree student.
His specialty is electrical circuits modelling.

Hatice Hilal Kurt received her BS, MS, and PhD
degrees in 1997, 2000 and 2004, respectively, from
Gazi University, Ankara, Turkey, where she is currently
Associate Professor in the Department of Physics. Her
research interests include gas discharges and high-
speed infrared-visible conversion techniques in semi-
conducting plasma structures, as well as the electrical
properties of semiconductor elements.




