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Abstract. Recent advancements in photovoltaic (PV) system technologies have decreased
their investment cost and enabled the construction of large PV farms for bulk power
generations. The output power of PV farms is a�ected by both failure of composed
components and solar radiation variability. These two factors cause the output power
of PV farms be random and di�erent from that of conventional units. Therefore, suitable
models and methods should be developed to assess di�erent aspects of PV farms integration
into power systems, particularly from the system reliability viewpoint. In this context a
reliability model has been developed for PV farms with considering both the uncertainties
associated with solar radiation and components outages. The proposed model represents
a PV farm by a multi-state generating unit which is suitable for the generation system
assessment. Utilizing the developed reliability model, an analytical method is proposed for
adequacy assessment of power generation systems including large PV farms. Real solar
radiation data is used from Jask region in Iran which are utilized in the studies performed
on the RBTS and the IEEE-RTS. Several di�erent analyses are conducted to analyze the
reliability impacts of PV farms integration and to estimate the capacity value of large PV
farms in power generation systems.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, renewable generations, especially wind
power and photovoltaic (PV) systems, have been in-
creasingly used in power systems. The non-exhaustive
nature of renewable resources, along with negligible
operating costs and benign environmental e�ects, are
primary bene�ts in power system applications. Recent
advancements in PV system technology have decreased
the investments costs of PV systems. Although
the cost of power produced by PV systems is still
higher than the same size conventional generations,
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and they normally require additional facilities to in-
tegrate and transfer the power to the grid, they are
supported strongly by governmental policies in order
to reduce harmful emissions. The Renewable Portfo-
lio Standards (RPSs), Renewable Energy Certi�cates
(RECs) [1], and regional greenhouse gas emission con-
trol schemes [2] in the US, and the 20/20/20 targets in
the European Union [3], are examples of such policies.
The ultimate target of these policies is to increase
the use of renewable energy and reduce environmental
emissions. The 250 MW Agua Caliente Solar plant
in the USA, the 214 MW PV Charanka powerplant in
India and the 200 MW Yuma County PV powerplant in
the USA are examples of such PV farms that have been
constructed around the world in the past two years [4].

The intermittent nature of solar radiation, along
with the probabilistic behavior of PV farm compo-
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nent outages, makes the output power of PV farms
completely random and di�erent from conventional
generation units. Therefore, new models and methods
are required to assess the di�erent aspects of PV farm
integration in power systems, particularly from the
system reliability point of view. Very little attention
has been paid to assessing the power system reliability
impact of PV farm integration. In [5], the hourly mean
solar radiation and standard deviation are applied as
inputs to simulate solar radiation over a year. Then,
the Monte Carlo simulation technique is utilized for
reliability analysis of a small isolated power system
containing solar photovoltaic. A time sequential simu-
lation method is proposed in [6] for generating the ca-
pacity adequacy evaluation of small stand-alone power
systems containing solar energy, operating in parallel
with battery storage. The system considered in [6]
is composed of a diesel generator, a PV system, and
battery storage. In [7] and [8], a reliability evaluation
of isolated power systems containing a PV system
and wind generation is studied. In those papers, the
capacity of renewable resources is assumed to be small
and the Monte Carlo method is used for the uncertainty
modeling of wind speed and solar radiation. In [9], a
reliability study of a hybrid system containing wind and
solar generation in o�-grid applications of a real system
is performed. Various reliability indices, such as loss of
load expectation, expected energy not served, energy
index of reliability and expected customer interruption
cost, are evaluated through a probabilistic approach us-
ing an analytical method. In [10], a reliability analysis
of a hybrid wind and solar system, based on a well-
being approach, which is a combination of probabilistic
and deterministic techniques, is performed thorough a
Monte Carlo simulation technique. The Monte Carlo
simulation method is used in [11] for the reliability
evaluation of a hybrid system containing wind and PV
systems connected to multi micro storage systems. All
the references have considered the reliability impact
of PV farm integration in isolated power systems. In
this context, an analytical method is proposed in this
paper for the adequacy assessment of power generation
systems, including large PV farms. A reliability model
is �rst developed for PV farms, which considers both
the uncertainties associated with solar radiation and
component outages. The proposed reliability model
represents a PV farm via a multi-state generating unit,
which makes it easy to be utilized in the generation
system reliability assessment. The developed multi-
state reliability model is utilized to form a Capacity
Outage Probability Table (COPT) of the PV farm(s).
The obtained COPT is then added to the equivalent
COPT of the conventional generating units to form the
total generation capacity model of the system. Finally,
convolution of the load model with the �nal COPT
provides the risk model of the generation system,

including PV farms, and the reliability indices can be
calculated using the obtained risk model. The proposed
analytic approach overcomes some of the di�culties
associated with simulation-based methods, in terms of
both computational burden and the volume of data
needed in such methods. Besides, the proposed ana-
lytic model can be used in generation system expansion
planning, including large PV farms.

The rest of the paper is organized as follows. A
typical structure of a PV farm considered in this paper
is presented in Section 2. In Section 3, the proposed
component reliability model for PV farms is presented.
The model proposed in Section 3 is then modi�ed
in Section 4, in order to consider the e�ect of solar
radiation uncertainties. The real solar radiation data
in the southern part of Iran is utilized in Section 4. The
proposed analytic method for the adequacy assessment
of power systems, including PV farms, is presented
in Section 5. The proposed model is applied to the
RBTS and the IEEE-RTS in Section 6, to analyze
the reliability impact of PV farm integration in power
systems. Finally, conclusions are given in Section 7.

2. PV farm structure

The structure of a typical PV farm is shown in
Figure 1 [12]. The smallest building block of a PV
farm is the solar cell, which absorbs the solar radiation
and converts it to the DC electric power. A number
of solar cells are connected in series and in parallel
to construct a PV panel and achieve larger current-
voltage characteristics. The output power of a solar
panel is maximized in a point named the Maximum
Power Point (MPP). A number of solar panels are then
connected to a DC/DC converter to target the MPP
and yield the maximum power produced by the panels.
This DC/DC converter is usually known as the MPP
Tracker (MPPT) [12]. Such a structure consists of
solar panels connected to a DC/DC converter, which is
usually known as a PV sub-array. The power produced
by a sub-array is still DC. In order to connect the

Figure 1. The structure of a typical PV farm.
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PV farm to the AC grid, some sub-arrays are then
connected to a DC/AC converter to construct a PV
array, which is the largest building block of a PV farm.

In order to provide a better representation of
the proposed reliability model, a 30 MW PV farm
is utilized throughout the paper. Each panel of the
sample PV farm includes 96 solar cells in three 32-cell
branches. The maximum output power of a panel in the
presence of 900 watt/m2 solar radiation is 300 watts.
This value is resulted from the product of the area of
the panel (2 m2), panel e�ciency (18.4%), the e�ciency
of other parts, such as connecting wires and converters
(90%), and solar radiation [13]. In the considered PV
farm, a sub-array includes 40 series panels connected to
a 12 kW DC/DC converter for maximum power point
tracking. At a higher level, a PV array with a capacity
of 600 kW is constructed from 50 parallel sub-arrays.
This array is connected to the AC grid through a 600
kW inverter. Finally, 50 PV arrays are connected in
parallel to construct a 30 MW PV farm.

3. Component reliability modeling of a PV
farm

A component reliability model of a large PV farm con-
nected to the AC grid is presented in this section. The
modeling is commenced by presenting the reliability
model of a solar cell, and is then extended to a PV
panel, a PV sub-array, a PV array and, �nally, the PV
farm.

3.1. Reliability model of a solar cell
A solar cell is a p-n junction which produces DC
electricity power from sun radiation [12]. A two-state
up and down model is considered as the reliability
model of a solar cell. The failure of solar cells
could originate from electrical, chemical, environmental
and mechanical phenomena, such as thermal stresses,
humidity penetration and solid state failures [14].
The probabilities of the up and down states can be
calculated as follows [15]:

PUP
c =

�c
�c + �c

; PDOWN
c =

�c
�c + �c

; (1)

where �c and �c are failure rate and repair/replacement
rate of a solar cell, respectively. Failure rate and repair
time of the p-n junction of a solar cell of the considered
30 MW PV farm are considered to be 0.005 failures in
106 hours (0.00004 f/yr) and 40 hours, respectively [16].

3.2. Reliability model of a PV panel
A PV panel is constructed by M parallel branches,
each with N series solar cells. If a solar cell fails, the
associated branch would go out of service. Accordingly,
the failure rate of a branch is the sum of the failure rate
of the series solar cells [17]. Thus, the probabilities
of the up and down states of a panel branch can be

Figure 2. Reliability model of a PV sub-array.

calculated by Eqs. (2), respectively:

PUP
b =

�b
�b + �b

=
�
PUP
c
�N ;

PDOWN
b =

�b
�b + �b

= 1� PUP
b ; (2)

where �b and �b are failure rate and repair/replacement
rate of a branch, respectively. Using the principles of
series systems [15], �b and �b are equal to N�c and �c,
respectively.

3.3. Reliability model of a PV sub-array
In a PV panel with M parallel branches, the failure
of a branch reduces the output power of the panel to
the (M � 1)=M maximum power output of the panel.
As the direct consequence of this failure, and based on
Kirchho�'s current law, the current of the other panels
must be reduced by a factor of (M � 1)=M . Thus, the
total output power of the sub-array would be reduced
to (M � 1)=M times nominal power. The reliability
model of a PV sub-array is shown in Figure 2, with
(M + 1) states. In Figure 2, P is the power produced
by each solar cell, N is the number of series cells in
a branch, M is the number of parallel branches in a
panel, and R is the number of series PV panels in a
sub-array.

The state probabilities in Figure 2 can be calcu-
lated as follows.

In state s1, all branches and panels are in service.
The total number of branches is MR. Thus, the
probability of residing in this state can be calculated
as follows:

Ps1 = (PUP
b )MR: (3)

The probability of residing in state s2 is a summation
of the state probabilities in which there is at least a
panel with one failed branch. In this state, there is no
panel with two or more failed branches, but the number
of panels with one failed branch can be one or more.
This state contains R sub states with one to R panels,
containing one failed branch. Thus Ps2 is:

Ps2 =
RX
k=1

�
Mk

�
R
k

��
PUP
b
�MR�k �PDOWN

b
�k� : (4)

In Eq. (4), k is the number of panels with one failed
branch. A sub array contains R panels, each with M
branches. The total number of options, i.e. the number
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of states containing k panels with one failed branch,
would be the combination k from R multiplied by Mk.

The probability of residing in state s3 is equal
to the summation of state probabilities in which there
exists at least a panel with exactly two failed branches.
In this state, there is no panel with three or more failed
branches, but the number of panels with two failed
branches (k) can be one or more (up to R). Also, the
number of panels with one failed branch from the other
panels (h), can be from zero to (R � k..). Thus, the
probability, Ps3 , is calculated as:

Ps3 =
RX
k=1

R�kX
h=0

"�
R
k

��
R� k
h

��
M
2

�k
Mh �PUP

b
�RM�2k�h �PDOWN

b
�2k+h

#
: (5)

The remaining state probabilities in Figure 2 can be
calculated in the same way. The transition rates
between states in Figure 2 can be calculated using
the same analysis. The capacity of the sub-array in
Figure 2 decreases from MRNP kW to (M � 1)RNP
kW when one of the branches in a panel fails. Thus,
the transition rate from state s1 to state s2 is occurred
when one of the RM branches fails, and is:

�12 = RM�b: (6)

The sub-array is transferred from state s2 to state s1
when the only failed branch is replaced or repaired.
This transition occurs when there is a state with only
one failed branch. The equivalent transition rate is
calculated based on the frequency balance of the same
states. Thus:

�21 =
�bRM

�
PUP
b
�MR�1 PDOWN

b

Ps2
: (7)

In Eq. (7), RM(PUP
b )MR�1PDOWN

b is the probability
of the state with only one failed branch.

The sub-array in state s2 has at least one panel
with one failed branch. If the other healthy branch(es)
of the panel(s) with one failed branch fails, the sub-
array would go to state s3. It is considered that, in
state s2, there are k panels with one failed branch.
Thus, if a branch of the remaining (M � 1) perfect
branches fails, the transition is occurred. Accordingly,

using the rule of the combining failure rate of the same
states [15], the transition rate from state s2 to state s3
can be calculated by:

�23

=

RP
k=1

�
(M�1)k�bMk

�
R
k

��
PUP
b
�MR�k �PDOWN

b
�k�

Ps2
:
(8)

In Eq. (8), (M �1)k�b is the transition rate associated
with the states containing k panels with one failed

branch, and Mk
�
R
k

�
(PUP
b )MR�k(PDOWN

b )k is the

probability of these states.
The sub-array in state s3 has one or more panels

with two failed branches. But, the sub-array can go
from state s3 to state s2, if and only if it has one
panel with two failed branches. By repairing/replacing
one of the failed branches of the panel, the sub-
array would be transferred to state s2. Thus, as in
Eq. (9), shown in Box I, 2�b is the transition rate
associated with the states containing one panel with
two failed branches. In these states, the remaining
panels may have one failed branch or not, i.e. the
number of panels with one failed branch may be
0; 1 � � � (R � 1). In Eq. (9), shown in Box I, R
is the number of options, determining a panel with

two failed branches,
�
M
2

�
is the number of options

determining two failed branches from M branches of a

panel, and Mk
�
R� 1
k

�
(PUP
b )MR�k�2(PDOWN

b )k+2 is

the probability of states containing one panel with two
failed branches incorporating K panels with one failed
branch.

The remaining transition rates in Figure 2 can
be calculated in the same way. For example, in the
considered 30 MW PV farm, when a branch of a panel
consisting of three branches fails, the output power of
the panel reduces to 2/3 the maximum output power
of the panel. Accordingly, the output power of the sub-
array would have four states, i.e. 12, 8, 4 and 0 kW.
The state probabilities and the associated transition
rates can be calculated using the above procedure.
Besides the failures originated by the solar cells failures,
the panels and the associated sub-arrays may also fail
due to a common mode failure. In such failures, which

�32 =
2�b

R�1P
k=0

�
R
�
M
2

�
Mk

�
R� 1
k

��
PUP
b
�RM�k�2 �PDOWN

b
�k+2

�
Ps3

: (9)

Box I
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normally happen due to storm, snow, wind blowing,
panel basement breaking, etc., the whole panel and,
thus, the whole sub-array would fail. Considering the
common mode failures, the reliability model of the
sub-array shown in Figure 2 would be extended to
the model in which a transition is made from each
state to a 0 kW capacity state, which denotes the
common mode failure of the panel. The common mode
failure state probabilities can be calculated using the
frequency balance principle [15].

As shown in Figure 1, the panels in a sub-array
are connected to a DC/DC converter for maximum
power point tracking. The next step in the reliability
modeling of a sub-array is to consider the failure of
the DC/DC converter. From the reliability modeling
point of view, the DC/DC converter is in series with
all the panels in a sub-array and its failure results in
the failure of the whole sub-array. Hence, failure of
the DC/DC converter can be considered as a common
mode failure and can be evaluated using the same
procedure utilized above to model the common mode
failures. The DC/DC converter can be modeled using
a simple two-state up and down reliability model.
Accordingly, a reliability model of the sub-array of a
sample 30 MW PV farm, which accounts for common
mode failures and the failure of the DC/DC converter,
is shown in Figure 3. The new state probabilities and
transition rates are also shown in this �gure.

The common mode failure rate and
repair/replacement rate of a panel of the 30 MW
PV farm are assumed to be 0.004 f/yr and 219 r/yr,
respectively. The failure rate and repair/replacement
rate of the DC/DC converter are also considered to be
0.01 f/yr and 219r/yr, respectively.

3.4. Reliability model of a PV array
A PV array consists of L parallel sub-arrays. From a
reliability point of view, L sub-arrays are in parallel,
each modeled by a (M + 1)-state model derived in
Section 3.3. Consequently, the reliability model of a PV

Figure 3. Reliability model of a sub-array of the 30 MW
PV farm.

Figure 4. Reliability model of a PV array.

array, shown in Figure 4, consists of (ML + 1) states,
from MLRNP kW to 0 kW capacities, reducing in
RNP kW steps. The state probabilities and transition
rates in Figure 4 can be calculated in a straightforward
manner by investigating the sub-array failure states.
For example, in state a1, all sub-arrays are in state s1.
Hence, the probability of residing in state a1 is:

Pa1 = (Ps1)ML : (10)

In the sample 30 MW PV farm, 50 parallel sub-arrays
construct a PV array. Thus, the nominal output
power of an array of the PV farm would be 600 kW.
Consequently, the reliability model of each PV array
consists of 151 states, from 600 kW to 0 kW capacities,
reducing in 4 kW steps. However, this model contains
a large number of states for a PV array, which is not
desirable for reliability studies. Hence, the output
power of a PV array is approximated by an arbitrary
number of states. For example, the 151-state model
of each array in the 30 MW PV farm is approximated
by seven states with 600, 500, 400, 300, 200, 100 and
0 kW capacities. This model is constructed through
state 1 with capacities from 552 to 600 kW, state 2 with
capacities from 452 to 548 kW, state 3 with capacities
from 352 to 448 kW, state 4 with capacities from 252
to 348 kW, state 5 with capacities from 152 to 248 kW,
state 6 with capacities from 52 to 148 kW and state 7
with capacities from 0 to 48 kW. The state probabilities
of the approximated 7-state model are obtained by
summing up the probability of the associated states
in the complete 151-state reliability model of the PV
array.

3.5. Reliability model of a PV farm
A DC/AC converter is in series with each PV array
to transfer the produced power to the grid, and its
failure causes the output power of the associated array
to be zero. Similar to the method utilized to model
the failure of the DC/DC converter in each sub-array,
failure of the DC/AC converter can be considered as
a common mode failure and can be evaluated using
the same procedure. Accordingly, a transition is made
from each state of Figure 4 to a 0 kW capacity state,
which denotes the failure of the DC/AC converter. The
transition rates to/from the new states with 0 kW
capacities are the failure rate/repair rate of the DC/AC
converter. The resulting reliability model of each array,
considering the DC/AC converter, is similar to the
model shown in Figure 4, with (ML + 1) states in
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which the state probabilities and transition rates are
updated.

Consider a PV farm with G parallel arrays. From
a reliability point of view, G arrays (each in series
with a DC/AC converter) are in parallel, and each are
modeled by a (ML+ 1)-state model. Accordingly, the
reliability model of a PV farm consists of (MLG +
1) states, from MLGRNP kW to 0 kW capacities,
reducing by RNP kW steps. In this regard, based on
the 7-state reliability model of each array of the sample
30 MW PV farm derived in Section 3.4, which is further
manipulated to include the failure of the DC/AC
converter, the reliability model of a 30 MW PV farm
consisting of 50 parallel arrays would have 301 states.
However, this large number of states is not suitable
for reliability analysis of power systems. Investigating
the 7-state model derived in Section 3.4 reveals that
the probabilities associated with states of 500, 400,
300, 200, 100 and 0 kW capacities are, respectively,
3.174e-9, 1.567e-29, 3.58e-52, 7.36e-79, 1.088e-107 and
2.497e-138, which are almost zero and can be omitted
from the model. Thus, without losing the precision of
calculations, the reliability model of the PV array of a
30 MW PV farm can be best approximated by only one
state having 600 kW capacity and unity probability.

Considering the two-state reliability model for the
DC/AC converters, we can derive a 51-state reliability
model for the sample 30 MW PV farm. The failure and
repair rates of the DC/AC converters are 0.5 f/yr and
50 r/yr, respectively. We can simplify the model by
clustering the states into 4 states, with 30, 20, 10 and
0 MW capacities. This model is constructed through
state 1 with capacities from 25.2 to 30 MW, state 2 with
capacities from 15 to 24.6 MW, state 3 with capacities
from 5.4 to 14.4 MW, and state 4 with capacities from
0 to 4.8 MW.

4. Solar radiation uncertainty considerations
in reliability model of PV farms

Besides the random nature of components in a PV
farm, the solar radiation is also uncertain and can
considerably a�ect the output power of the farm.
Every physical event, such as solar radiation, that
changes continuously and randomly in time and space,
is considered a stochastic process and can be modeled
approximately as a process with discrete state space
and relevant parameters [18]. A Markov chain may be
used to model the alteration of a stochastic process as
transitions between states, where each state represents
a discrete value of the process. As a basic characteristic
of the Markov process, it should be stationary, i.e. the
transition rates between di�erent states should remain
constant through the study period [19]. Modeling
a stochastic process by a stationary Markov process
demands that the state residence time follows an ex-

ponential distribution [17]. In this paper, exponential
state residence time is assumed for all applications.
In exponential distribution, a constant transition rate
between states i and j is used, which is de�ned by [17]:

�ij =
Nij
Ti

; (11)

where �ij is the transition rate (occurs per hour), Nij is
the number of observed transitions from state i to state
j, and Ti is the duration of state i (in hours) calculated
during the whole period. If the departure rates from
state i to the upper and lower states are denoted as �+i
and ��i, respectively, then [17]:

�+i =
X
j>i

�ij ; (12)

��i =
X
j<i

�ij : (13)

The probability of occurrence of state i, Pi, is given
by [17]:

Pi =
Ti
T
; (14)

where T is the entire period of observation (in hours).
The frequency of occurrence of state i, fi (in occur-
rences per hour), is then given by [17]:

fi = Pi(�+i + ��i): (15)

The output power of a PV farm at a de�nite time
can be estimated using the solar radiation data. We
have utilized the yearly solar radiation data of the Jask
region in the southern part of Iran [20], to obtain the
output power of the considered 30 MW PV farm for
a year-long horizon. However, the amount of solar
radiation data and the associated output power states
of the PV farms is too large, which is not suitable for
the analytical reliability evaluation of a power system,
unless the amount of data is reduced by a clustering
method.

To attain a proper Markov model for the PV
farm, its output power should be split up to some �nite
states. To �nd the number and range of these steps, an
e�cient clustering method, which could simultaneously
guarantee model accuracy and generality, has to be em-
ployed. Clustering is a process for classifying patterns
or objects in such a way that samples of the same group
are more similar to one another than samples belonging
to di�erent groups. Many clustering approaches with
special characteristics, such as hard clustering and
fuzzy clustering schemes, have been introduced in the
literature. The conventional hard clustering approach
restricts each point of the data set to, exclusively, just
one cluster. As a consequence, with this technique, the
segmentation results are often very crisp. However,
in many real situations, issues such as limited spatial
resolution, poor contrast and overlapping intensities
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make this hard segmentation a di�cult task. The
other clustering approach, i.e. fuzzy clustering, as a
soft segmentation method has been widely studied and
successfully applied to image segmentation. Among the
fuzzy clustering methods, the Fuzzy C-Means (FCM)
algorithm is the most popular method used in image
segmentation, due to its robust characteristics for
ambiguity, and its capability of retaining much more
information than hard segmentation methods [21].

In this paper, we have employed the Fuzzy C-
Means (FCM) clustering method as a robust method
in dealing with structure identi�cation of unlabeled
data [22]. Employing this method, object data X =
[x1; x2; � � � ; xn] can be categorized into m clusters
minimizing the following objective function [22]:

Jm(U; v) =
mX
i=1

nX
k=1

Ufik jxk � vkj ; (16)

where f , vk and Uik are, respectively, the fuzzi�cation
parameter, the center of the ith cluster and the fuzzy
degree between xk and the ith cluster. This FCM
technique is implemented on the historical output
power data of the sample 30 MW PV farm and, then,
the number and probability of the cluster centers are
speci�ed, which represent the various states associated
with the PV farm generation levels. By increasing the
number of associated clusters, the value of the objective
function decreases. As shown in Figure 5, decrement
in the objective function becomes insigni�cant when
the number of considered clusters is seven or more.
So, it can be concluded that a seven-cluster model
can be regarded as a proper one for the PV farm.
The resulting seven clusters are presented in Table 1.
Once the output power has been split into �nite steps
by FCM, the various attributes associated with these
states, i.e. transition rates between di�erent states, and
state probabilities and frequencies, can be calculated.
Consequently, the reliability model of the 30 MW PV
farm, considering variability in solar radiation, can be
obtained, which is presented in Table 2. The transition
rates between states in the model can be calculated
by Eq. (11) to develop the transition matrix shown in
Box II.

Figure 5. The value of the FCM objective function with
respect to the number of states.

Table 1. Clustering of PV farm output powers.

Cluster
number

Cluster
center (MW)

Cluster
range (MW)

1 29.8 28.2-30
2 26.4 24.7-28.2
3 22.9 20.5-24.7
4 18 14.8-20.5
5 11.6 8.7-14.8
6 5.9 3-8.7
7 0 0-3

The 4-state component reliability model of the
30 MW PV farm derived in Section 3.5, can be
combined with the 7-state Markov model of Table 2
to form the complete reliability model of the PV farm.
The resulting 19-state model, presented in Table 3,
accounts for both the component availability of the PV
farm and solar radiation uncertainty.

5. Adequacy assessment of power generation
system including PV farms

The proposed reliability model for PV farms is pre-
sented, in detail, in Section 4. The multi-state reliabil-

� =

2666666664
0:6991 0:2663 0:0213 0:0053 0:0080 0 0
0:1755 0:5135 0:2266 0:0706 0:0111 0:0027 0
0:0254 0:2516 0:4037 0:1903 0:1078 0:0201 0:0011
0:0099 0:1176 0:3212 0:1440 0:1656 0:2003 0:0414
0:0116 0:0252 0:1818 0:2805 0:0967 0:1044 0:2998
0:0024 0:0048 0:0384 0:1799 0:2326 0:0839 0:4580

0 0 0 0:0083 0:0337 0:0416 0:9164

3777777775 :

Box II
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Table 2. COPT of the PV system considering only
uncertainty in solar radiation.

State Cap.
(MW)

Pi
�+

(occ./hr)
��

(occ./hr)
fi

(occ./hr)
1 29.8 0.0688 0 0.3009 0.0207
2 26.4 0.1229 0.1755 0.3110 0.0598
3 22.9 0.1080 0.2770 0.3193 0.0644
4 18 0.0689 0.4487 0.4073 0.0590
5 11.6 0.0590 0.4991 0.4042 0.0533
6 5.9 0.0476 0.4581 0.4580 0.0436
7 0 0.5078 0.0836 0 0.0425

Table 3. PV farm complete reliability model.

State Cap.
(MW)

Prob. Freq.
(occ./hr)

1 29.80 0.0688 0.02070
2 26.40 0.1229 0.05979
3 22.90 0.1080 0.06440
4 19.87 1.2e-10 3.6108e-11
5 18.00 0.0689 0.05898
6 17.60 2.1e-10 1.02165e-10
7 15.27 1.8e-10 1.07334e-10
8 12.00 1.2e-10 1.0272e-10
9 11.60 0.0590 0.058015
10 9.93 6.6e-40 1.98594e-40
11 8.80 1.2e-39 5.838e-40
12 7.73 1.0e-10 9.833e-11
13 7.63 1.0e-39 5.963e-40
14 6.00 6.6e-40 5.6496e-40
15 5.90 0.0476 0.04361
16 3.93 8.1e-11 7.42041e-11
17 3.87 5.7e-40 5.60481e-40
18 1.97 4.6e-40 4.21406e-40
19 0 0.5248 2.21607

ity model and the associated COPT of any PV farms
can be obtained using the same procedure presented
in Sections 3 and 4. The following steps should be
followed precisely to form the reliability model of a PV
farm:

Step 1: Form the component reliability model of the
PV farm as follows:

- Extract the reliability model of a solar cell based on
its failure rate and repair/replacement rate, provided
by the manufacturer, or using historical data.

- Form the reliability model of branches in PV panels.
- Form the reliability model of sub-arrays using the

number of parallel branches in a panel, the number
of series panels in a sub-array, the common-mode
failure data of panels, and the reliability data of the
DC/DC converter.

- Form the reliability model of PV arrays using the
number of parallel sub-arrays in an array. The
number of states of the arrays model can be reduced
by clustering.

- Form the PV farm component reliability model con-
sidering the failure of the DC/AC converter and the
number of parallel arrays in a farm. The clustering
method can be utilized in this step to reduce the
number of states in the PV farm model.

Step 2: Model the uncertainty associated with the
solar radiation:

- Determine the output power of the PV farm using
the solar radiation data.

- Cluster the output power of the PV farm as segments
of the rated power, and calculate the associated state
probabilities and transition rates.

Step 3: Form the complete reliability model of the
PV farm by combining the component reliability model
obtained in Step 1 with the Markov model associated
with the uncertainty of solar radiation formed in Step 2.

Using the proposed reliability model, the PV
farms can be modeled as a conventional unit with de-
rated power states. Therefore, the analytical genera-
tion reliability assessment methods [17] can be utilized
for adequacy assessment of the system. In the �rst
stage, the PV farm(s) of the system are modeled and
the associated COPT is formed. The obtained COPT is
then added to the equivalent COPT of the conventional
generating units to form the total generation capacity
model of the system. Finally, convolution of the load
model with the �nal COPT provides the risk model of
the generation system, and the reliability indices can
be calculated.

6. Study results

In this chapter, we present the result of studies per-
formed on two test systems, RBTS [23] and IEEE-
RTS [24]. Both systems are modi�ed by adding
PV farms, and reliability indices are calculated to
investigate the impacts of implementing PV farms. In
addition, numerous sensitivity analyses are conducted
to investigate the e�ects of solar radiation average,
the penetration level of solar generation and peak load
value on the reliability indices.

6.1. Reliability analysis of the RBTS
In this study, the RBTS with 11 generating units is
considered [23]. The system load duration curve is
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Figure 6. LOLE (hr/yr) versus peak load.

Figure 7. EENS (MWh/yr) versus peak load.

modeled by a straight line from 100% to 60% of the
peak load. Three case studies are conducted on the
system. In case 1, the basic RBTS is considered. In
case 2, a 30 MW PV farm, with the model presented in
Section 4, is added to the RBTS. In this case, the 19-
state model of Table 3 is simpli�ed to a 7-state model
by omitting all states whose probability is less than
10�5. In case 3, a 30 MW conventional generating
unit with FOR of 0.02 f/yr is added to the RBTS. The
Loss Of Load Expectation (LOLE) and the Expected
Energy Not Supplied (EENS) indices for the three cases
are presented in Figures 6 and 7, considering di�erent
load levels. It can be seen from the results that adding
the PV farm in case 2 improves both reliability indices
compared to case 1. However, the improvement in

reliability indices of case 2 is much lower than the
obtained results in case 3, in which a conventional
generating unit, with the same size, is added to the
system. This is due to the fact that the output of the
PV farm is subjected to the solar radiation uncertainty
and, therefore, it does not provide all the 30 MW all
the time. Besides, it can be seen from the �gures that
the di�erence between reliability improvements in cases
2 and 3 increases as the peak load of the system is
increased. In order to estimate the capacity value of
the 30 MW PV farm in the system, the capacity of the
conventional unit that is equivalent to the PV farm and
can satisfy the same EENS value is calculated. The

Table 4. Reliability indices versus average solar radiation.

Average solar
radiation
(w/m2)

LOLE
(hrs/yr)

EENS
(MWh/yr)

256 6.93 71.05
276 6.78 69.88
296 6.61 68.92
316 6.54 67.53
336 6.44 67.09
356 6.36 66.41
376 6.31 65.87

Table 5. Impacts of penetration level of PV farms on
reliability indices of the IEEE-RTS.

Number of additional
30 MW PV units

LOLE
(hrs/yr)

EENS
(hrs/yr)

0 112.9 16983.9
1 107.2 16111.0
2 102.6 15342.6
3 98.1 14509.7
4 93.7 13811.4
5 90.0 13465.7

calculations indicate that the equivalent conventional
unit capacity of the 30 MW PV farm is 6.17 MW at
the peak load of 185 MW. The impacts of average solar
radiation on the reliability indices of case 2 are studied
in Table 4. The original average solar radiation in
the Jask region, which was utilized to construct the
reliability model of the 30 MW PV farm, is 316 w/m2.
The reliability model of the PV farm is reconstructed
for the six other levels of average solar radiation given
in Table 4, and the associated LOLE and EENS indices
are calculated and presented in the same table. The
peak load of the system is considered to be 185 MW,
in this study. It can be seen from Table 4 that both
the indices decrease as the average solar radiation
increases. This result implies that the construction
of PV farms in locations with high solar radiation
provides higher reliability bene�ts.

6.2. Reliability analysis of the IEEE-RTS
The impacts of including large PV farms on the IEEE-
RTS test system [24] are studied in this section. The
load of this system is modeled by a load duration
curve, which is considered to be a straight line from
100% to 60% of the system peak load of 2850 MW. In
order to show the impact of the penetration level of
the PV farms on the adequacy of the IEEE-RTS, �ve
30 MW PV farms are continually added to the IEEE-
RTS generation system, and the calculated LOLE and
EENS indices are presented in Table 5. The PV farms
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Table 6. IPLCC of cases 1 and 2 (MW).

Number of added units 1 2 3 4 5

IPLCC(MW) case 1 8.1 16.0 23.8 31.8 39.6
IPLCC(MW) case 2 28.2 56.4 84.6 112.8 140.9

are modeled in the calculations by the same reliability
model utilized in the RBTS study. It can be seen from
Table 5 that the increase in the penetration level of
the PV farms results in additional improvements in the
reliability indices.

In order to compare the reliability impact of im-
plementing PV farms with that of adding conventional
generating units with the same size, the amount of
increment in Peak Load Carrying Capability (IPLCC),
due to the addition of the PV farms and conventional
units, iscalculated. The IPLCC for cases 1 and 2 are
presented in Table 6. It can be seen from the results
that addition of the �rst 30 MW PV farm increases
the peak load carrying capability of the system by
8.1 MW, while the addition of the conventional unit
with the same size increases PLCC by 28.2 MW. This
result shows that the capacity bene�t of the PV farm,
with the given solar radiation data, is about 29% of a
conventional unit with the same size.

7. Conclusion

An analytical method for adequacy assessment of
power generation systems, including large PV farms,
is proposed in this paper. A reliability model is
developed for PV farms, considering both the uncer-
tainties associated with solar radiation and component
outages. The proposed reliability model represents a
PV farm via a multi-state generating unit, which makes
it easy to be utilized in the generation system reliability
assessment. The developed model is then utilized to
assess the impacts of large PV farm integration on
the adequacy of power generation systems. A typical
30 MW PV farm has been considered in the studies,
and the proposed model has been utilized to form its
reliability model. Real solar radiation data related
to the Jask region in the southern part of Iran are
utilized in the studies. In the studies performed on
the RBTS and the IEEE-RTS, it has been shown that
implementing large PV farms improves the adequacy
indices of a power generation system. Improvement
in the indices signi�cantly increases as the average
solar radiation increases. This result highlights the
importance of the availability of high solar radiation
in the performance and bene�ts of large PV farms.
Finally, it has been shown that the capacity value of the
30 MW PV farm, in the RBTS, with the given data, is
about 6 MW, from the view point of power generation
adequacy studies. This result indicates that, compared
to conventional units of the same size, a less reliable

power system is expected when a PV farm is added, if
its environmental bene�ts and low cost operation are
not considered. In future work, other economic studies
can be done to verify the potential pro�tability of PV
farms, when they are operated combined with other
more reliable generation units.
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