
Scientia Iranica D (2014) 21(3), 826{841

Sharif University of Technology
Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering
www.scientiairanica.com

High speed multiplier using high accuracy
oating
point logarithmic number system

P. Sahaa, A. Banerjeeb, A. Dandapata and P. Bhattacharyyac;�

a. Department of Electronics and Communication Engineering, National Institute of Technology, Meghalaya, Shillong,
Meghalaya-793003, India.

b. Department of Electronics and Communication Engineering, JIS College of Engineering, Kalyani, West Bengal-741235, India.
c. Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Shibpur,

Howrah-711103, India.

Received 21 November 2012; received in revised form 22 July 2013; accepted 15 October 2013

KEYWORDS
Canonical sign digit
code;
Logarithmic number
system;
Multiplier;
High speed;
High accuracy.

Abstract. ASIC implementation of a high speed multiplier using a high accuracy
oating
point logarithmic number system is reported in this paper. The most popularly used
techniques for computing logarithmic calculations for digital signal processors are: Lookup
table based implementation, polynomial approximation, and Taylor series expansion.
But, all these techniques su�er from low accuracy, due to the choice of having only
lower order terms of the expanded series. In the present work, logarithmic conversion
is implemented by a
oating point (IEEE-754 single precision) converting methodology,
thereby eliminating series expansion, which eventually results in high accuracy. The
improvement in speed, by avoidance of carry propagation, was achieved through Canonical
Signed Digit Code (CSDC) implementation, while the high accuracy was achieved through
an error minimization circuitry especially designed for this purpose. The functionality
of these circuits was checked, and performance parameters, like propagation delay and
dynamic power consumption, were calculated by spice spectre using 90 nm CMOS
technology. The propagation delay and power consumption of the resulting (128 � 128)
bit multiplier (divider) was only � 93 ns and � 80 mW, respectively, for a layout area of
� 25mm2. This implementation o�ered a signi�cant improvement in terms of accuracy,
delay and power from those reported earlier.
c
 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Computation of logarithmic and exponential numbers
plays a pivotal role in the �eld of digital signal process-
ing [1-5]. Multiplication of higher order bits (order of
64�64 and higher) requires a large number of hardware
components, due to the generation and processing of
huge numbers of partial products. The generation of

*. Corresponding author. Tel: +913 326684561;
Fax: +913 326682916
E-mail addresses: sahaprabir1@gmail.com (P. Saha);
banerjee.arindam1@gmail.com (A. Banerjee);
anup.dandapat@gmail.com (A. Dandapat);
pb etc besu@yahoo.com (P. Bhattacharyya)

partial products can be avoided by using a Logarithmic
Number System (LNS), where the multiplications are
converted to direct addition [log(x:y) = log x + log y].
But, LNS su�ers from poor accuracy, because most
conventional approximate techniques use only lower
order terms of its expanded series. So, if this particular
bottleneck of the above mentioned methodology is
addressed properly, realization of a high accuracy
multiplier with appreciable speed becomes feasible.

A substantial amount of research work has so
far been reported for LNS approximation, and per-
formance parameters, like accuracy, speed and power
optimization, were addressed [1-17]. Mitchell [1] and
Ramaswamy and Siferd [2] reported a
oating point

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 827

conversion methodology of binary logarithmic numbers
through straight line approximation, with an error in
accuracy of � 12% during multiplication operation.

Numerous e�orts have so far been made to
improve the accuracy of straight line approximating
algorithms [3-7]. Babic et al. [3] introduced an iterative
logarithmic multiplier, and Khalid et al. [4,5] investi-
gated a correcting procedure aiming to reduce error.
Among these techniques, McLaren's method [6] uses a
look-up table with 64 correction coe�cients, which is
responsible for calculation of the dependencies of the
mantissas values, thereby, increasing the complexity
of the realization. Mahalingam and Rangantathan [7]
reported an operand decomposition-based straight line
approximating algorithm. The reported implemen-
tation decreases the error percentage of the original
straight line approximating algorithm, which was in-
vestigated by Mitchell [1], but eventually increases (�
double) the hardware compared to the original.

Many alternative techniques, like lookup table
based implementation [8-10], polynomial approxima-
tion [11-13], and Taylor series based approaches, like
digit by digit [14,15] implementation etc., have been
used so far for approximation to implement a log-based
multiplier. Hardware implementation through a direct
look-up table [8-10] is a straightforward and easily
implementable approach, but with poor accuracy. The
lookup table based implementation consists of pre-
computed function values for every possible argument
in tabular form. Thereby, the number of table en-
tries increases exponentially for the number of bits
representation of the argument, leading towards the
requirement of large memory size, slower operation
and higher power consumption. Other approaches,
such as piecewise polynomial approximations [11,12],
use Lagrange interpolation to compute LNS numbers.
Lee and Burgess [13] implemented the 32-bit LNS
arithmetic functions using Chebyshev polynomial ap-
proximation. One major drawback of the polynomial
approximation method is its slow linear convergence
rate. Other than polynomial approximation meth-
ods, there are also digit-serial methods (also known
as on-line or iterative methods), which calculate the
result, digit by digit, also based on Taylor series
expansion [14,15]. The greatest disadvantage of these
approximation [11-15] techniques is their low accuracy,
due to the choice of having only lower order terms of
the expanded log-series. With the aim of solving this
problem, Chen and Chen [16] proposed a pipelined
addition/subtraction unit for LNS numbers of very
large word-length. The algorithm, which is similar to
the CORDIC method [18], approximates the functions
with digit-serial sequences of computations, based on
the continued product normalization of the terms of
(1 + Sk2�k), which ultimately results in better speed
and power compared to earlier reports [1,2,8-15]. But,

this technique also su�ers from the same accuracy
problem mentioned earlier. Very recently, Fu et al. [17]
theoretically investigated a LNS processor based on

oating point conversion and reported the potentiality
of the method from an area and latency point of view.

ASIC implementation of a high accuracy
oating
point (IEEE-754 single precision) conversion methodol-
ogy for an LNS facilitating high speed multiplier is re-
ported in this paper. The functionality of these circuits
has been designed and veri�ed by spice spectre in 90 nm
CMOS technology. The proposed method o�ers a
substantial reduction of propagation delay compared to
earlier reported architectures, like the look up table [8],
polynomial approximation [11], digit by digit [15],
and implementation methodology, because the iterative
process was eliminated from this design. IEEE-754
single precision
oating point conversion techniques
were considered for converting binary numbers to bi-
nary logarithm numbers. Moreover, CSDC techniques
have been applied to the addition/subtraction of two
binary numbers to achieve high speed operation [19,20].
Propagation delay for the proposed (128� 128) multi-
plier/divider was only � 93 ns, with only � 80 mw
power for a layout area of � 25 mm2.

2. Design preliminaries of logarithmic number
system

In this section, mathematical analysis of design pre-
liminaries for LNS and their conversion methodology,
like binary number to LNS and LNS to binary number
conversion, has been described.

2.1. Logarithm arithmetic
For the same bit length,
oating point and logarithmic
number have the same formulation, though their arith-
metic representations are di�erent. In the case of
oat-
ing point numbers, addition/subtraction is easier than
multiplication because iterative addition is required to
perform the same [21]. But, in LNS, the multiplication
procedure obeys the easier implementing techniques
because logarithmic multiplication can be executed by

oating point addition, whereas LNS addition can be
implemented by normalization techniques, like straight
line approximation [2], polynomial approximation [11-
13], Taylor series expansion [14,15] etc., for which
complex circuitry is required. In LNS, a number, X,
is represented as a signed exponent word of the form
represented in [12,21]:

X �= �r�Ex : (1)

More generally, we can describe the logarithmic num-
ber as:

X = (�1)sx � r�Ex ; (2)

where X is the set of the distinct components of <

828 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

sx; Ex >, `sx' represents the sign of numbers, and `r'
represents the base of the logarithm. To implement
the hardware of logarithms, r = 2 (base `2' logarithm
or binary logarithm) has been considered. `Ex' is the
`N ' bit number, where N = I+F ; I is the integer part
and F is the fractional part of `Ex'. Thus, logarithmic
numbers can be represented as a set of
oating point
numbers, which indicate that the existence of `zero'
was missing in Eqs. (1) and (2). A small modi�cation is
required to determine the exact value of the logarithmic
number representation. The modi�ed equation can be
written as:

X = (1� px)� (�1)sx � r�Ex ; (3)

where px 2 (0; 1). If the value of the `px' is equal to
`1', then it represents the value of `0', which cannot
be included in the logarithmic number system, because
`logr 0' is indeterminate. `Ex' can be represented as:

Ex =
I�1X
i=�F

xi2i: (4)

The arithmetic formulation of LNS can be represented
in the following manner: X = rEx , Y = rEy , Z = rEz
and S = the sign bit of the number.

i) Multiplication:

Z = XY;

and:

Ez = Ex + Ey;Sz = Sx � Sy: (5)

ii) Division:

Z =
Y
X
;

and:

Ez = Ex + Ey;Sz = Sx � Sy: (6)

iii) Addition:

Z = X + Y = Ex + logr[1 + r(Ey�Ex)];

Sz = Sx: (7)

iv) Subtraction:

Z = X � Y = Ex + logr[1� r(Ey�Ex)];

Sz = Sx: (8)

Thus, from the above expressions (Eqs. (5)-(8)),
it can be observed that multiplication and division
can be performed using only addition or subtraction,
respectively.

2.2. Binary number to LNS conversion
Consider that a binary number, X, can be written as:

X =
kX
i=0

xi2i;

where:

xi 2 0 or 1: (9)

Taking binary logarithm on both sides of Eq. (9), we
obtain:

Y = log2X = log2

kX
i=0

xi2i
!
; (10)

= log2

2k

xk +

kX
i=1

xk�i2�i
!!

; (11)

= k + log2

xk +

kX
i=1

xk�i2�i
!
: (12)

Let us assume that xk = 1 in Eq. (12) can be
approximated as (higher order terms have been ignored
for simplicity):

Y = k +
kX
i=1

xk�i2�i: (13)

From Eq. (13), it can be observed that Y is a hybrid
(exponent and mantissa) number. Then, the alterna-
tively hybrid number can be represented as:

Y =
mX

i=�k
yi2i; (14)

Y =
mX
i=0

yi2i +
�kX
i=�1

yi2i; (15)

Y = 2m
0@ym +

�(m+k)X
i=�1

ym+i2i
1A : (16)

From the analogy in Eqs. (13) and (15), the equation
can simply be represented as:

k =
mX
i=0

yi2i;

and:
kX
i=1

xk�i2�i =
�kX
i=�1

yi2i:

The same number, Y , can also be represented in
IEEE-754 single precision format, and then, Y can be
expressed as:

Y =(�1)s�2Ey�Eb�1:M=2Ey�Eb � (1+0:M); (17)

where Eb = 12710 (bias of single precision) and sign

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 829

bit `s = 0' (negative logarithmic values have not been
considered). Let us assume that `ym = 1' and through
the analogy of Eqs. (16) and (17):

m = Ey � Eb;
and:

M =
�(m+k)X
i=�1

ym+i2i:

In terms of the IEEE-754 format, `m = 8' and `M = 23'
bit number, and M can be computed by [8] a rounding
scheme.

2.3. LNS to binary number conversion
Consider a logarithmic number, represented in an
IEEE-754 single precision format,

log2X = Ex +
�(k+m)X
i=�1

xm+i2i;

where Ex is the exponent, and assume that:

p =
�(k+m)X
i=�1

xm+i2i;

is the
oating point part of the logarithmic number.
Assume `Eb = 12710' is the bias of the exponent.
Unbiased exponent `m' is computed as:

m = Ex � Eb: (18)

Using the IEEE-754 format, the same logarithmic
number can be represented as:

log2X=2m�(1+0:p)=2m
0@1+

�(k+m)X
i=�1

xm+i2i
1A ;

(19)

= 2m
0@1 +

�mX
i=�1

xm+i2i +
�(m+k)X
i=�(m+1)

xm+i2i
1A ; (20)

=
mX
i=0

xi2i +
�kX
i=�1

xi2i; (21)

= k +
�kX
i=�1

xi2i; (22)

where k =
mP
i=0

xi2i. So, X can be written as:

X = 2
k+

mP
i=0

xi2i
; (23)

�= 2
k+log2

1+

�kP
j=�1

xi2i
!
; (24)

= 2k
�

1 +
�kX
j=�1

xi2i
�
; (25)

=
kX
i=0

xi2i: (26)

2.4. Examples
2.4.1. Binary to logarithmic number conversion
Assume a 16 bit number, X, X =\0110011100110101".
(For the sake of simplicity, we assume a 16 bit number;
a higher number of bits can be implemented in the
same manner). For this number, the highest power
of 2 is 1410. That is the power of 2 corresponding to
the �rst non-zero bit. So, k = 1410 =\1110"2 and
M =\1001110011010100". That means Y = log2X =
`1110:1001110011010100', which is a total of 20 bits.
So, the exact exponent is the highest power of the
MSB, which is 3 plus the bias. Here, bias Eb = 127.
So, Ey = 3 + 127 = 130 (`10000010'). Now, shift
out the MSB, and the newly generated number for
mantissa is 0:M = 0:11010011100110101000000. So,
the logarithm in the IEEE-754 single precision format is
010000010.11010011100110101000000, where MSB `0'
is the sign bit.

2.4.2. Hybrid number to binary number conversion
Consider a 32 bit hybrid number (the logarithmic value
of a number is given), whose antilogarithm is to be
determined. Assume that the number is given as:
X = `010000010:11010011100110101000000'. For this
number, Ex = `010000010' and Eb = 12710. Thus m =
10000010 � Eb = 10000010 � 01111111 = 00000011 =
310 is the mantissa of the same number, 1 + 0:p =
`1:11010011100110101000000'. Now, left shift 1+0:p by
3 times (because `m = 3') and the generated number
is `1110:10011100110101000000'. Thus, making the
analogy with Eq. (23) \k = 11102 = 1410". Place
`1' at the position of 2k = 214, shift the 23 bit
mantissa towards the left by `k = 14' times, and the
newly generated number is `0110011100110101:000000'.
Therefore, the antilogarithm of the number is equal
to `0110011100110101:000000'. (N.B: If a logarithmic
number, X, is represented in IEEE-754 format, then,
the �xed point 8 bit number represents the character-
istic.) The antilogarithm of the number must be in
the range: anti log2X < 2255. On the other hand, if
X is a binary number, then X must be in the range
0 < X < 128.

3. Logarithmic multiplier implementation

Minimization of error for conversion of binary to
logarithmic and logarithmic to binary numbers leading
towards the implementation of a high speed multiplier
is the main concern of this section. In previous archi-
tecture, such as straight line approximation [1,2], the

830 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

error in accuracy was � �12% during multiplication.
In the proposed implementation methodology, error
has been taken care of by a special error minimization
circuitry especially designed for conversion techniques,
which ensures a quanti�ably explicit reduction of error
in accuracy. The mathematical description for ASIC
implementation to perform the operation of multipli-
cation/division has been described using the following
set of equations.

Consider two binary numbers, X and Y . The
multiplication/division can be performed as:

S = X � Y = log2 S = log2X + log2 Y: (27)

With the help of Eq. (17), multiplication and division
can be reformulated as:

log2 S = 2m+Eb(1 + px) + 2n+Eb(1 + py); (28)

= 2Eb(2m(1 + px) + 2n(1 + py)): (29)

With the help of Eq. (21), Eq. (29) can be rewritten
as:

= 2Eb
(k1�1X

i=0

xi2i +
k2�1X
i=0

xi2i
!

+

0@�(m�k1)X
i=�1

xi2i +
�(n�k2)X
i=�1

xi2i
1A);

(30)

= 2Eb
 p�1X
i=0

xi2i +
�qX
i=�1

xi2i
!
; (31)

where p = k1 or k2 and q = (m � k1) or (n � k2). If
k1 > k2, then p = k1, else p = k2, and if k1 = k2, then
p = k1 or k2. If (m�k1) > (n�k2), then q = (n�k2),
otherwise q = (m� k1):

log2 S=2Eb�2p
0@1+

�pX
i=�1

xi2i+
�(p�q)X
i=�(p+1)

xp+i2i
1A :

(32)

Eq. (32) can be rewritten after rounding up to a 23 bit
mantissa using a rounding toward zero schemes, and
then the equation can be reformulated as:

= 2Eb(2p(1 + pp));

= 2Eb+p(1 + pp) = 2Ez (1 + pp); (33)

where, Ez = Eb + p.

pp = round

0@ �pX
i=�1

xi2i +
�(p+q)X
i=�(p+1)

xp+i2i
1A : (34)

The
owchart diagram of logarithmic multiplication is
shown in Figure 1(a). Both the input numbers are fed
to the LNS encoder (Log Converter). The output of the
logarithmic encoder has been converted to an IEEE-754
single precision format. In the next stage, the output
of the LNS encoder is passed through the exception
detector block to compute the value of the exception.
If the characteristic is equal to `E = 25510', then, the
corresponding mantissa is checked by the same block,
namely, the exception block. If the mantissa is non-
zero, then, the �nal result is `NaN' (Not a Number).

Figure 1. (a) Flow chart diagram of logarithmic multiplier. (b) Hardware implementation of logarithmic multiplier.

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 831

Furthermore, if the mantissa equals zero, then, the
�nal result is in�nity. In the next stage, the output
of the conversion is fed towards the adder block to
perform multiplication, respectively. The output of the
adder unit has been fed towards the rounding block
to perform the rounding operation, to again generate
IEEE-754 single precision formation. The output of
the rounding block has been fed to the LNS decoder
(antilog converter), to convert the number towards
binary formation.

The architecture for the hardware implementa-
tion of logarithmic multiplication has been shown in
Figure 1(b). The architecture consists of �ve main
functional blocks:

(i) LNS encoder;

(ii) Addition;

(iii) IEEE-754 format formulation;

(iv) LNS decoder.

A maximum of 128 bits input can be fed to the LNS
encoder, which has a maximum characteristic value
of 127, which can be easily represented in IEEE-754
single precision format. According to Eqs. (5) and (6),
multiplication is simply converted towards addition.
The addition module adds the values coming from the
LNS encoder. After addition, the number of bits from
the adder module is 33 (including the sign), and the
irregular IEEE-754 format is again fed to the converter
to convert the IEEE-754 format generation circuitry,
which has been converted to a 32 bit pattern for
single precision. The extra bits at the mantissa part
are eliminated by the rounding toward zero schemes
through the rounding module. Finally, the 32 bit single
precision output from the rounding module is fed to the
LNS decoder, which produces a hybrid binary output.

4. Circuit modules and implementation
algorithm

4.1. LNS encoder
4.1.1. LNS encoder algorithm
The algorithm of the hardware implementation of the
logarithmic number system can be described as:

Step 1: Count the position of �rst `1' from the MSB
side. The position of the �rst `1' represents the
integer part of logarithmic number conversion.

Step 2: The rest of the part, except �rst `1' from the
MSB side, represents the fractional part of
logarithmic number conversion.

Step 3: Count the position of �rst `1' from the MSB
side of the hybrid number (combining integer
and fractional parts). The position of the �rst
`1' represents the unbiased exponent of the

logarithmic number, according to the IEEE-
754 format.

Step 4: The rest of the part except the �rst `1' from
the MSB side represents the mantissa of the
logarithmic number as per the IEEE-754 for-
mat.

Step 5: Add the bias for the IEEE-754 single precision
format to the unbiased exponent to achieve the
biased exponent.

4.1.2. Hardware implementation of LNS encoder
A
ow chart diagram for hardware implementation of
the LNS encoder is shown in Figure 2. The integer
part of the logarithmic number from the binary �xed
point number can be obtained by the maximum power
of the radix. The logarithm of `0' is an invalid number;
in our proposed design, it is represented as NaN (Not
a Number). A shifting operation is executed using the
left shift register [22]. The initial value of the select
line of the shifter has been considered as `1'. A control
signal is initially assigned to `0' to control left shift
operation, whether the shift operation is executed or
not. Moreover, at the second phase, after executing
one left shift, it will check the MSB of the left shift

Figure 2. Hardware implementation of LNS encoder.

832 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

register. If the MSB is equal to `1', it stops the
shifting, otherwise, shift operation will be continued
until the MSB is equal to `1'. A decrementer [23]
has been integrated in this architecture to generate
the maximum power of the radix. A sequential search
procedure has been implemented here to search the �rst
`1', starting from the MSB side through shift operation.
For an N bit number, the value (N � 1)10 is fed to the
input of the decrementer. If the shifted bit is equal to
`1', no decrement operation is executed. Otherwise,
the decrement operation is executed until the MSB
bit is equal to `1'. If the shifted bit is `0', then, the
control signal becomes low and the decrementer starts
decrementing the input value (here, the decrementer is
working in active low logic). When the shifted bit is `1',
then, the control signal becomes high, the decrementer
stops further decrementing and the shifter also stops
the shifting operation. The output of the decrementer
shows the integer part of the logarithmic number
and the number at the shifter is the corresponding
fractional part.

Both the integer and fractional parts of the
logarithmic number are stored in the left shift register
again, and the maximum power of the radix of the
logarithmic number is stored in a second decrementer.
The above mentioned searching operation is repeated
again until the most signi�cant `1' is found. The
decrementer stops operating if the most signi�cant `1' is
achieved. The value at the decrementer is the unbiased
exponent of the logarithmic number, and the content
at the shifter is the mantissa. An adder is used to
compute the biased exponent (characteristics), which
is obtained by addition of the unbiased exponent and
bias, as per IEEE-754 single precision format [24]. The
exception detector takes the biased exponent and the
mantissa as input and decides whether the number
is valid or not. If the biased exponent is 25510 and
the mantissa is 0:010, then, the logarithmic number is
in�nite. Again, if the biased exponent is 25510 and the
mantissa is any number except 0, then, the logarithmic
number is NaN (Not a Number). The result is passed
through demultiplexers, which are shown in Figure 2,
to determine the corresponding characteristics and
mantissa part of the given logarithmic number.

4.2. Addition/subtraction using CSD
4.2.1. CSD number representation
The CSD number representation is one of the Signed
Digit Number Representations (SDNR's) proposed by
Avizienis [20] to reduce the carry propagation in ad-
dition, subtraction, multiplication and division. They
di�er from conventional numbers, where the numbers
contain negative as well as positive signs. If xi is the
set of distinct values, f0; 1; �1g, for each `i', in long
format, xi can be represented as x0; x1; x2 � � �xN�1,
and the mathematical representation can be formulated

Figure 3. Logical
ow chart diagram of CSD addition.

as:

X =
N�1X
i=0

xi2i: (35)

4.2.2. CSD addition/subtraction
The canonical sign digit adder/subtractor (CSD
adder/subtractor) performs carry propagation free ad-
dition [19]. Carry propagation free addition has been
performed by determining the intermediate carry and
intermediate sum digits. Figure 3 represents the logical

ow chart diagram of CSD addition, where carry
propagation free addition has been performed in three
steps:

i. Check the type of operation (addition). For
addition, the sign of the individual bits remains
unchanged. For subtraction, the signs of the
individual nonzero bits are inverted.

ii. Determine the intermediate carry, fCi 2 (�1; 0; 1)g,
and intermediate sum digits, fSi 2 (�1; 0; 1)g,
satisfying the condition, xi+yi = zi+Ci�1, where
xi+1 and yi+1 are the augends and addend digits,
respectively.

iii. Obtain the sum digits, fZi 2 (�1; 0; 1)g, at each
position by adding the intermediate sum digits, Si
and Ci, from the next lower order positions.

The truth table implementation from step (ii)
is shown in Table 1. Boolean expressions have been
formed from the above steps and shown in Eqs. (36)-
(41). Here, `zi' and `ci�1' represent the intermediate
sum and the intermediate carry. `signxi' and `signyi'
represent the sign magnitude of `xi' and `yi', respec-
tively.

`Signci�1' and `signzi' are the sign magnitude of
the intermediate carry and intermediate sum, respec-
tively. `sumi' and `signsumi' are the �nal stage sum and
its sign magnitude, respectively. A Boolean expression
has been formed for the �nal stage sum and its sign
magnitude is shown in Eqs. (40) and (41). A canonical

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 833

Table 1. Truth table for determining the intermediate sum and intermediate carry.

Augend
digits
(xi)

Addend
digits
(yi)

Digits of the previous
higher order posions

(x1+1; yi+1)

Intermediate
carry
(Ci�1)

Intermediate
sum
(zi)

0 0 0 0

0 1 Both are non-negative 1 �1

1 0 Otherwise 0 1

1 1 1 0

0 �1 Both are non-negative 0 �1
�1 0 Otherwise �1 1

1 �1 0 0
�1 1 0 0
�1 �1 �1 0

Figure 4. CSD adder/subtractor.

sign digit adder circuit has been used here for both
addition and subtraction [19].

To implement the subtractor, a small hardware
was added with the adder circuit. Hardware imple-
mentation of the adder/subtractor is shown in Fig-
ure 4. The architecture for the CSD adder/subtractor
can be decomposed into two sections, viz, addi-
tion/subtraction, through CSDC and CSD, to binary
conversion.

For the �rst segment, Boolean expressions are
to be formed from the above steps, as shown in
Eqs. (36)-(41). Here, `zi' and `ci�1' represent the
intermediate sum and intermediate carry. `signxi'
and `signyi' represent the sign magnitude of `xi' and
`yi' respectively. `signci�1' and `signzi' are the sign
magnitudes of intermediate carry and intermediate
sum, respectively, and `sumi' and `signsumi' are the
�nal stage sum and its sign magnitude, respectively. A
Boolean expression can be formed for the �nal stage
sum, and its sign magnitude is shown in Eqs. (40)
and (41). The second segment, consisting of a half
adder and a sub-tractor, is used for the conversion of
CSD to a binary number system. A Boolean expression
is shown here only for addition. For subtraction
purposes, `� and signyi' is the inverted value, if the
value of `yi' is nonzero.

Zi = xi � yi; (36)

ci�1 = (signxi+1 + signyi+1) (xi � yi)
� (signxi � signyi); (37)

signzi = zi
�
signxi+1 + signyi+1

�
; (38)

signci�1 =(xi � yi)(signxisignyi)

+ (xi � yi)(signxi+1 + signyi+1); (39)

sumi = (zi � ci�1); (40)

signsumi = (signzi � signci�1)(zi � ci�1): (41)

4.3. IEEE 754 format formulation
Consider the hybrid number, Y , which is coming from
the output of the addition/subtraction module. The
mathematical representation of the hybrid number, Y ,
can be expressed as:

834 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

Y =
mX
j=0

yj2j +
�kX
j=�1

yj2j ; (42)

= 2m
0@1 +

�mX
j=�1

ym+j2j +
�(m+k)X
j=�(m+1)

ym+j2j
1A ; (43)

= 2m
0@1 +

�(m+k)X
j=�1

ym+j2j
1A : (44)

According to IEEE-754 single precision format, Y can
be represented as:

Y = (�1)s2Ey�Eb(1:M) = 2Ey�Eb(1 + 0:M): (45)

Here, s is the sign bit and Eb = 127 is the bias men-
tioned in IEEE-754 format. By comparing Eqs. (44)
and (45), it can be written as m = Ey � Eb thus:

Ey = m+ Eb;

and:

0:M =
�(m+k)X
j=�1

ym+j2j :

For IEEE-754 format, `m is of 8 bits' and `M is of
23 bits', i.e. m + k = 23. In the IEEE-754 format
generator circuit, the maximum power of the radix
indicates the most signi�cant `1' positioned through
the left shift operation as shown in Figure 2. The
decrementer, initialized by the maximum power of the
radix, indicates the MSB. After each of the iterations,
the decrementer is decremented if the searched bit is
`0'. The decrement operation stops when the searched
bit is `1'. The output of the decrementer provides the
unbiased exponent (m), which is added to the bias (Eb)
to obtain the biased exponent (Ey). The content of
the shifter is the mantissa (M), which is fed to the
rounding module to maintain a 23 bit single precision

oating point format by eliminating the extra bits.

4.4. Round towards zero schemes
The mathematical expression and hardware implemen-
tation of the rounding (round towards zero schemes)
are shown below (Eqs. (46)-(48)):

4.4.1. Mathematical description of rounding scheme
Let us assume a k-bit
oating point number, S.

Mathematically, S can be expressed as: S =
�kP
i=�1

xi2i.

If S is rounded up to m bit through the round towards
zero scheme, then, S can be rewritten as:

S =
�kX
i=�1

xi2i =
�mX
i=�1

Si2i +
�(m+n)X
i=�(m+1)

Si2i; (46)

where, k = m+ n. Eq. (46) can be rewritten as:

Figure 5. Hardware implementation of round towards
zero scheme.

S =
�mX
i=�1

Si2i + 2�m
�nX
i=�1

S�m+i2i: (47)

Let us consider another variable, T , where T =
�nP
i=�1

S�m+i2i � 1 � 2�n. If T < (1 � 2�n)=2, replace

the value T = 0 and if T � (1 � 2�n)=2, replace the
value T = 1.

4.4.2. Hardware implementation of rounding scheme
Figure 5 represents the hardware implementation of the
rounding (round towards zero) scheme. The input k bit
number is separated by a pair of numbers (k = m+n),
where m = 23, the
oating point part of IEEE-754
format. Right shift registers are used here to perform
division operations to compute the value (1 � 2�n=2).
Input bits (n bits) are the input of the right shift
register, and its maximum value is assumed to be T =
(1� 2�n). The comparator block compares the values
of the lower order (LSB) of n bits with (1 � 2�n=2),
and the output of the comparator block is fed to the
parallel adder as a carry in function.

4.5. LNS Decoder
Consider a
oating point number, X, in IEEE-754
single precision format. X = log2 Y , where Y can be
expressed as:

X = 2Ex(1 +Mx) = 2Eb+ex(1 +Mx);

where, ex and Mx are unbiased exponent and mantissa,
respectively.

4.5.1. LNS decoding algorithm
The algorithm for hardware implementation of the LNS
to binary number conversion can be described as:

Step 1: Subtract the bias from the biased exponent
(Ex) to achieve the unbiased exponent (ex).

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 835

Figure 6. Hardware implementation of LNS decoder.

Step 2: Shift (1 +Mx) left by 2ex times to achieve the
hybrid number in LNS. In the hybrid number
system, X can be expressed as X = I + M ,
where I is integer and M is the fractional part.

Step 3: Place `1' at 2I position to get the MSB bit.

Step 4: Shift M left by 2I position just after the MSB
`1' to obtain the binary number.

4.5.2. Hardware implementation of LNS decoder
The hardware implementation for the LNS to binary
number conversion algorithm is shown in Figure 6.
LNS (IEEE-754 single precision format) decoder im-
plies that the LNS to binary number system converter
consists of two major sections, viz, sub-tractor and left
shifter. The bias value (Eb = 12710) is subtracted
from the 8 bit exponent by the sub-tractor module.
The output of the subtraction module is fed to the
left shifter (�rst) as select inputs. The second input
to the left shifter is the mantissa concatenated with
`1' at the left most side. Since the output of the sub-
tractor is `8' bit, the size of the left shifter (�rst) must
be (28 = 256) bits. The output of the left shifter
(�rst) is stored in the register, i.e. the integral part
and the
oating point part is separately stored in the
register. The `8' bit integral part from the register is
again fed to the left shifter (second) as select inputs.
Again, the
oating point part, concatenated with `1'
at the left most side, is fed to the left shifter as the
second input to be shifted. Since the select input is an

Figure 7. Architectural description of exception detector.

`8' bit, the size of the left shifter must be (28 = 256)
bits. The output of the left shifter is the desired binary
output.

4.6. Exception detector
The exception detector has the task of detecting invalid
number representation, such as `in�nite' or `not a num-
ber'. The circuit level decomposition of the exception
is shown in Figure 7. According to IEEE-754 single
precision format, if the exponent is 25510, then the
number is either in�nite or not a number, depending on
the
oating point part. XOR array and OR array are
used for comparison purposes. Each bit of the exponent
is compared to the given reference number (25510) by
the XOR array. The output is passed through the OR
array. If the XOR output is `0' for all the bit positions,
then the output of the OR array is `0', which means
that the exponent is equal to `25510'.

5. Error analysis

To compute the value of multiplication/division using
LNS, generally, two types of error, i.e. conversion error
and rounding error, may occur. Total error may be
calculated as:

% Error =% conversion error (Er)

+ % rounding error (Erz): (48)

5.1. Conversion error
The computational error can be de�ned as Er =
ev�av
ev � 100, where ev has been de�ned as an exact

value and av has been de�ned as an average value.
Mathematically, computational error can be expressed
as:

Er =
log2

�
1 +

�kP
i=�1

xk+i2i
�
� �kP
i=�1

xk+i2i

k + log2

�
1 +

�kP
i=�1

xk+i2i
� � 100;

(49)

836 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

=
ln
�

1+
�kP
i=�1

xk+i2i
�
� log2 e�

�kP
i=�1

xk+i2i

k + log2(1 +
�kP
i=�1

xk+i2i)
�100:

(50)

Replacing the value of log2 e = 1= ln 2 = 1:443, Eq. (58)
can be reformulated as:

Er�=
ln
�

1+
�kP
i=�1

xk+i2i
�
�1:443� �kP

i=�1
xk+i2i

k + ln
�

1 +
�kP
i=�1

xk+i2i
�
� 1:443

�100;
(51)

�=
(1:443� 1)

�kP
i=�1

xk+i2i

k + ln
�

1 +
�kP
i=�1

xk+i2i
�
� 1:443

� 100; (52)

�=
44:3� �kP

i=�1
xk+i2i

k + ln
�

1 +
�kP
i=�1

xk+i2i
�
� 1:443

; (53)

�= 44:3
1:443 + k

�kP
i=�1

xk+i2i

=
44:3

1:443 + fk
; (54)

where, fk = k
�kP
i=�1

xk+i2i
. Now, it is clear that fk =

k
�kP
i=�1

xk+i2i
� k

(1�2�k) and fk = k
2�k , which implies that

k=1�2�k � fk � k
2�k . So, the maximum value of fk is

k
2�k and the minimum value is k

1�2�k . The minimum
value of Er is 44:3

1:443+k=2�k and the maximum value is
44:3

1:443+k=1�2�k .

5.2. Rounding error
The rounding error for the computation of rounding
towards zero schemes can be formulated as:

Erz =
Sexact � Srounded

Sexact
� 100: (55)

If
�mP
i=�1

S�m+i2i < 1� 2�n=2 then:

Erz=

�mP
i=�1

Si2i+2�m
�nP
i=�1

S�m+i2i��mP
i=�1

Si2i

�mP
i=�1

Si2i + 2�m
�nP
i=�1

S�m+i2i
�100;

(56)

Erz =
2�m

�nP
i=�1

S�m+i2i

�mP
i=�1

Si2i + 2�m
�nP
i=�1

S�m+i2i
� 100; (57)

�= 1

1 +
2m

�mP
i=�1

Si2i

�nP
i=�1

S�m+i2i

� 100: (58)

From Eq. (58), it is clear that 2m
�mP
i=�1

Si2i is a �xed

point number, whereas
�nP
i=�1

S�m+i2i is a
oating

point number. Erz can be minimized, assuming

2m
�mP
i=�1

Si2i � �nP
i=�1

S�m+i2i. If
�mP
i=�1

S�m+i2i �
1�2�n

2 , then:

Erz =

�mP
i=�1

Si2i+2�m
�nP
i=�1

S�m+i2i��mP
i=�1

Si2i�2�m

�mP
i=�1

Si2i + 2�m
�nP
i=�1

S�m+i2i

� 100; (59)

Erz =
2�m �

� �nP
i=�1

S�m+i2i � 1
�

�mP
i=�1

Si2i + 2�m
�nP
i=�1

S�m+i2i
� 100; (60)

=
1

1 +

�mP
i=�1

Si2i+2�m

2�m
�nP
i=�1

S�m+i2i�1

� 100; (61)

=
1

1 +
2m

�mP
i=�1

Si2i+2�m

�nP
i=�1

S�m+i2i�1

� 100: (62)

From Eq. (62), it is clear that 2m(
�mP
i=�1

Si2i + 2�m) is

a �xed point number, whereas (
�nP
i=�1

S�m+i2i � 1) is

a negative
oating point number. So, Er is negative

and can be minimized if 2m(
�mP
i=�1

Si2i + 2�m) �
(
�nP
i=�1

S�m+i2i � 1). In order to evaluate the average

error, the proposed algorithm is applied to all combi-
nations of n-bit non-negative numbers, and the average
error is calculated from:

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 837

Figure 8. Error deviation graph as a function for input
number of bits.

ae =
1
N

NX
i=1

(Er + Erz); (63)

where N is the number of multiplications performed.
For example, for 10-bit numbers, all the combinations
of numbers ranging from 1 to 1027 are multiplied and
the average error is calculated.

Figure 8 shows that the percentage of deviation
of error for the computation of the LNS conversion
scheme leads towards the multiplication/division im-
plementation of di�erent schemes, like Babic et al. [3],
Mahalingam (Mah) [7], and the proposed algorithm,
with respect to the actual logarithmic value. As shown
in Figure 8, average deviation is almost � 1:54% in
our proposed algorithm based implementation, with a
decreasing trend of percentage error, with increasing
input bits. So, it can be envisaged that from an
accuracy point of view, the proposed algorithm pro-
vides a considerable amount of precision compared to
other normalized implementations, such as Babic et al.
(� 2:54), and Mah (� 2:3) based implementations.

6. Results and discussion

Transistor level simulation was performed using a Spice
Spectre simulator using 90 nm CMOS technology with
a 1 volt power supply. A dual threshold voltage
(VT) operating mode was considered for simulation to
determine the performance parameters.

6.1. Propagation delay analysis
The hardware cost of the architecture can be computed
based on the number of complex operations performed
in its critical path. Hence, total propagation delay can
be estimated. The reported architecture for multiplica-
tion/division using LNS has three major sub-sections,
viz. (i) LNS encoder; (ii) addition/subtraction unit;
and (iii) LNS decoder. So, the total latency can be

computed in terms of the propagation delay of the
individual sub-section. The total propagation delay of
the proposed architecture (tpd) can be computed as:

tpd = tln se + tadsb + tln sd; (64)

where:
tln se Propagation delay of LNS encoder (in

IEEE-754 single precision format);
tRM Propagation delay of rounding module;
tadsb Propagation delay of

Addition/Subtraction Unit (ASU);
tln sd Propagation delay of LNS decoder.

6.1.1. Propagation delay of LNS encoder (tln se)

tln se =2tshft + 2tdec + tadder + tRM

+ tED + tdmx; (65)

where:
tshft Propagation delay of left shifter;
tdec Propagation delay of decrementer;
tRM Propagation delay of rounding module;
tadder Propagation delay of adder;
tED Propagation delay of exception

detector;
tdmx Propagation delay of demultiplexer.

Since the number of input bits is `n', the maxi-
mum number of checking operations needed for search-
ing the �rst `1', starting from MSB, is `n' (if the LSB
is `1' and it is preceded by `0's). Here, n must not
exceed `128'. So, propagation delay due to the shifting
operation can be computed as tshft = 128tMUX =
128tXOR. For a similar reason, tdec = 128 log2 128 �
2tXOR = 1792tXOR, since a maximum of `n' times
the decrement operation is executed and we need the
log2 n number of full adders for the decrement and
also the carry propagation delay for each full adder
is equal to 2tXOR. From the architecture, it is clear
that we need an 8 bit adder to add the �nal result
from the decrementer and the bias value, which is 7
bit. So, tadder can be expressed as tadder = 8tFA =
8�2tXOR = 16tXOR. The exception detector is nothing
but a comparator, one of which checks whether the
exponent is equal to `255' or not. Since `255' is an 8
bit number, the left most comparator must be `8' bit.
From the architecture of the 8 bit comparator, it is clear
that `8' 2 input XOR gates are required in parallel,
followed by seven 2 bit OR gates in three stages and
one inverter at the end. So, tED can be calculated as
tED �= tXOR + 3tOR = 2tXOR. Demultiplexers are used
to select the exact result or the invalid result. Here, 8
bit and 23 bit demultiplexers have been used in parallel.

838 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

So, the total propagation delay that will arise is for only
one demultiplexer. Again, a two-to-one demultiplexer
is constructed of one inverter and two AND gates in
parallel, though one AND gate is activated at a time.
So, the net delay tdmx is equal to one AND gate delay,
which can be neglected compared to one XOR gate,
i.e., tdmx �= 0. From the architecture of the rounding
module, it is clear that the required number of bits for
the
oating point side is `23', whereas the number of

oating point bits from the LNS Encoder is `128'. So,
we have to truncate the remaining (128 � 23 = 105)
bits by the round towards zero scheme. From the
architecture, it is clear that (k = m+n = 128, m = 23
and n = 105). Since one input to the right shifter is
(1 � 2�105), we need a `106' bit right shifter for one
bit right shift. Thus, propagation delay corresponding
to single right shifting equals tXOR. A comparator
has been implemented through a subtractor. Here, we
require a `105' bit sub-tractor because ((1� 2�105)=2)
is of `105' bit (MSB is `0'). Thus, the propagation
delay corresponding to the comparison is tcomp =
105�2tXOR = 210tXOR. Again, a `23' bit number is fed
to the adder. So, the propagation delay corresponding
to the adder can be expressed as tadder = 23 � 2tXOR.
So, the total propagation delay corresponding to the
rounding module is tRM = tXOR +210tXOR +46tXOR =
257tXOR. Thus, tinse can be approximated as the
summation of the individual module delay, i.e., equal
to 2159tXOR.

6.1.2. Propagation delay of CSD addition/subtraction
unit (tadsb)

To avoid carry propagation delay, an
addition/subtraction unit has been designed on
the basis of the Canonical Signed Digit (CSD)
approach. From Eqs. (36)-(41), the propagation
delay calculation can be performed for one bit. We
need a conversion circuit that will generate the
binary output from the CSD result. So, from the
architecture, it is clear that tzi �= 2tXOR. Thus,
tsumi = tzi + tXOR �= 3tXOR, tsignsumi

�= 3tXOR and
tCSDadd = tsumi = 3tXOR. Again, the CSD result
is fed to the Half Adder (HA) and the result from
the HA is fed to the sub-tractor. So, tadsb can be
approximated as tadsb = tcsdadd + tHA + 32tsub �=
3tXOR + tXOR + 32tXOR �= 100tXOR.

6.1.3. Propagation delay of LNS decoder
As the description taken from Figure 7, the �rst sub-
tractor must be `8' bit (since the maximum exponent
value is `254', which is `8' bit). So, the propagation
delay corresponding to the �rst subtraction operation
is tsub = 8 � 3tXOR = 24tXOR. Again, from the
architecture, it is clear that the �rst left shifter must be
a minimum of `24' bits and the select input for shifting
must not exceed `223'. The output from the sub-tractor

may have a maximum value of (25510�12710 = 12810),
which is `8' bit. So, the maximum length of the
left shifter must be 28 = 256 bits. So, we need
256-to-1 multiplexers. Since an n-to-1 multiplexer is
constructed of `(n� 1) 2-to-1' multiplexers, here, for a
256-to-1 multiplexer, we need `255' 2-to-1 multiplexers.
That is why the total propagation delay for the �rst
shifting can be expressed as tshft = 255tMUX �=
255tXOR. Similarly for the second left shifter, we know
that select inputs for shifting are of `8' bits. So, we
need 256-to-1 multiplexers, which are made of `255' 2-
to-1 multiplexers. So, from Eq. (15), propagation delay
caused by the second left shifter can be formulated
as tshft = 255 � tMUX = 255 � tXOR. So, total
propagation delay corresponding to the LNS decoder
is tln sd = tsub + 2tshft = (16 + 2 � 255)tXOR =
526tXORtln sd = tsub + 2� tshft = (16 + 2�255)tXOR =
526tXOR. Thus, from Eq. (65), propagation delay
for the proposed algorithm, tpd, can be formulated as
tpd = (2195 + 100 + 526)tXOR = 2821tXOR.

6.2. Results and discussions
In designing the logarithmic multiplier, all indi-
vidual modules, such as gates, barrel shifter, and
adder/subtractor were implemented using TG to make
the circuit faster. Lowering supply voltage reduces
power dissipation in quadratic fashion and becomes
attractive. Though low supply voltage a�ects delay,
it is compensated for by the lower RC delay of the
TG circuit and dual threshold CMOS technology. It
is also to be noted that each TG circuit requires a
lower number of transistors than conventional CMOS
implemented circuits, thus reducing the layout area.
To evaluate the performance parameters, we give the
values of computational e�ort using the CSD tech-
nique. Input data was taken in a regular fashion
for experimental purposes. Delay and power were
measured using the worst-case pattern and from the
output, where the delay is maximum. The individual
performance parameters, such as propagation delay,
dynamic switching power consumption for circuits, i.e.
LNS to binary (LNS encoder), CSD adder/subtractor
and binary to logarithmic number conversion (LNS
decoder), are shown in Figure 9.

We focused our main concentration on reduc-
ing propagation delay, and dynamic switching power
consumption. Figure 10 indicates the performance
parameters, such as propagation delay, and dynamic
switching power consumption analyses of the logarith-
mic multiplier. Figure 11 represents the layout of
the proposed logarithmic multiplier, with an area of
only � 25 mm2. All the mentioned designs have been
simulated using the same technology, the spice spectre
simulator, for comparison purposes. From simulation
result analysis, we can claim that incorporation of TG
with dual threshold voltage CMOS technology may

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 839

Figure 9. (a) Propagation delay (ns) analysis for
individual circuitry like LNS encoder, CSD
adder/subtractor, LNS decoder as a function of input
number of bits. (b) Average dynamic switching power
(�W) analysis for individual circuitry like LNS encoder,
CSD adder/subtractor, and LNS decoder as a function of
input number of bits.

be a plausible choice for the future technology of a
logarithmic multiplier.

7. Conclusions

A high speed multiplier, using a high accuracy loga-
rithmic number conversion methodology, was designed
for practical digital signal processors. Multiplication of
higher order bits requires a large number of hardware
components, due to the generation and processing
of huge partial products. In these schemes, partial
product handling was avoided by using LNS, where
multiplication reduces to direct addition. The improve-
ment in speed, by avoidance of carry propagation, was
achieved through Canonical Signed Digit Code (CSDC)
implementation, while high accuracy was taken care
of by the
oating point conversion methodology. An
error minimization technique was especially considered

Figure 10. (a) Propagation delay (ns) analysis for
multiplier as a function of input number of bits. (b)
Average dynamic switching power (mW) analysis for
multiplier as a function of input number of bits.

Figure 11. Layout of the proposed (128� 128) bit
multiplier circuitry which have implemented LNS encoding
and decoding methodology. The layout has implemented
T-Spice V-13 simulator, with � 25 mm2 layout area.

for this purpose. The implementation results of the
proposed 128 � 128 bit multiplier were compared
with mostly used architecture, like LUT, PA, and
DD based implementation. This multiplier o�ered
� 39%, � 42% and � 44% improvement, in terms
of propagation delay, in comparison with LUT, PA

840 P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841

and DD based implementation. The corresponding
improvement, in terms of power, was found to be
� 54%, � 66%, and � 61%, respectively, with reference
to the above mentioned methodologies (LUT, PA, DD)
for a layout area of � 25 mm2, thereby, emphasizing
the possibility of the scheme for low power VLSI
implementation.

Abbreviations

LNS Logarithmic Number System
CSDC Canonical Sign Digit Code
CORDIC COordinate Rotation DIgital

Computer

References

1. Mitchell, J.N. \Computer multiplication and division
using binary logarithms", IRE Trans. on Electronic
Computers, EC-11(4), pp. 512-517 (1962).

2. Ramaswamy, S. and Siferd, R.E. \CMOS VLSI imple-
mentation of a digital logarithmic multiplier", IEEE
Aerospace and Electronics Conf., (1), Dayton, OH, pp.
291-294 (1996).

3. Babic, Z., Avramovic, A. and Bulic, P. \An it-
erative logarithmic multiplier", Microprocessors and
Microsystems, 35(1), pp. 23-33 (2011).

4. Khalid, H., Abed, K.H. and Siferd, R.E. \CMOS VLSI
implementation of a low-power logarithmic converter",
IEEE Trans. on Computers, 52(11), pp. 1421-1433
(2003)

5. Khalid, H., Abed, K.H. and Siferd, R.E. \VLSI imple-
mentation of a low-power antilogarithmic converter",
IEEE Trans. on Computers, 52(9), pp. 1221-1228
(2003).

6. McLaren, D.J. \Improved Mitchell-based logarithmic
multiplier for low-power DSP applications", IEEE
International SOC Conference, pp. 53-56 (2003).

7. Mahalingam, V. and Ranganathan, N. \Improving
accuracy in Mitchell's logarithmic multiplication using
operand decomposition", Computers, IEEE Trans. on
Computers, 55(12), pp. 1523-1535 (2006).

8. Lewis, D.M. and Yu, L.K. \Algorithm design for a 30
bit integrated logarithmic processor", 9th IEEE Symp.
on Computer Arithmetic, Santa Monica, CA, pp. 192-
199 (1989).

9. Yu, L.K. and Lewis, D.M. \A 30-b integrated logarith-
mic number system processor", IEEE Int. J. of Solid-
state Circuits, 26(10), pp. 1433-1440 (1991).

10. Lewis, D.M. \114 MFLOPS logarithmic number sys-
tem arithmetic unit for DSP application", IEEE Int. J.
of Solid-state Circuits, 30(12), pp. 1547-1553 (1995).

11. Lewis, D. \An accurate LNS arithmetic unit using
interleaved memory function interpolator", 11th IEEE
Symp. on Computer Arithmetic, Windsor, Ont, pp. 2-9
(1993).

12. Koren, I. and Zinaty, O. \Evaluating elementary
functions in a numerical co-processor based on rational
approximations", IEEE Trans. on Computers, 39(8),
pp. 1030-1037 (1990).

13. Lee, B. and Burgess, N. \A parallel look-up loga-
rithmic number system addition/subtraction scheme
for FPGA", Proc. IEEE International Conference on
Field Programmable Technology, pp. 76-83 (2003).

14. Hart, J.F., Cheney, E.W., Lawson, C.L., Maehly, H.J.,
Mesztenyi, C.K., Rice, J.R., Thacher, H.G., Thacher,
C. and Witzgall, Jr H.G., Computer Approximations,
Wiley, New York (1968).

15. Kantabutra, V. \On hardware for computing expo-
nential and trigonometric functions", IEEE Int. J. on
Computers, 45(3), pp. 328-339 (1996).

16. Chen, C. and Chen, R. \Performance-improved
computation of very large word-length LNS addi-
tion/subtraction using signed-digit arithmetic", IEEE
Int. Conf. on Application-Speci�c Systems, Architec-
tures and Processors, pp. 337-347 (2003).

17. Fu, H., Mencer, O. and Luk, W. \FPGA designs with
optimized logarithmic arithmetic", IEEE Trans. on
Computers, 59(7), pp. 1000-1006 (2010).

18. Volder, J. \The CORDIC trigonometric computing
technique", IRE Trans. on Electronic Computing, EC-
8(3), pp. 330-334 (1959).

19. Saha, P., Banerjee, A., Banerjee, I. and Dandapat, A.
\High speed low power
oating point multiplier design
based on CSD (Canonical Sign Digit)", IEEE sympo-
sium on VLSI Design and Testing, VDAT (2010).

20. Avizienis, A. \Signed-digit number representations for
fast parallel arithmetic", IRE Trans. on Electronic
Computers, EC-10(3), pp. 389-400 (1961).

21. Deschamps, J.P., Bioul, G.J.A. and Sutter, G.D.,
Synthesis of Arithmetic Circuits, FPGA, ASIC and
Embedded Systems, Wiley Interscience Publications,
New Jersey (2006).

22. Khandekar, P.D. and Subbaraman, S. \Low power
2:1 MUX for barrel shifter", 1st IEEE Int. Conf.
on Emerging Trends in Engineering and Technology,
Nagpur, India, pp. 404-407 (2008).

23. Saha, P., Banerjee, A. and Dandapat, A. \High speed
low power factorial design in 22 nm technology",
AIP Int. Conf. on Nanomaterials and Nanotechnology,
Guwahati, India, pp. 294-301 (2009).

24. Chen, C. and Cheng, K. \An e�cient exponential
algorithm with exponential convergence rate", IEEE
Euromicro Symp. on Digital System Design, pp. 548-
555 (2004).

P. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 21 (2014) 826{841 841

Biographies

Prabir Saha was born in Kolkata, India, on February
1980. He received BTech degree from AMIETE in
2003, and MTech from Tezpur University in 2008.
Presently he is pursuing PhD at Bengal Engineering
and Science University, Shibpur, Howrah, India. His
research interest includes VLSI design, Digital Signal
Processing and Digital Image Processing.

Arindam Banerjee received a MTech degree from
West Bengal University of Technology, West Bengal,
India, in 2008. Presently, he is Lecturer in the Depart-
ment of Electronics and Communication Engineering at
the JIS College of Engineering in Kalyani, India. His
current research interests are low power VLSI design,
digital signal processing and digital image processing.

Anup Dandapat received BS and MS degrees in
Electronics from the University of Calcutta, India, in
2002 and 2004, respectively, and a PhD degree from
the Department of Electronics and Telecommunication
Engineering at Jadavpur University, India, in 2008. His
current research interests are in the areas of digital
and low-power VLSI design. He has authored about
twenty research papers in reputed journals, and has
presented about 25 papers at national and international

conferences. He is currently Associate Professor and
Head of the Department at the National Institute of
Technology, Meghalaya, India.

Partha Bhattacharyya received a BE degree (Elec-
tronics and Telecommunication Engineering), an ME
degree (Electron Devices) and a PhD degree (MEMS
based gas sensor and its integration with CMOS cir-
cuits) from Jadavpur University, Kolkata, India, in
2002, 2004 and 2008, respectively. Presently, he is
Assistant Professor in the Department of Electronics
and Telecommunication Engineering at Bengal Science
University, Shibpur, India. His current research in-
terests include nanomaterial based sensors, MEMS-
based chemical sensors and CMOS integration and
low power VLSI design. He has published about
seventy �ve research articles in reputed national and
international journals and conferences. He received
the Young Engineer's Award from the Institution
of Engineers, India, in 2010, the Career Award for
Young Teachers (CAYT) in 2011-12 from the All
India Council for Technical Education (AICTE), the
Young Engineer Award in 2012 from the Indian Na-
tional Academy of Engineering (INAE) and the Young
Scientist Award in 2012 from the Indian National
Science Academy (INSA) for his teaching and research
contributions.

