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Abstract. The e�ects of heat and mass transfer on two-dimensional magnetohydro-
dynamic (MHD) 
ow of Maxwell 
uid over a stretching surface are discussed. The
stretching surface satis�es the convective boundary conditions. In addition, the analysis has
been carried out in the presence of Joule heating, thermal radiation and thermophoresis.
Governing partial di�erential equations are �rst reduced into ordinary di�erential equations
and then computed for series solutions. Numerical values of local Nusselt and Sherwood
numbers are presented and examined.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Fluid 
ow in non-Newtonian 
uids has been extensively
investigated. Wang and Tan [1] examined stability
criteria for the 
ow of Maxwell 
uid passed through
a porous medium. The unsteady 
ow of a fractional
Maxwell model between two in�nite cylinders was
considered by Fetecau et al. [2]. The motion in the

uid is due to the inner cylinder being subjected
to time dependent shear stress. Exact solutions are
developed via Hankel and Laplace transforms. Jian et
al. [3] considered the eletroosmotic 
ow of generalized
Maxwell 
uid in a two-dimensional microchannel and
developed series solutions. They also employed a
numerical technique to analyze the volumetric 
ow
rate. Mukhopadhyay [4] investigated the e�ects of
suction/injection in a 
ow of Maxwell 
uid in a porous
medium. The MHD Falkner-Skan 
ow of Maxwell

uid was studied by Abbasbandy et al. [5]. They
used the rational Chebyshev collocation method for the
presentation of solutions. The boundary layer 
ow of
Maxwell 
uid with power law heat 
ux was investigated
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by Shehzad et al. [6]. They discussed the velocity
and temperature of the 
uid by employing a homotopy
analysis method. Moreover, 
ow, using a stretching
surface, has applications in metallurgy and chemical
engineering. Numerous studies in the huge collection of
available literature on the topic deal with 
ow without
convective boundary conditions. A few researchers, for
example, Aziz [7], initiated the concept of convective
boundary conditions. He discussed the boundary
layer 
ow of viscous 
uid over a 
at plate subject to
convective surface conditions. Makinde and Aziz [8]
presented the behaviour of the boundary layer 
ow
of a nano
uid over a stretching sheet with convective
boundary conditions. Yao et al. [9] investigated the ef-
fects of convective heat transfer of Newtonian 
uid over
the generalized stretching/shrinking sheet. This work
has been further extended by Hayat et al. [10]. They
examined the characteristics of the boundary layer 
ow
of Maxwell 
uid over a stretching sheet with convective
heat transfer. Three dimensional 
ow of Je�ery 
uid
with convective heat transfer over the stretching sheet
is examined by Shehzad et al. [11]. Similar solutions for

ow and heat transfer over a permeable surface with
convective boundary conditions are investigated by
Ishak [12]. Makinde and Olanrewaju [13] examined the
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e�ects of buoyancy forces and convective heat transfer
in the thermal boundary layer.

Another important issue until now neglected is
the mechanism of thermophoresis. Such a mechanism
is useful for the migration of small particles in the
direction of the decreasing thermal gradient [14] and
for particle collection [15]. The velocity acquired
by the particle is known as thermophoretic velocity,
and the force experienced by the suspended particle
is called thermophoretic force [16]. Speci�cally, it
has applications in aerosol technology, deposition of
silicon thin �lms, and radioactive particle deposition
in nuclear reactor safety simulations [17-20]. Also,
convective free mixed convection and forced convection

ows are signi�cant in petroleum extraction, in soil,
in the storage of agricultural products, as a porous
material heat exchanger, etc. Bazdid-Tehrani and
Nazaripoor [21] considered buoyancy-assisted 
ow in
symmetrically heated plates combined with mixed
convective-radiative heat transfer. They analyzed the
radiation e�ects by choosing two radiative parameters.
MHD mixed convection 
ow over a heated wall in
a lid-driven cavity was investigated by Kefayati et
al. [22] using the Lattice Boltzmann simulation scheme.
Mozayyeni and Rahimi [23] examined the e�ect of
constant magnetic �eld on the mixed convection 
ow
in cylindrical annuli. They assumed that the magnetic
�eld is applied to the radial direction and the 
ow is
generated due to rotation in the outer cylinder. The
mixed convection 
ow of Casson 
uid with a convective
surface condition was analytically discussed by Hayat
et al. [24]. In another study, Hayat et al. [25] provided
the series solution for the mixed convection 
ow of
Maxwell 
uid in the presence of thermal strati�cation
e�ects.

This paper studies the mixed convection 
ow of
MHD non-Newtonian 
uid over a stretching surface.
Thermal radiation, thermophoresis and Joule heating
e�ects are included in the mathematical modelling.
This is the �rst attempt to investigate all the above ef-
fects in the presence of convective boundary conditions.
Such 
ow analysis is not available yet, even for the case
of viscous 
uid. Our main emphasis is to analyze the
thermophoresis and Joule heating e�ects with convec-
tive type surface conditions. All previous investigations
available in the literature on thermophoresis and Joule
heating e�ects were made considering constant surface
temperature conditions. We hope that this study will
lead to further investigation by di�erent researchers
into various 
ow geometries and di�erent 
uid mod-
els. Constitutive equations for Maxwell 
uid [10] are
employed in the problem formulation. This paper is
organized in the following fashion. Section 2 consists
of problem formulation. Section 3 deals with the
development of series solutions [26-30]. Convergence
analysis related to the series solutions is given in

Section 4. Section 5 contains interpretation regarding
various involved parameters. Section 6 includes the
conclusions.

2. Mathematical model

We investigate the heat and mass transfer e�ects in
the steady MHD 
ow of Maxwell 
uid past a vertical
stretching sheet. The surface is stretched in its own
plane with a velocity proportional to its distance from
the �xed origin, x = 0. A uniform magnetic �eld
of strength B0 acts parallel to the y direction. The
induced magnetic �eld is neglected for small magnetic
Reynolds number. Further, a convective boundary
condition is assumed for heat transfer analysis and
constant concentration, Cw. The ambient temperature
and concentration are taken as T1 and C1, respec-
tively. We consider here Tf > T1 and Cw > C1.
For mass deposition on the surface, the e�ects of
thermophoresis are considered. The equations which
can govern the present 
ow are:
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where u and v denote the velocity components in the
x and y directions, respectively, �1 is the relaxation
time, T is the 
uid temperature, C is the concentration
�eld, g is the gravitational acceleration, � = (�� ) is
the kinematic viscosity, � is the density of the 
uid,
�T and �c are the thermal expansion coe�cients of
temperature and concentration, respectively, cp is the
speci�c heat, �� is the Steafan-Boltmann constant, k�
is the mean absorption, D is the di�usion coe�cient,
and VT is the thermophoretic velocity.

It is seen that the in
uence of thermophoresis is
usually prescribed by means of the average velocity,
which a particle will acquire when exposed to a temper-
ature gradient. The temperature in the y direction for
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boundary layer 
ow is larger when compared with the
x direction and, thus, only the thermophoretic velocity
(VT ) in the y direction is taken, i.e.:

VT = �k1
�
Tr
@T
@y

; (5)

in which k1 indicates the themophoretic coe�cient and
Tr denotes the reference temperature. Thermophoretic
parameter, � , satis�es the following expression:

� =
�k1(Tf � T1)

Tr
: (6)

The appropriate boundary conditions are prescribed as
follows:

u = uw(x) = ax; v = 0;

�k@T
@y

= h(Tf � T ); C = Cw;

at y = 0;

u! 0;
@u
@y
! 0; T ! T1;

C ! C1 as y !1: (7)

Here, a, b and c are the positive constants.
De�ning the transformations:

� = y
r
a
�
; u = axf 0(�); v = �pa�f(�);

�(�) =
T � T1
Tf � T1 ; �(�) =

C � C1
Cw � C1 ; (8)

continuity Eq. (1) is clearly satis�ed and the resulting
problems in f , � and � are:
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In the above expression, � is the Deborah number,
M is the Hartman number, 
� is the local buoyancy
parameter, Grx is the local Grashof number, Rex
is the local Reynolds number, N is the constant
dimensionless concentration buoyancy parameter, Pr
is the Prandtl number, Ec is the Eckert number, Sc is
the Schmidt number, 
 is the Biot number and Rd is
the radiation parameter.

The local Nusselt, Nux, and Sherwood number,
Sh, can be de�ned as:

Nux =
xqw

k(Tf � T1)
; Sh =

xjw
D(Cw � C1)

; (14)

in which qw and jw denote the wall heat 
ux and the
mass 
ux from the plate. These are de�ned as:

qw = �
�
@T
@y

�
y=0

; jw = �
�
@C
@y

�
y=0

: (15)

The above expressions in dimensionless variables are
reduced as follows:

NuxRe�1=2
x = ��0(0); Sh=Re1=2

x = ��0(0): (16)

3. Homotopy analysis solutions

Taking the base functions in the form:

f�k exp(�n�); k � 0; n � 0g; (17)

we express that:

fm(�) =
1X
n=0

1X
k=0

akm;n�
k exp(�n�); (18)

�m(�) =
1X
n=0

1X
k=0

bkm;n�
k exp(�n�); (19)
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�m(�) =
1X
n=0

1X
k=0

ckm;n�
k exp(�n�); (20)

where akm;n, bkm;n and ckm;n are the coe�cients. The
initial guesses f0, �0 and �0, of f(�), �(�) and �(�),
are:

f0(�) = (1� exp(��));

�0(�) = exp(��);

�0(�) = exp(��); (21)

in which the auxiliary linear operators are chosen
through the equations:
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d3f
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d�
;
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d2�
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d2�
d�2 � �; (22)

Lf [C1 + C2 exp(�) + C3 exp(��)] = 0;

L�[C4 exp(�) + C5 exp(��)] = 0;

L�[C6 exp(�) + C7 exp(��)] = 0; (23)

in which Ci (i = 1� 7) are the arbitrary constants.

3.1. Zeroth and mth order deformation
problems

De�ning the non-linear operators Nf , N� and N� in
the forms:
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the corresponding problems at the zeroth and mth
orders can be written as:
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Lf [fm(�)� �mfm�1(�)] = ~fRf
m(�); (33)

L�[�m(�)� �m�m�1(�)] = ~�R�
m(�); (34)

L�[�m(�)� �m�m�1(�)] = ~�R�
m(�); (35)

Rf
m(�) =f 000m�1(�) + 
 (�m�1�k +N phim�1�k)

m�1X
k=0

"
(M2� + 1)fm�1�kf 00k � f 0m�1�kf 0k

+ �

 
2fm�1�k

kX
l=0

f 0k�lf 00l

� fm�1�k
kX
l=0

fk�lf 000l

!
;

(36)

R�
m(�) =

�
1 +

4
3
Rd
�
�00m�1(�)

+ Pr
m�1X
k=0

�
fm�1�k�0k � �m�1�kf 0k

+ Ecf 00m�1�kf 00k +M2Ecf 0m�1�kf 0k; (37)

R�
m(�)=�00m�1(�)+Sc

m�1X
k=0

[fm�1�k�0k��m�1�kf 0k]

+ Sc�(�0�0 � ��00m�1); (38)

fm(0) = 0; f 0m(0) = 0; f 0m(1) = 0;

�0m(0)� 
�m(0) = �m(1) = 0; �m(0) = 0;

�m(0) = 0; �m(1) = 0; (39)

where p 2 [0; 1] is an embedding parameter and ~f , ~�
and ~� are the auxiliary parameters.

According to Taylor series, we obtain:
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1X
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The auxiliary parameters are selected in such a manner
that:

f(�) = f0(�) +
1X
m=1

fm(�);

�(�) = �0(�) +
1X
m=1

�m(�); (44)

�(�) = �0(�) +
1X
m=1

�m(�): (45)

The general solutions of Eqs. (34)-(36) are:

fm(�) = f�m(�) + C1 + C2 exp(�) + C3 exp(��);
(46)

�m(�) = ��m(�) + C4 exp(�) + C5 exp(��); (47)

�m(�) = ��m(�) + C6 exp(�) + C7 exp(��); (48)

in which f�m(�), ��m(�) and ��m(�) are the special
solutions.

4. Convergence of the homotopy solutions

Clearly, the homotopy solutions consist of auxiliary
parameters, ~f , ~� and ~�. For such interest, the
~� curves for the 19th order of approximations are
displayed. It is found that the admissible values of
~f , ~� and ~� are �1:53 � ~f � �0:60, �1:50 � ~� ��0:55 and �1:50 � ~� � �0:5 (see Figure 1).

Figure 1. ~ curves for the functions f 00(0), �0(0) and
�0(0) at 19th order of approximation.
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5. Graphical results and discussion

This section is organized just to see the behaviour
of di�erent emerging parameters on the 
uid velocity,
temperature and concentration. Figures 2-9 illustrate
the variations of �, 
, N , Ec, Pr, M , Rd and Sc on the
velocity f 0(�). Figure 2 depicts that the velocity and
momentum boundary layer thickness are decreasing
functions of Deborah number. The Deborah number is
dependent on the relaxation time, and relaxation time
opposes the 
uid 
ow that corresponds to the decrease
in velocity and boundary layer thickness. Further, it
is noticed that the e�ect of Deborah number on the
velocity pro�le is similar to that of [4]. An increase
in the local buoyancy parameter increases the 
uid ve-
locity and its associated boundary layer thickness (see
Figure 3). Here, increase in local buoyancy parameter
leads to an enhancement in the buoyancy force. An
enhancement in the buoyancy force corresponds to an
increase in the 
uid velocity. The buoyancy force plays
an important role in the petroleum industry. Figures 4
and 5 show the in
uences of N and Ec on f 0(�). These

Figure 2. In
uence of � on velocity f 0.

Figure 3. In
uence of 
� on velocity f 0.

�gures show that both N and Ec increase the velocity.
It is also observed that the variation in velocity due
to N increases rapidly in comparison to the variation
of f 0(�) due to Ec. Figure 6 depicts that the 
uid
velocity and its associated boundary layer thickness

Figure 4. In
uence of N on velocity f 0.

Figure 5. In
uence of Ec on velocity f 0.

Figure 6. In
uence of Pr on velocity f 0.
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Figure 7. In
uence of M on velocity f 0.

Figure 8. In
uence of Rd on velocity f 0.

Figure 9. In
uence of Sc on velocity f 0.

decrease by increasing Prandtl number. The velocity,
f 0(�), is reduced with an increase in Hartman number.
Hartman number is through the Lorentz force, and the
increase in Lorentz force resists the 
uid 
ow, which
causes reduction in the velocity, f 0(�) (see Figure 7).

Figure 10. In
uence of � on temperature �.

Figure 11. In
uence of 
 on temperature �.

To see the e�ects of Rd and Sc on f 0(�), Figures 8
and 9 are presented. We observed that Rd and Sc
have quite opposite e�ects on velocity. The thermal
radiation parameter increases velocity, but Schmidt
number reduces it.

Figures 10-14 are plotted for the variations of
�, 
, Ec, Pr and Rd on the 
uid temperature, �(�).
Figure 10 indicates that the temperature increases with
an increase in �. Comparative study of Figures 2
and 10 shows that the decrease in velocity is rapid
and the increase in temperature is slow when Deborah
number � increases. Figure 11 is prepared to see the
in
uence of Biot number on temperature, �(�). The
temperature and thermal boundary layer thickness are
increasing functions of Biot number, 
. The results
for variations in Biot number, 
, are similar in a
qualitative way, as obtained [11,12]. It is also noticed
that 
 ! 1 leads to the results of [20]. Further,
an enhancement in the temperature with an increase
in Biot number is actually due to the heat transfer
coe�cient, h, as discussed in [12]. Biot number is
dependent on the heat transfer coe�cient. Higher
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Figure 12. In
uence of Ec on temperature �.

Figure 13. In
uence of Pr on temperature �.

Figure 14. In
uence of Rd on temperature �.

values of Biot number correspond to an increase in
heat transfer coe�cient. An increase in heat transfer
coe�cient gives more heat to the 
uid, which leads to
higher 
uid temperature. Due to an increase in Ec,
the temperature and thermal boundary layer thickness
are increased (see Figure 12). Figure 13 clearly shows

Figure 15. In
uence of N on concentration �.

Figure 16. In
uence of Ec on concentration �.

that an increase in Prandtl number causes a decrease
in temperature and its associated thermal boundary
layer thickness. Comparison of Figures 8 and 14 clearly
illustrate that the radiation parameter, Rd, has similar
e�ects on 
uid velocity and temperature. However, it
is observed that an increase in temperature is more
signi�cant than the increase in velocity.

Figures 15-18 are prepared to see the variations of
some interesting parameters, N , Ec, M and Sc, on the
concentration pro�le, �(�). The concentration �eld and
its associated boundary layer thickness show a decrease
with an increase in N . From Figure 16, we have
seen that the Eckert number reduces the concentration
pro�le and concentration boundary layer thickness. We
also noticed that the increase in velocity and tempera-
ture is more signi�cant in comparison to the decrease
in concentration. An increase in Hartman number
leads to an increase in concentration (see Figure 17).
Figure 18 shows that the concentration and associated
boundary layer thickness are decreasing functions of
Sc. Schmidt number is the ratio of momentum to mass
di�usivities. It is used to characterize the 
uid 
ows in



690 T. Hayat et al./Scientia Iranica, Transactions B: Mechanical Engineering 21 (2014) 682{692

Figure 17. In
uence of M on concentration �.

Figure 18. In
uence of Sc on concentration �.

petroleum reservoirs, where momentum and mass dif-
fusion convection processes arise simultaneously. The
relative thickness of the hydrodynamic layer and mass
transfer layer are related, due to Schmidt number.

Table 1 is prepared to see the convergent values
of �f 00(0), ��0(0) and �0(0) for di�erent order of
approximations. From this table, we noticed that
the series solutions converge from the 30th order of
approximation for velocity, temperature and concen-
tration. Tables 2 and 3 are given for the numerical
values of the local Nusselt and Sherwood number for
the di�erent values of involved parameters of interest.
From Table 2, it is found that the magnitude of ��0(0)
decreases for large values of �. The magnitude of
��0(0) increases when 
� is increased. Table 3 is
prepared for the variations of M , Rd, Sc, � and Pr
on ��0(0) and ��0(0). It is obvious from this table
that when Rd, Sc and � are increased, the magnitude
of ��0(0) increases, whereas the magnitude of ��0(0)
decreases. Our present analysis reduced to the analysis
of Ref. [8], when � = M = 
 = N = Rd = Ec =

Table 1. Convergence of homotopy solutions for di�erent
order of approximations when N = 1, � = 0:2, 
 = 1:0,
Pr = 0:7, Ec = 0:5, M = 0:5, Rd = 0:3, Sc = 0:6, � = 0:2,

� = 0:2 and ~f = ~� = ~� = �0:6.

Order of
approximations

�f 00(0) ��0(0) ��0(0)

1 1.0167 0.39063 0.80000
5 0.97400 0.23820 0.53157
10 0.94307 0.19903 0.47048
15 0.93367 0.18820 0.45620
20 0.93101 0.18452 0.45250
25 0.93043 0.18320 0.45180
30 0.93040 0.18273 0.45189
40 0.93040 0.18273 0.45189

Table 2. Numerical values of local Nusselt number ��(0)
and Sherwood number ��0(0) when M = 0:5, Rd = 0:3,
Sc = 0:6, c = 0:2, Pr = 0:7 and 
 = 1:0.

N � 
� Ec ��0(0) ��0(0)
0.0 0.2 0.6 0.5 0.46443 0.16457
0.4 0.48040 0.17638
0.6 0.48728 0.18119
0.6 0.0 0.49850 0.18791

0.4 0.47822 0.17490
0.7 0.46607 0.16606
0.4 0.5 0.45563 0.14673

0.8 0.48426 0.19882
1.0 0.50002 0.22513
0.6 0.0 0.48314 0.29506

0.4 0.49651 0.23870
1.0 0.51574 0.15876

Table 3. Numerical values of local Nusselt number ��0(0)
and Sherwood number ��0(0) when N = 0:6, � = 0:7,

 = 
� = 1:0, and Ec = 1:0.

M Rd Sc � Pr ��0(0) ��0(0)
0.0 0.3 0.6 0.2 0.7 0.51775 0.22790
0.5 0.51580 0.18283
0.7 0.51313 0.059840
0.4 0.0 0.50916 0.18818

0.2 0.51388 0.18507
0.4 0.51807 0.18074
0.4 0.7 0.57162 0.17789

1.0 0.71363 0.17243
1.3 0.83561 0.16899
0.6 0.0 0.67373 0.17317

0.3 0.73457 0.17245
0.5 0.77550 0.17198
0.5 0.5 0.76906 0.16472

1.0 0.78498 0.17414
1.5 0.80404 0.18212
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Sc = � = 0, and reduced to the study [9], when
M = 
� = N = Rd = Ec = Sc = � = 0: Our results
also reduced to Ref. [20], when 
 !1.

6. Conclusions

This work is a theoretical investigation to analyze
the thermophoresis and Joule heating e�ects in an
electrically conductive Maxwell 
uid over a stretching
surface with convective conditions. Existing attempts
related to thermophoresis and Joule e�ects have been
reported with references to the prescribed surface
temperature. In many metallurgical and industrial
processes, the temperature at the surface is not con-
stant. The prescribed surface temperature is not useful
under such conditions. Hence, we adopt the more
appropriate condition known as convective or Robin's
type boundary condition. Such a condition, in fact,
relates heat 
ux with temperature. To our knowledge,
such 
ow analysis is examined for the �rst time and
it provides a basis for convective conditions of heat
transfer through various 
uid models and geometrical
con�gurations. The following points of the presented
study are worth mentioning:

� E�ects of �, Pr, M , and Sc on velocity pro�le, f 0,
are similar in a qualitative sense [20].

� Velocity pro�le, f 0, is increased for larger N .

� Behaviours of Rd and Pr on the temperature, �, are
opposite.

� Both temperature and thermal boundary layer are
decreasing functions of Prandtl number.

� An enhancement in the temperature is noticed when
we increase the values of Biot number. A similar
behaviour was observed in [7].

� Concentration �eld decreases by increasing Schmidt
number, Sc.
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