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Abstract. In this study, stress distribution in the aneurismal wall of the abdominal aortic
is addressed. Full equilibrium equations derived from the thick-wall theory are solved using
the well-known Finite Element Method (FEM). Nine-node quadratic rectangular plane
elements are employed for the spatial discretization of the computational domain. Non-
linear constitutive equations and non-uniform wall properties are taken into consideration.
The results of this investigation show that in addition to the aneurysm size, some other
factors may significantly affect stress distribution in aneurismal wall. Factors such as
wall thickness, blood pressure and longitudinal tension have been identified for both
uniform and non-uniform wall properties. Having numerically simulated different cases,
it is demonstrated that longitudinal stress is the maximum stress in the wall, and it is not
significantly affected by the uniformity of wall stiffness.

(© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

An aneurysm is an abnormal dilatation of a portion
of an artery due to a weakening in the vessel wall
which may happen either congenitally or by disease.
Aneurysm is a major threat to rupture, if left un-
treated. There are several types of aneurysm, such as
Abdominal Aortic Aneurysm (AAA), brain (cerebral)
aneurysm, and Thoracic Aortic Aneurysm (TAA) [1].
Each type of aneurysm may be further subdivided
into fusiform, saccular, or dissecting. The fusiform
aneurysm is axisymmetric; the saccular has the shape
of a sac, and the dissecting aneurysm results from the
diffusion of the blood between the separated layers of
the arterial wall.

In the present work, the fusiform aneurysm is
considered. The axisymmetric stress distributions are
examined to evaluate the effect of factors such as
aneurysm radius, blood pressure and the longitudi-
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nal tension on the maximum stress generated in the
aneurysm wall with both uniform and non-uniform
stiffness.

It is necessary to point out that stiffness non-
uniformity is caused by the aneurysm. This non-
uniformity along the longitudinal direction is more
important than the stiffness non-uniformity in the
radial direction, i.e. across the thickness. In the radial
direction, a normal artery has three layers (intima,
media and adventitia), although the aneurysm wall
has only two layers, because of an abnormal loss or
absence of the muscular layer. From two remaining
layers, the media is the most important for determin-
ing the biomechanical properties of the artery wall.
It contains smooth muscle cells, which are oriented
circumferentially and have an important influence on
arterial stiffness.

A common practice to repair the aneurysm is
surgical resection. However, since this practice involves
major surgery with a high mortality rate [2,3], it
is prudent to repair the aneurysm only when there
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is objective evidence that the aneurysm rupture is
imminent. To diagnose whether the aneurysm rupture
is imminent or not, an appropriate criterion must be
applied. Although the aneurysm size is usually used as
a criterion, clinicians are aware of the fact that some
aneurysms rupture at an unusually small size [4,5].
Therefore, a preferred criterion is the maximum stress
generated in the aneurysm wall. To prevent rupturing,
the maximum stress should be less than the strength of
the wall tissue. In other words, if the maximum stress
in the aneurysm wall exceeds the strength of the wall
tissue, aneurysm rupture will be imminent.

To compute maximum stress, one has to deter-
mine the stress distribution in the wall. To do this,
several methods, such as the thick-wall theory, the
membrane theory, or the method of taking a simple
relationship between the blood pressure and aneurysm
diameter, could be used. However, as the thick-wall
theory is more complicated and leads to expensive
computational costs, some investigators prefer to use
simpler methods, such as the membrane theory.

In the present study, the stress distributions are
calculated using the thick-wall theory by the well-
known FEM. Nine-node quadratic rectangular plane
elements are used for grid generation. Solving the full
equilibrium equations in the thick-wall theory leads
to the most accurate results. The validation tests
(Section 4) show that the amount of error is so trivial
that the solutions obtained by this method could be
used as a reference solution to assess the accuracy of
the other theories.

To find the maximum stress in the wall, the
material properties of the wall are needed. Many
investigators have tried to find these properties. For in-
stance, Vorp et al. [6] presented the effect of aneurysm
on the tensile strength and biomechanical behavior of
the ascending thoracic aorta. Based on their study, the
tensile strength of the aneurysm wall is about 1.2 MPa.
No significant difference in strength was observed
between circumferential and longitudinal specimens.

Other investigators, such as Inzoli et al. [7],
Mower et al. [8], Stringfellow et al. [9], Elger et
al. [10], and Vorp et al. [11] used the theory of
linear elasticity. In this theory, the elastic modulus
is considered a constant value. In the literature, this
constant value varies from 1 MPa [12] to 8 MPa [13].
Still others have taken a value between these two. For
example, Steiger et al. [14] have taken 2.5 MPa as
the elastic modulus. Some other researchers, such as
Demiray [15], Kyriacou and Humphrey [16], Shah and
Humphrey [17], Hademenos et al. [18], Thubrikar et
al. [19], and Vorp et al. [6] used a system of non-linear
constitutive equations.

In 2009, Merkx et al. [20] studied the effect
of initial stress incorporation on stress distribution
in the aneurysmal wall. They concluded that the

initial stress incorporation significantly improves the
wall displacement accuracy of finite element analy-
sis. To account for the complex three-dimensional
arrangement of collagen, Gasser [21] applied a mi-
crofiber model approach. In his model, the constitutive
relations for collagen fibers were integrated over the
unit sphere, which defined the tissue’s macroscopic
properties.

In 2012, Gasser et al. [22] studied the spatial
orientation of collagen fibers in the abdominal aortic
aneurysm wall and its relation to wall mechanics. They
used two constitutive models for collagen fibers in order
to integrate an identified structural information in a
macroscopic AAA wall model. They concluded that the
mechanical properties of collagen fibers depend largely
on their undulation, which is an important structural
parameter.

A constitutive description of the wall, which is
crucial for AAA wall stress prediction, was demon-
strated by Polzer et al. [23], in 2013. They obtained
different results using different models. They recom-
mended that different results should not be mutually
compared unless different stress gradients across the
wall are taken into account.

2. Governing equations

As noted already, in the thick-wall theory, full equilib-
rium equations are considered. These equations are
derived from Newton’s second law for a differential
element of the wall. This derivation can be found in
any textbook of solid mechanics, such as Timoshenko
and Goodier [24], or Atkin and Fox [25].

Taking into account the axisymmetry in the ge-
ometry of the problem (see Figure 1), one can write the
equilibrium equations as follows:
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Figure 1. Geometry of the problem and a typical grid
used in the finite-element method.
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In Egs. (3) to (16), u and v are displacements in
directions z and r, respectively. A is the stretch ratio,
and « and § are non-linear model parameters [6]. As
an aneurismal wall is stiffer than a non-aneurismal wall
and the stiffness changes continuously along the axis,
the following equation is used to consider these changes:

Eqo

T 14 esin?(Z)]

(17)

where z is the distance from the aneurysm center,
zm 18 half of the aneurysm length, Ejy is the elastic
modulus at the aneurysm center, and c is the ratio of
the aneurismal stiffness to the non-aneurismal stiffness,
and depends on the direction. According to Ref. [6], ¢
is equal to about 0.72 and 0.44 for longitudinal and
circumferential directions, respectively.

3. Finite-element analysis

In this study, in order to solve the equilibrium equa-
tions obtained from the thick-wall theory, the well-
known Finite-Element Method (FEM) is employed.
In this method, the domain of the problem, which,
hereafter, is considered the computational domain, is
divided into a finite number of parts called “elements”.
This key step is called the domain discretization.
Figure 1 shows a typical grid in the aneurismal wall.
Taking advantage of axisymmetry in geometry, here,
nine-node quadratic rectangular plane elements are
used for the domain discretization. Having discretized
the computational domain, the following steps are
performed.

a) Applying the finite-element approximations.
In order to discretize the continuous Eqs. (1) and (2),
an approximate method is needed. In this work,
the Galerkin’s weighted residual method is applied
to the governing equations to obtain the element
equations.

In the element equations, the stiffness matrix
relates the amplitude of the nodal forces to that of the
displacements. The shape of the finite element used
in the present work is shown in Figure 2. As Figure 2
shows, there are nine nodes in each element. The radial
and axial components of the displacement vector are
approximated by the following equations:

9
u(z,r) = qujuj, (18)

v(z,r) = Z¢jz/j, (19)

Figure 2. The nine-node finite-element.
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in which, u is the axial and v is the radial component
of the displacement vector. The shape functions, ¢;,
are defined by the following equations:

b1 = 3601 - 1~ ), (20
6= —3En(1+ (1 — ), (21)
65 = JEn(L+ 1+ ), (22)
6= — €01 - (1 + 1) (23
65 = —5E1 = )1~ 7). (24
65 = —n(1 = €)(1 -, (25)
b = SE0+ O —7) (26)
b5 = a1 = €)1+ ), (21)
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Using the shape functions as the weight functions,
integration of the governing equations over the element
area gives the following equations:

S (Al + AL vy) = [, (29)

J

> = (A% + AL v;) = fri, (30)

J

where f.; and f,; are nodal forces in z and r directions,
respectively, and A’s are the coefficients resulting from
integration of the equilibrium equations over the area
of a typical element. As a typical coeflicient, A¥" is
defined by the following equation:

wu _ 091 0¢; / 091 0¢;
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or (31)

in this step, for each element, a system of equations is
generated.

b) Assemblage of the element equations. At this
stage, the element equations are added up to address
the connection between elements in a global system.
Generation of a global system of equations is the result
of this step.

c) Enforcing the boundary conditions. Blood
pressure imposed onto the inner wall, axial tension
existing at the ends, and tethering stress resulting from
surrounding tissues imposed onto the outer wall are
considered in this step. Formulation of these boundary
conditions can be summarized in the following equa-
tions:

o,=—-P at r=r,, (32)
0. =0, at 2z ==z,, (33)
or=—K,v at r=r,. (34)

d) Solving the system of equations in an itera-
tive aspect due to non-linearity of the govern-
ing equations. A band-width Gaussian-elimination
method is used to solve the generated system of equa-
tions in each iteration. Details of the finite-element
method can be found in any relevant textbook, such
as Zienkiewics and Cheung [26], Reddy [27], Rao [28]
and Comini [29]. For solving the system of nonlinear
discretized governing equations, some initial values are
assumed for the elastic moduli in the first iteration.
After doing the first iteration and calculating the
stretch ratios, the elastic moduli are modified using
Egs. (14) to (16) and calculation of the displacements
is repeated until the convergence occurs.

4. Validation of the method

The formulations of the problem have been imple-
mented in a computer code to solve the generated
system of equations. The computer code has been
compiled and run using Lahey Fortran compiler version
5.7. First, the code has been run to check the validation
of the method. To do so, a simple case, in which the
thickness and radius are uniform, was considered. The
numerical results have been compared with the analyt-
ical solution obtained by solving a simple differential
equation and applying boundary conditions. In fact,
this case is a thick-wall cylinder and has the following
analytical solution:

C
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C
oo =C1 + 722 (36)
in which:
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Figure 3. Numerical error versus number of elements.

in Egs. (37) and (38), K, is the tethering coefficient and
it is assumed that the outer wall is acted upon by radial
tethering stress. In Figure 3, the numerical results
are compared with the analytical solution. Figure 3
shows that the numerical error in calculation of radial
stress declines from 6.32% to about 0.06%, while the
numerical error in calculation of circumferential stress
decreases from 1.09% to about 0.01, as the number of
elements increases from 100 to 1000. The percentage
of relative errors, shown in Figure 3, was calculated
according to the following formula:

%Err — |0A11a. - JNu111.| (39)
. O Ana. )

5. Results

After validation of the method, the effects of fac-
tors such as aneurysm radius, blood pressure, central
aneurismal wall thickness and longitudinal tension on
stress distribution in the aneurismal wall have been
studied for both uniform and non-uniform stiffness.
The longitudinal and circumferential stress distri-
butions on the inner and outer surfaces for a typical
case are plotted in Figure 4. It is necessary to point
out that the thick-wall theory calculates the stress
distribution along the aneurysm length as well as across
the wall thickness, while simpler methods, such as the
membrane theory, calculate the stress distribution only
along the aneurysm length, by considering a meridional
line in the middle of the thickness. In this figure,
the inner and outer stresses are compared. Figure 4
implies that the stress varies significantly across the
wall thickness. This figure indicates that the maximum
longitudinal stress occurs at the aneurysm center on
the inner surface, while on the outer surface, the
longitudinal stress is negative, i.e. compressive at this
section. Therefore, the simpler methods reduce this

stress in this cross section by averaging across the
thickness.

Figure 4 also indicates that the cross section of
maximum circumferential stress on the inner surface
differs from that on the outer surface. Therefore,
the simpler methods reduce the predicted maximum
circumferential stress by averaging across the thickness.
The location of the maximum longitudinal stress is on
the aneurysm center and occurs on the inner surface,
while the location of the maximum circumferential
stress is in the vicinity of the aneurysm center and
occurs both on the inner and outer surfaces at different
locations. This difference is not only for non-uniform
thickness but also for uniform thickness.

Figure 5 portrays the same results for t,, =
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Figure 4. Stress distribution along the aneurysm length
for t,,, = 0.1 cm.
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Figure 5. Stress distribution along the aneurysm length
for t,, = 0.2 cm.
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Figure 6. Maximum longitudinal and circumferential
stresses versus blood pressure for uniform and
non-uniform stiffness.

0.2 cm, which is equal to the (i.e. thickness ratio
equal to 1), while Figure 4 is plotted for ¢,,/t, = 0.5
(i.e. thickness ratio equal to 0.5). Therefore, regard-
less of the aneurysm wall thickness ratio, maximum
longitudinal stress occurs in the aneurysm center and
maximum circumferential stress occurs in the vicinity
of the aneurysm center. In addition, Figures 4 and 5
show that maximum circumferential stress is less than
maximum longitudinal stress for this range of thickness
ratio.

Figure 6 shows the variation of maximum longitu-
dinal and circumferential stresses versus blood pressure
for both uniform and non-uniform stiffness. This figure
indicates that there is no significant difference between
uniform and non-uniform stiffness. In addition, the
maximum longitudinal stresses increases linearly from
146 N/cm? to about 220 N/cm? as the blood pressure
increases from 1.6 N/cm? (120 mmHg) to 2.4 N/cm?
(180 mmHg). This is despite the fact that the
constitutive relation is non-linear. This result might
be due to the fact that the stress does not depend on
the elastic modulus in simple cases. For example, in
simple tension, the stress equals the ratio of the force
to the sectional area and does not depend on the elastic
modulus.

Figures 7, 8 and 9 show the variation of maxi-
mum longitudinal and circumferential stresses versus
aneurysm radius, aneurysm wall thickness and axial
tension, respectively, for both uniform and non-uniform
stiffness. These figures also indicate that there is no
significant difference between uniform and non-uniform
stiffness, except for high axial tension that may not
occur in practical cases.

Figure 7 demonstrates that maximum longi-
tudinal stress increases from 12 N/cm? to about

200
180 Lgng‘ ur}iform
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Figure 7. Maximum longitudinal and circumferential
stresses versus aneurysm radius for uniform and
non-uniform stiffness.
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Figure 8. Maximum longitudinal and circumferential
stresses versus aneurysm wall thickness for uniform and
non-uniform stiffness.

168 N/cm?, while maximum circumferential stress
increases from 21 N/cm? to about 37 N/cm? as the
aneurysm radius increases from 1.0 cm to 2.5 cm.

Figure 8 shows that maximum longitudinal stress
declines from 183 N/cm? to about 106 N/cm?,
while maximum circumferential stress decreases from
40 N/cm? to about 35 N/cm? as the aneurysm wall
thickness increases from 0.1 cm to 0.2 cm.

Figure 9 indicates that maximum longitudinal
stress rises from 177 N/cm? to about 218 N/cm?,
while maximum circumferential stress increases from
40 N/cm? to about 78 N/cm? according to non-uniform
stiffness and 49 N/cm? according to uniform stiffness,
as the aneurysm axial tension increases from 4 N/cm?
to about 12 N/cm?.
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Figure 9. Maximum longitudinal and circumferential
stresses versus axial tension for uniform and non-uniform
stiffness.

6. Conclusions

In this study, the thick-wall theory is used to find the
effect of non-uniform stiffness on stress distribution
and maximum stress generated in the aneurysm wall.
The full equilibrium equations are solved by the FEM
with nine-node quadratic rectangular plane elements.
The results of the present work demonstrate that
stress distribution and, consequently, maximum stress
are not only affected by aneurysm size, but are also
significantly affected by factors such as arterial wall
thickness and blood pressure, as well as longitudi-
nal tension. Stress distribution is not significantly
affected by the uniformity or non-uniformity of the
wall stiffness. The results obtained from this study
show that the maximum stress generated in the wall is
longitudinal stress and occurs on the inner surface. In
such cases, maximum longitudinal stress on the inner
surface is much more than that on the outer surface.

Nomenclature

E FElastic modulus

Ey Elastic modulus at the aneurysm
center

P Blood pressure

o Longitudinal stress

L) Circumferential stress

r Radial coordinate

T Inner radius at the inlet section

T'm Inner radius at the aneurysm center

to Wall thickness at the inlet section

tm Wall thickness at the aneurysm center

z Longitudinal coordinate
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