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Abstract. A linear analysis of the temporal instability of a viscoelastic liquid jet
with axisymmetric and asymmetric disturbances moving in an in�nite viscous uid is
investigated. The cause of the instability in the liquid jet is Kelvin-Helmholtz instability,
due to the velocity di�erence and capillary instability, due to surface tension. The dispersion
relation for viscoelastic potential ow is cubic in nature. The stability analysis shows that
viscoelastic liquid jets are less unstable than inviscid jets and more unstable than viscous
liquid jets for both axisymmetric and asymmetric disturbances. Stability analysis has been
undertaken in terms of various parameters, such as Weber number, Reynolds number,
Deborah number etc.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Breakup of liquid jet into drops is a natural phe-
nomenon. It has many practical applications such
as in gas turbine engines, oil burners and lubrication
etc. Since, in many of these processes, non-Newtonian
liquids may be involved, it is of interest and importance
to understand the mechanisms of instability of such
liquids.

Capillary instability arises when a liquid cylin-
der in an in�nite uid collapses under the action of
capillary forces due to surface tension. The capillary
instability of a liquid jet of radius R under the action
of capillary force was studied by Rayleigh [1]. The
analysis of Rayleigh was based on potential ow of
an inviscid liquid, neglecting the e�ect of outside
uid. He observed that the jet is unstable to all
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axisymmetric disturbances having wavelengths greater
than 2�R. Chandrasekhar [2] extended this problem
to nonaxisymmetric disturbances and observed that
liquid jet is always stable for non-axisymmetric modes.
He also observed that if the uid is bounded by two
cylindrical interfaces with radii R1; R2(R1 < R2); then
the uid is stable if both are kR1, kR2 (k is the wave
number) are greater than unity, and thus, Rayleigh's
criterion for a single interface is still true for two
cylindrical interfaces. Rayleigh [3] again established
the result for viscous e�ect, neglecting surrounding
uids. The e�ect of viscosity, with the assumption that
at high viscosity inertia is neglected, the wavelength for
maximum growth rate is very large, strictly in�nity.
Weber [4] made another extension to Rayleigh's theory
by considering the e�ect of viscosity and surrounding
air on the stability of the columnar jet.

The linear stability analysis of the capillary insta-
bility of a viscoelastic uid was done by Middleman [5]
and Goldin et al. [6], and they observed that growth
rates are larger for viscoelastic uid. Later, Chang
et al. [7] and Bous�eld et al. [8] investigated the
capillary instability for viscoelastic uids. Brenn et
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al. [9] studied the linear temporal instability of an
axisymmetrical non-Newtonian liquid jet. Liu and
Liu [10] undertook the linear analysis of the three-
dimensional instability of non-Newtonian liquid jets.
The instability of a viscoelastic liquid jet with axisym-
metric and asymmetric disturbances has been studied
by Liu and Liu [11]. They concluded that at small
Weber number, axisymmetric disturbance dominates
the instability of viscoelastic jets.

In Viscous Potential Flow (VPF) theory, the
viscous term in the Navier-stokes equation is identically
zero when the vorticity is zero, but the viscous stresses
are not zero [12]. Tangential stresses are not considered
in VPF theory and viscosity enters through normal
stress balance. In this theory, the no-slip condition at
the boundary is not enforced, so that two dimensional
solutions satisfy three dimensional solutions. Kelvin-
Helmholtz instability occurs when there is a relative
motion between the uid layers of di�erent physical
parameters. The VPF analysis of Kelvin-Helmholtz
instability was studied by Funada and Joseph [13].
They have observed that the stability criterion for
viscous potential ow is given by the critical value of
relative velocity. The instability of the plane interface
separating two uids having di�erent densities, when
the lighter uid is accelerated toward the heavier
uid, is called Rayleigh-Taylor instability. Joseph et
al. [14] have studied VPF analysis of Rayleigh-Taylor
instability. Joseph et al. [15] have done Rayleigh-
Taylor instability of viscoelastic drops at high Weber
numbers and concluded that the most unstable wave is
a sensitive function of the retardation time, �2, which
�ts experiments when �2=�1 = O(10�3). The viscous
potential ow analysis of capillary instability has been
studied by Funada and Joseph [16]. They observed
that viscous potential ow is a better approximation of
the exact solution than the inviscid model. Funada and
Joseph [17] extended their study of capillary instability
to the viscoelastic uids of Maxwell type and observed
that the growth rates are larger for viscoelastic uids
than for the equivalent Newtonian uids. The stability
of liquid jet into incompressible gases and liquids was
computed by Funada et al. [18]. They consider both
Kelvin-Helmholtz and capillary instabilities and ob-
served that Kelvin-Helmholtz instability cannot occur
in a vacuum but capillary instability.

The objective of the present work is to investi-
gate the mechanism of the temporal instability of a
viscoelastic liquid jet moving in an in�nite viscous uid
with both axisymmetric and asymmetric disturbances
using potential ow theory. The inside uid is taken
as the viscoelastic uid of Oldroyd-B type and the
outside uid as a viscous uid. Liquid jet instability
is associated with Kelvin-Helmholtz instability, as well
as capillary instability, and, therefore, we consider
both instabilities in the present analysis. The dis-

Figure 1. The perturbed jet. The coordinate system is
�xed to moving jet.

persion relation for the viscoelastic potential ow is
derived, and the e�ect of various parameters on the
instability behaviour is examined. The variation of
growth rates with Deborah number, which depends
linearly on relaxation time, is observed. The dispersion
relation of Funada et al. [18] has been reduced by our
relation. A number of conclusions have been made on
the instability behaviour of viscoelastic jets for both
asymmetric and axisymmetric disturbances.

2. Problem formulation

Consider a cylindrical jet of viscoelastic uid, with
density �(1), viscosity �(1) and mean radius R, moving
with a uniform axial velocity, U , in an in�nite viscous
uid of density, �(2), viscosity, �(2), with a cylindrical
reference frame (r; �; z), as seen in Figure 1. The uid
cylinder is lying in the region of 0 � r < R + �
and �1 < z < 1 where � = �(�; z; t) is the
interface displacement. Surface tension at the interface
is taken as. Both the uid ows are assumed to be
incompressible and irrotational.

Viscoelastic uids are basically non-Newtonian
uids that can exhibit a response that resembles
that of an elastic solid under some circumstances, or
the response of a viscous liquid under others. The
viscoelastic uid considered in this analysis is of the
Oldroyd-B type [17], because it has a feature that
combines the e�ects of relaxation and nonlinearity,
with a relative case of execution, better than any other
viscoelastic uid. The constitutive equation of the
linear viscoelastic uid of Oldroyed-B type is given by:�

1 + �1
@
@t

�
� = 2�(1)

�
1 + �2

@
@t

�
; (1)

where � is the viscous stress tensor, �(1) is the viscosity,
 is the strain tensor and �1 and �2 are the relaxation
and retardation times, respectively.

Small disturbances are imposed onto the equilib-
rium state. After disturbance, the interface is given
by:

F (r; �; z; t) = r �R� �(�; z; t) = 0; (2)

where � is the perturbation in the radius of the interface
from the equilibrium value, R, and for which the unit
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outward normal is given by:

n =
�

1 +
�
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�2��1:2�
er � 1

r
@�
@�
e�

� @�
@z
ez
�
; (3)

where er, e� and ez, are unit vectors along the r; � and
z directions, respectively.

The velocity is expressed as the gradient of a
potential function and the potential functions satisfy
the Laplace equation, as a consequence of the incom-
pressibility constraint, i.e:

r2�(j) = 0 (j = 1; 2); (4)

where:

r2 =
@2

@r2 +
1
r
@
@r

+
1
r2

@2

@�2 +
@2

@z2 :

As per the kinematic condition, every particle on the
interface will remain on the interface. Thus, we get the
following boundary conditions:

@�
@t

+ U
@�
@z

=
@�(1)

@r
at r = R; (5)

@�
@t

=
@�(2)

@r
at r = R: (6)

Using a normal mode technique to solve Eq. (4), we
can get:

�(j) =[A(j)In(kr) +B(j)Kn(kr)] exp(ikz

+ in� � i!t) + c:c:; (7)

where In(kr) and Kn(kr) Bessel's function of �rst and
second kind of order n, respectively, and c:c: denotes
the complex conjugate of the preceding term.

For viscoelastic uid (inside uid), the potential
function, �, is �nite at r ! 0, so B(1) = 0 and for
viscous uid (outside uid), � is �nite at r ! 1, so,
A(2) = 0. Hence:

�(1) = A(1)In(kr) exp(ikz + in� � i!t) + c:c: ; (8)

�(2) = B(2)Kn(kr) exp(ikz + in� � i!t) + c:c: (9)

The interface elevation is given by:

� = C exp(ikz + in� � i!t) + c:c:; (10)

where C denotes complex constant, k is the real wave
number and ! represents the growth rate.

Using the kinematic conditions (Eqs. (5) and (6)),
we get the following solution for �(1) and �(2):

�(1) =(ikU + i!)CE(1)(kr) exp(ikz + in�

� i!t) + c:c:; (11)

�(2) = �i!CE(2)(kr) exp(ikz + in� � i!t) + c:c:;
(12)

where:

E(1)(kr) =
In(kr)
I 0n(kR)

; E(2)(kr) =
Kn(kr)
K 0n(kR)

:

3. Dispersion relation

The dynamical condition, wherein the normal stresses
should be continuous across the interface, is given by:

p1 � p2 � 2�(1) @2�(1)

@r2 + 2�(2) @2�(2)

@r2 =

� �
�
@2�
@z2 +

1
r2
@2�
@�2 +

�
R2

�
; (13)

where pj(j = 1; 2) is the pressure for the inside and
outside uids, respectively, and � represents the surface
tension. Using Bernoulli's equation for irrotational
pressure and linearizing it, we get:

��(1)(
@�(1)

@t
+ U

@�(1)

@z
) + �(2)(

@�(2)

@t
)

� 2�(1) @2�(1)
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@r2

= ��
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@2�
@z2 +

1
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@2�
@�2 +

�
R2

�
: (14)

Substituting the values of �; �(1) and �(2) in Eq. (14),
we get the relation:

�(1)(! � kU)2E(1)(kR)� !2�(2)E(2)(kR)

� 2i�(1)k2(kU � !)F (1)(kR)

� 2i�(2)k2!F (2)(kR) = �
�
k2 +

n2 � 1
R2

�
;
(15)

where:

F (1)(kR) =
I 00n(kR)
I 0n(kR)

�
�

1 +
n2

k2R2

�
E(1)(kR)� 1

kR
;

F (2)(kR) =
K 00n(kR)
K 0n(kR)

�
�

1 +
n2

k2R2

�
E(2)(kR)� 1

kR
:

Since the inside uid is the viscoelastic uid of the
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Olroyed-B type, the viscosity, �(1), is modi�ed as
1�i�2!
1�i�1!�

(1). Hence, the dispersion relation for the VPF
analysis is given by:

a3!3 + (a2 + ib2)!2 + (a1 + ib1)! + (a0 + ib0) = 0;
(16)

where:

a3 = �1(�(1)E(1)(kR)� �(2)E(2)(kR));

a2 = �2k�1U�(1)E(1)(kR);

b2 =(�(1)E(1)(kR)� �(2)E(2)(kR))

+ 2k2(�2�(1)F (1)(kR)� �1�(2)F (2)(kR));

a1 =�1

�
k2U2�(1)E(1)(kR)� �k(k2 +

n2 � 1
R2 )

�
� 2k2(�(1)F (1)(kR)� �(2)F (2)(kR));

b1 = �2kU�(1)E(1)(kR)� 2k3U�2�(1)F (1)(kR);

a0 = 2k3U�(1)F (1)(kR);

b0 = k2U2�(1)E(1)(kR)� �k(k2 +
n2 � 1
R2 ):

In case of axisymmetric disturbances (n = 0), the
dispersion relation becomes:

[�1(�(1)�1 + �(2)�2)]!3 + [�2k�1U�(1)�1

+ i(�(1)�1 + �(2)�2 + 2k2(�2�(1)�1

+ �1�(2)�2))]!2 +
�
�1

�
k2U2�(1)�1

� �k(k2 � 1
R2 )

�
� 2k2(�(1)�1 + �(2)�2)

+ i(�2kU�(1)�1 � 2k3U�2�(1)�1)]!

+
�
2k3U�(1)�1 + i

�
b0 = k2U2�(1)�1

� �k(k2 � 1
R2 )

��
= 0; (17)

where:

�1 =
I0(kR)
I1(kR)

; �1 = �1 � 1
kR

;

�2 =
K0(kR)
K1(kR)

; �1 = �1 � 1
kR

:

If both uids are viscous, i.e. �1 = �2, the dispersion
relation (17) reduces the same expression as obtained
by Funada et al. [18]. If we put U = 0 and ! = i!
in Eq. (17), the dispersion relation reduces to the dis-
persion relation, which is the dimensional form of the
dispersion relation obtained by Funada and Joseph [17].
If we put �1 = �2, again, the dispersion relation reduces
to the dimensional form of the same dispersion relation,
as obtained by Funada and Joseph [16].

4. Non-dimensional form

Consider the non-dimensional variables:

D = 2R; �1 =
�1V
D

; �2 =
�2V
D

;

!̂ =
!D
V
; �̂ =

�(2)

�(1) ; �̂ =
�(2)

�(1) ;

R̂ =
R
D

=
1
2
; k̂ = kD; Re =

�(1)

�(1) ;

W =
�(1)DV 2

�
; Û =

U
V
;

where Re denotes the Reynolds number, which is
de�ned as the ratio of inertia forces to viscous forces.
The ratio of the inertia force to the surface tension force
is known as the Weber number denoted by W, and �1,
�2 are known as Deborah number. �̂ and �̂ are the
density and viscosity ratios, respectively.

The dimensionless form of the dispersion relation
for the VPF analysis (16) is given by:

â3!̂3 + (â2 + ib̂2)!̂2 + (â1 + ib̂1)!̂ + (â0 + ib̂0) = 0;
(18)

where:
â3 = �1(E(1)(k̂=2)� �̂E(2)(k̂=2));

â2 = �2k̂Û�1E(1)(k̂=2);

b̂2 =(E(1)(k̂=2)� �̂E(2)(k̂=2)) +
2k̂2

Re
(�2F (1)(k̂=2)

� �1�̂F (2)(k̂=2));

â1 =�1

�
k̂2Û2E(1)(k̂=2)�W�1k̂(k̂2 + 4(n2 � 1))

�
� 2k̂2

Re

�
F (1)(k̂=2)� �̂F (2)(k̂=2)

�
;

b̂1 = �2k̂ÛE(1)(k̂=2)� �2
2k̂3

Re
ÛF (1)(k̂=2);

â0 =
2k̂3

Re
ÛF (1)(k̂=2);
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b̂0 = k̂2Û2E(1)(k̂=2)�W�1k̂(k̂2 + 4(n2 � 1)):

For axisymmetric disturbances, i.e for n = 0:

A0(k̂=2) =
I0(k̂=2)
I1(k̂=2)

= �1;

B0(k̂=2) = �K0(k̂=2)
K1(k̂=2)

= ��a;

At(k̂=2) =
I 000 (k̂=2)
I 00(k̂=2)

= �1 � 2
k̂

= �l;

Bt(k̂=2) =
K 000 (k̂=2)
K 00(k̂=2)

= �
�
�a +

2
k̂

�
= ��a:

Hence, the dispersion relation for the axisymmetric
case is:

[�1(�1 + �̂�a)]!̂3 +
�
� 2k̂Û�1�1 + i

�
(�l + �̂�a)

+
2k̂2

Re
(�2�l + �1�̂�a)

��
!̂2 +

�
�1(k̂2Û2�l

�W�1k̂(k̂2 � 4))
�
� 2k2

Re
(�l + �̂�a)

� 2ik̂Û�l � i2k̂
3

Re
�2Û�l

�
!̂ +

�
2k3

Re
Û�1

+ i(k̂2Û2�l �W�1k̂(k̂2 � 4)) +
�

= 0: (19)

If we put Deborah number �1 = �2 and Û = 1 in
Eq. (19), the dispersion relation becomes:

(�l+�̂�a)!̂2 +
�
� 2k̂�l + i

2k̂2

Re
(�l + �̂�a)

�
!̂ +

�
k̂2�l � i2k

3

Re
�l �W�1k̂(k̂2 � 4k̂)

�
= 0:

(20)

This is the same dispersion relation as obtained by
Funada et al. [18]. For inviscid liquid jet, i.e Re! 1
and �̂ = 0, the dispersion relation for the inviscid jet is
given by:

(�l+�̂�a)!̂2+[�2k̂�l]!̂+[k̂2�l�W�1k̂(k̂2�4)]=0:
(21)

If there is no surface tension at the interface, i.e. � =
0 and the jet is inviscid, so W! 1 and Re ! 1,
the dispersion relation for an axisymmetric jet can be

written as:

[�1(�l + �̂�a)]!̂3 + [�2k̂Û�1�l

+ i(�l + �̂�a)]!̂2[�1k̂2Û2�l � 2ik̂Û�l]!̂

+ [i(k̂2Û2�l)] = 0: (22)

5. Results and discussions

The dispersion relation for viscoelastic jets is cubic
in nature and instability occurs due to the positive
values of the disturbance growth rate (i.e. !I > 0).
If !I is negative, the perturbation decays with time,
while, if !I > 0, the system is unstable, as the
perturbation grows exponentially with time. Case
!I = 0 is a marginal stability case. The viscoelastic
uid properties and the parameters used are given in
Table 1 [17].

Funada et al. [18] have pointed out that the cause
of the instability in the liquid jet is Kelvin-Helmholtz
instability due to the velocity di�erence, and capillary
instability due to surface tension. For Weber number
W ! 1, the e�ect of surface tension vanishes, so,
the instability in the liquid jet becomes pure Kelvin-
Helmholtz instability. If the Weber number is W =
0, the instability in the liquid jet is driven by pure
capillary instability.

In Figures 2-8, the growth rate curves have been
plotted for the axisymmetric disturbances. Figure 2
shows the comparison between the maximum growth
rate curves for inviscid liquid jet, viscous liquid jet
and the cylindrical jet of viscoelastic uid. Here, the
viscoelastic uid of Maxwell type (2% Poly Acrylic
Acid, PAA) has been taken. Maximum growth rate
curves plotted here for viscous and inviscid jets are

Table 1. Viscoelastic uid properties and parameters.

2% PAA 2% PO
�(1) (gcm�3) 0.99 0.99
�(1)(P ) 96.0 350.0
�(2) (gcm�3) 1:947� 10�3 1:776� 10�3

�(2)(P ) 1:8� 10�4 1:8� 10�4

�(dyn cm�1) 45.0 63.0
�1 (s) 0.039 0.21
�2 (s) 0.0 0.0
V (cm s�1) 0.4688 0.18
Re 206.8466 1964.10
W 206.8246 1964.10
�̂ 1:967� 10�3 1:794� 10�3

�̂ 1:875� 10�6 5:143� 10�7

�1 0.01828 0.0378
�2 0.0 0.0
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Figure 2. The maximum growth rates !̂Im versus Weber
number, W, for inviscid jet, viscous jet and viscoelastic jet
(2%PAA) with Û = 1 and Re = 100.

Figure 3. The maximum growth rates !̂Im versus Weber
number, W, for inviscid jet, viscous jet and viscoelastic jet
(2%PO) with Û = 1 and Re= 100.

Figure 4. Comparison between the growth rates curves
!̂I vs. k̂ for viscoelastic jet (2%PAA) and capillary
instability.

the same as those obtained by Funada et al. [18]. A
viscoelastic liquid jet has a larger growth rate compared
to a viscous liquid jet and a smaller growth rate
compared to an inviscid liquid jet. The uid elasticity
enhances the growth of instabilities, whereas viscous
e�ects result in a more stable jet. It shows that

Figure 5. The growth rates curves !̂I vs. k̂ for
viscoelastic jet (2%PAA) for di�erent values of Reynolds
number with Û = 1 and W = 100.

Figure 6. The growth rates curves !̂I vs. k̂ for
viscoelastic jet (2%PAA) for di�erent values of Weber
number with Û = 1 and Re= 100.

Figure 7. The growth rates curves !̂I vs. k̂ for
viscoelastic jet (2%PAA) for di�erent values of Deborah
number with Û = 1; Re = 100 and W = 100.

viscoelastic jets are more unstable than viscous jets
and more stable than inviscid liquid jets. In Figure 3,
the maximum growth rate curves for the viscoelastic
potential ow of cylindrical jets, the viscous potential
ow of liquid and inviscid jets have been compared. In
this case, the viscoelastic uid of Maxwell type (2%
Propylene Oxide, PO) has been taken. The result is
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Table 2. Comparison of maximum growth rates for di�erent values of W when Re = 100 and Û = 1.

W Inviscid
liquid jet

Viscous
liquid jet

Viscoelastic liquid
jet (2% PAA)

Viscoelastic liquid
jet (2% PO)

1 0.9712 0.8394 0.9430 0.9435
5 0.4348 0.3236 0.4075 0.4077
10 0.3078 0.2093 0.2813 0.2814
50 0.1391 0.0747 0.1152 0.1151
100 0.0996 0.0489 0.0773 0.0771
500 0.0496 0.0204 0.0304 0.0300
1000 0.0406 0.0152 0.0214 0.0208
5000 0.0650 0.0149 0.0209 0.0185
10000 0.1596 0.0195 0.0272 0.0242
50000 0.7981 0.0288 0.0391 0.0355
100000 1.5962 0.0310 0.0414 0.0378
500000 7.9808 0.0328 0.0433 0.0397
1000000 15.9617 0.0330 0.0435 0.0400

Table 3. Comparison of maximum growth rates for di�erent values of Re when and Û = 1.

Re Inviscid
liquid jet

Viscous
liquid jet

Viscoelastic liquid
jet (2% PAA)

Viscoelastic liquid
jet (2% PO)

1 0.3078 0.0282 0.0300 0.0300
10 0.3078 0.1114 0.1586 0.1588
100 0.3078 0.2093 0.2813 0.2814
1000 0.3078 0.2933 0.3054 0.3053
10000 0.3078 0.3063 0.3080 0.3079
100000 0.3078 0.3077 0.3083 0.3082

Figure 8. The growth rates curves !̂I vs. k̂ for
viscoelastic jet (2%PAA) for di�erent values of density
ratio with Û = 1;Re = 100 and W = 100.

similar to the previous case, although the growth rate
curve is di�erent.

The peak values of maximum growth rates for
inviscid liquid jet, viscous liquid jet, cylindrical jet
of viscoelastic uid (2% PAA) and cylindrical jet of
viscoelastic uid (2% PO), for di�erent values of Weber

number, are given in Table 2. From Table 2 it is
noticed that the peak values for viscoelastic jets (both
2% PAA and 2% PO) are larger in comparison with the
peak values of viscous jets and smaller with the peak
values of growth rates in inviscid jets. In Table 3, we
have compared the maximum growth rates for inviscid
jet, viscous jet and viscoelastic jets (both 2%PAA and
2%PO) for di�erent values of Reynolds number, and
observed that Reynolds number has a destabilizing
e�ect on the stability of both viscous and viscoelastic
jets. Funada and Joseph [17] have done the viscoelastic
potential ow analysis of capillary instability. They
concluded that the capillary collapse of viscoelastic
threads is controlled by two parameters, a Reynolds
number and a Deborah number. The density and
viscosity ratios are small and only have a small e�ect.
In Figure 4, a comparison between growth rate curves
for the capillary instability of viscoelastic uid and
viscoelastic jets has been made. At small wave number,
the growth rate for capillary instability is more than
the growth rate for a viscoelastic jet, and, at large
wave number, the growth rate for capillary instability
is less than the growth rate for a viscoelastic jet.
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This indicates that at small wave number, capillary
instability dominates, while at large wave number,
Kelvin-Helmholtz instability dominates.

The evolution of the growth rate curves for dif-
ferent values of Reynolds number is shown in Figure 5.
The growth rate is increasing on increasing the value
of Reynolds number. Through increasing Reynolds
number, the jet viscosity decreases and this clearly
shows that jet viscosity can dampen the instability
of viscoelastic liquid jets. Also, if the jet velocity
increases, the inertia force increases, resulting in in-
creases in the Reynolds number. Therefore, it is
concluded that jet velocity inuences the instability
behaviour. Figure 6 shows that as the Weber number
increases, the growth rate also increases for the same
value of Reynolds number. The Weber number is
inversely proportional to the jet surface tension. As
jet surface tension decreases, the growth of the distur-
bances increases. Therefore, it is concluded that the
e�ect of jet surface tension resists the occurrence and
development of instability.

In Figure 7, the growth rate curves for di�erent
values of Deborah number, �1, are illustrated. It has
been observed that the Deborah number enhances the
wave growth rate of disturbances on viscoelastic liquid
jets. Hence, it is concluded that the relaxation time
of a viscoelastic uid has a destabilizing e�ect on the
stability of the jet. Variations of the growth rate curves
for the di�erent values of density ratio have been shown
in Figure 8. It indicates that upon increasing the
density of outside uid, the growth rate increases. It
clearly shows that denser outside uid may destabilize
the viscoelastic jets.

Figure 9 compares the growth rate curves for
viscoelastic liquid jets for axisymmetric and asymmet-
ric disturbances for di�erent values of Weber number.
It has been noticed that at low Weber number, the
growth rate curve for asymmetric disturbances is lower
in comparison with the curves obtained for axisym-
metric disturbances. This concludes that asymmetric
disturbances are more stable than axisymmetric dis-
turbances. As Weber number increases, the di�erence
between growth rates for axisymmetric and asymmetric
disturbances decreases, but, still, asymmetric distur-
bances are more stable.

6. Conclusion

In the present paper, we have studied the temporal
instability behaviour of a viscoelastic cylindrical jet
with both axisymmetric and asymmetric disturbances
in an in�nite viscous uid, using the concept of
potential ow theory. A cubic dispersion relation
has been derived and solved. The e�ect of various
physical parameters such as Weber number, Reynolds
number and Deborah number etc. has been depicted

Figure 9. Comparison of maximum growth rates !̂Im vs.
W for axisymmetric disturbances and asymmetric
disturbances with Û = 1 and Re = 100: (a) Viscoelastic
Jet (2%PAA); and (b) viscoelastic Jet (2%PO).

through various �gures. A comparison between inviscid
liquid jet, viscous jet and viscoelastic potential ow
analysis for cylindrical jets has been made. It has been
observed that viscoelastic jets are stable in comparison
to inviscid jets, but are unstable in comparison to
viscous jets. Weber number, Reynolds number and
Deborah number are key measures that a�ect the
stability of the viscoelastic jets. Axisymmetric jets are
more unstable than asymmetric viscoelastic jets.
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Nomenclature

�(1) Viscosity of viscoelastic jet

�(1) Density of viscoelastic jet

�(2) Viscosity of outside viscous uid

�(2) Density of outside viscous uid
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U Velocity of viscoelastic jet
R Initial radius of viscoelastic jet
�1 Relaxation time of viscoelastic jet
�2 Retardation time of viscoelastic jet
� Surface tension at the interface
� Perturbation from equilibrium position
n Unit outward normal to the interface
�(r; �; z; t) Velocity potential
k Wave number
! Growth rate
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