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Abstract. Conservation of mass, momentum, energy and state equations are recognized
as basic mathematical models in analysis of the acoustic behavior of cavitation, as well
as supercavitation. Also, it is known that the order of acoustic e�ects is not as high as
that of hydrodynamics. Therefore, in this paper, initially, for comparing di�erent terms of
equations, using scale analysis, conservation equations are converted into dimensionless
ones. Then, by comparing all conditions, coupled with weighting terms available in
those equations, groups of parameters most appropriate with the hydrodynamics and
hydroacoustics of the cavitating ow, are selected. By regarding acoustics as lower
order phenomena, compared to the hydrodynamics of ow, and simultaneously using the
perturbation method, two equations containing leading and �rst orders and di�erent terms
can be attained. Obtained results indicate that leading order equations represent the
hydrodynamics of the cavitating ow, and �rst order equations indicate the acoustics of
cavitation or supercavitation. Acoustic equations of the present study contain terms related
to uid viscosity, density and pressure changes, and background ow velocity. As acoustic
equations are coupled with leading order equations, in order to �nd the noise of cavitation,
equations of uid ow for compressible ow should be resolved.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Evaporation of liquid due to pressure decrease down to
less than the pressure of the saturated vapor of that
liquid, is called cavitation. Cavitation occurs when
the local pressure of a liquid uid suddenly reaches
below a critical value. This critical value is related
to the pressure of the vapor of the liquid uid. By
placing uid in this area, small bubbles made of vapor
and other gases begin to form. These bubbles move
with the current of uid and when they reach areas
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with higher pressure, will dissolve and dissipate. In
general, there are two methods to realize cavitation
phenomenon. First is visual observation, and second is
acoustic observation [1]. As a result, noise generated by
cavitation, although recognized as an undesired e�ect,
can be viewed as a means for recognition of cavitation
occurrence. Noise is a mechanical perturbation that
propagates in an elastic region. In uids, noise is
generated when there is a relative motion between two
uids and/or between a uid and a surface. Noise is
always regarded as a sound or an undesired sound that
has an e�ect on the normal performance of a system.
Noise can appear in a uid ow due to turbulence,
because of chaos in the uid or on the basis of cavitation
occurrence. Turbulence and vertex usually lead to low
frequency pressure uctuations, whereas, noise caused
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by cavitation typically has an acoustic frequency range
from 1 to 100 kHz [2]. Brennen's investigation [3] indi-
cates that bursting bubbles at high frequencies occurs
more often than similar occurrences without cavitation.
The acoustic e�ect of cavitation is more in the range
of ultrasonic wide-band waves (in excess of 20 kHz) [3].
In general, sound is a perturbation term in steady con-
dition [4]. Pierce [5] and Goldstein [6] expressed means
of �nding general forms of wave equations in detail.
Morch [7] and Chahine [8] concentrated their work
on the dynamics of some �xed cavitation known as
�xed unsteady cavitation, otherwise, recognized cloud
cavitation. Experimental studies of Reisman et al. [9]
showed that noise caused by bursting cloud cavitation
exceeds by far that of collective noise generated by
summation of all single bubbles existing in a cloud
cavitation. Wang [10] investigated generated shock
waves in cloud cavitation in his doctoral dissertation.
The growth and dissolving of a spherical cloud made
from cavitation bubbles were modeled in a nonlinear
form. Because of that, he was able to �nd pressure
pulses, as well as produced momentum, causing noise
and erosion. Wang combined a continuum mixture
model and Rayleigh-Plesset equation and solved it
using the Lagrangian integration method. In following
years, Brennen et al. [11,12] developed their studies in
recognizing acoustic noise caused by cloud cavitation
in numerical form. Reisman studied the acoustics of
cloud cavitation, numerically and experimentally. By
processing received signals from his experiments, he
showed that the frequency range of signals belonging
to noise of this type of cavitation wave was almost be-
tween 10 Hz to 100 kHz [13]. Levy et al. [14] developed
his research on noise generated by cloud cavitation
in numerical as well as experimental form in a water
tunnel with high speed and on a NACA0015 hydrofoil.
Seo et al. [15] estimated cavitation ow noise around
a two-dimensional cylinder with circular cross-section
and by using Direct Numerical Simulation (DNS). In
recent years; extensive studies on supercavitation have
taken place in the hydrodynamics laboratory of Iran
University of Science and Technology. Nouri et al.
[16] and Moghimi [17] studied the steady condition
of a cavity boundary while supercavitation. Howe
and Foley [18] and Foley et al. [19,20] have conducted
vast investigations into �nding propagated sounds from
ventilated supercavitation. Formation of ventilated
supercavitation around underwater vehicles causes ve-
hicles to reach high speed and generates low and high
frequency sound noises [21]. High frequency noises
can also interfere with the guiding and controlling
system of the vehicle, whereas, low frequency noises
have a tendency to propagate to the �eld far from
the supercavity [22]. As acoustic propeller noise is
the most important noise source of underwater vehi-
cles, some numerical [23,24] and experimental [25,26]

investigations have been studied recently. Salvator
et al. [27] used the Ffowcs Williams and Hawkings
(FWH) model in investigation of underwater propeller
noise. This type of noise estimation methodology
presents many assumptions, such as those considered
in linear acoustics, low Mach number and compressed
sound sources [28]. Figure 1 depicts formation of
supercavitation in a water tunnel.

In light of host applications concerning noise
from cavitation and supercavitation, mainly from en-
vironmental and marine aspects, the degree of its
importance becomes obvious. In this research, in order
to estimate noise caused by the occurrence of cavitation
and supercavitation in uid ow, governing conserva-
tion equations of uid ow need to be derived. So, in
this paper, using scale analysis, conservation equations
including di�erential terms and weighting terms, are
converted into dimensionless form. Hydrodynamic
studies of cavitating ow are not in the same order as
a hydroacoustic study of it. So, for decomposing these
studies into two di�erent orders, a perturbation method
should be used. By selecting a suitable weighting term
as a perturbed term and applying the perturbation
method, conservation equations are decomposed into
two orders containing leading and �rst orders. Leading
order equations display the hydrodynamics of uid ow
with cavitation (or supercavitation), and �rst order
equations explain the acoustics of cavitation. Finally,
the validity of these two di�erent models is investigated
by comparing them with other study results.

2. Scale analysis

Scale analysis is one of the most useful methods in
classical uid mechanics. Using scale analysis and
making equations non-dimensional causes all terms of
equations to have appropriate weight. Consequently,
comparing the weight of each term with each other
speci�es the importance of each term or variable
parameter, and the lower weight can be neglected. So,

Figure 1. Ventilated supercavitation produced in
hydrodynamic laboratory at Iran University of Science
and Technology.
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applying scale analysis can be helpful for using simpler
models for investigation of a problem. Acoustic noise
is part of uid dynamics phenomena which occurs in
a cavitating ow. Hence, using governing conservation
laws of mass, momentum and energy for a fundamental
element of that uid, in addition to the hydrodynamics
of uid ow, acoustics generated through cavitation
or supercavitation can also be described and modeled.
Moreover, since the objective of this investigation is
to present a model for an unknown phenomenon, it
is necessary to consider the governing equations be
analyzed in a dimensionless condition. Using scale
analysis to produce governing dimensionless equations
leads to the comparison among the weight of present
terms, which yields recognition of the importance of
those terms. Also, gaining more knowledge about
the importance of unknown terms causes the solution
process to be simple and, consequently, reduces the
dependability of the solution on physical quantities for
presenting a dimensionless model. Eqs. ((1) to (3))
represent a dimension form of continuity (conservation
of mass), momentum and combined equations of state
and energy for compressible liquid uid in a reversible
process [29,30].
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In these equations �(X; t) is density, ~u(X; t) is velocity,
Q(X; t)) is the volume source of the expansion of uid
mass, p(X; t) is uid pressure, � is viscosity, �v is bulk
viscosity, eij is the tensor of the strain rate, c is sound
speed, cp is heat capacity at constant pressure and � =
1
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is constant. In order to dimensionally analyze
the above equations, the following presumptions are
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In the above relations, terms that have the upper case
index (*) are dimensionless in order of one [O(1)]:
So, �� is dimensionless density, ~u� is dimensionless
velocity, Q� is the dimensionless volume source for
expansion in the mass of uid, p� is the dimensionless
pressure of the uid and t� is the dimensionless time
([O(1)]). Also, terms containing upper case index
(�) are scale parameters that are related to the same
physical parameters in the problem. In case of pressure
and density, examples are mentioned therein. By
placing the above relations in Eqs. (1) to (3), the
following equations will be produced:
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As evident, the presence of terms with (*) index, has
caused di�erential terms to be in one order [O(1)].
Also, the presence of parameters having sign (�) as
the coe�cients of di�erential terms causes the weight of
di�erential terms to become comparable, despite being
dimensional. This weight, in fact, could represent the
degree importance of di�erent terms compared with
each other. In order to better compare, the weight
of di�erential terms, coe�cients also need to become
dimensionless. Eventually, by multiplying suitable
parameters, and simpli�cation, along with the de�ni-
tion of dimensionless numbers, in sequence, the non-
dimensional form of continuity equations (conservation
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of mass) and momentum, as well as combined equations
of state and energy, are found in the following forms:
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In the above equations, dimensionless parameters of
Reynolds number, Strouhal number and Euler number
are de�ned as follows. Also, it is noteworthy that in
this condition, di�erential terms, as well as coe�cients,
have become dimensionless.
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Eqs. (8) to (10) are dimensionless forms of equations
describing the dynamics of uid ow. Since terms
having an asterisk as their upper-case are in the order of
one, it could be noticed that terms of di�erential order
are also in the order of one. Moreover, dimensionless
numbers are, in fact, the weight of di�erential terms,
depicting the importance of each term. By comparing
the weight of di�erential terms (dimensionless num-
bers), being 3 in number, it becomes evident that for
the above three equations, 27 di�erent conditions are
feasible. This is reective of the fact that there are
3 di�erent conditions for every dimensionless number:
A) The order of the dimensionless number is far greater
than the order of one; B) It is equal to the order
of one; and C) It is much smaller than the order of
one. Di�erent conditions of governing equations are
indicative of di�erent problems. Favorable conditions
for the occurrence of cavitation (or supercavitation) in
a ow is when Euler and Strouhal numbers are in the
order of one and the Reynolds number is not much
smaller than the order of one. The reason for this is
that under other conditions, the needed terms for the
modeling of cavitation ow, as well as supercavitation,
are eliminated. As an example, in Reynolds numbers
much smaller than the order of one, the e�ects of
the convective term are eliminated. This is where, in
the modeling of bubble movement by uid ow, the

calculation of this term is necessary. Also, in conditions
related to very small Strouhal number, steady ow will
form, which is not an objective of this study.

3. Utilization of perturbation method

In general sense, in a physical problem when value
of a term is extremely minute, whereas its e�ect is
signi�cant, the perturbation method becomes rather
important. As an example, viscosity in a viscose
ow is considered a turbulent term in a non-viscous
ow. This fact indicates that although viscosity is
a small parameter, its e�ect in a ow sometimes is
very noticeable. As mentioned earlier, acoustic noise
is a part of uid ow dynamics. However, the entity
of acoustic noise and its behavior in propagation are
di�erent with uid ow. This could be justi�ed by
the positioning of noise from ow and ow dynamics
in di�erent orders of basic equations. In cases where
cavitation is observed through perturbation, equations
used in the modeling of ow will be placed in an order
higher than the acoustic equations of the ow. It is
because, when the sound waves propagate through a
uid, such small changes occur in pressure, density and
velocity vector components, that no one can see them.
On the other hand, the occurrence of hydrodynamic
uctuations of pressure, density and velocity vector
components during cavitation (or supercavitation) is
much higher than for acoustic ones.

In the light of everything mentioned, it will be at-
tempted to separate continuity equations (conservation
of mass), momentum and the combined equations of
state and energy from the point of view of order. This
way, the necessary equations for the recognition and
simulation of the acoustics generated by cavitation and
supercavitation, will be presented. Also, the relation of
this type of equation with the dynamics of uid ow
could be shown.

Always, in the perturbation method, the perturb-
ing parameter is depicted by ("). By glancing through
presumed equation systems in Eqs. (8) to (10), it is
evident that �ve dimensionless terms (coe�cients of
di�erential terms) can be very small. In other words,
they could be "1 � "5. In this type of problem, a
term is selected from all the perturbing parameters.
Then, separation of the di�erent order of equations
takes place on the basis of that parameter. The point is
that selection of that parameter has to be based on the
type of investigated problem. As volume uctuations
in uid lead to the propagation of acoustic noise, the
order of governing equations in solving the acoustics of
uid ow could be chosen equal to the order of these
volume uctuations. In light of the points stated above,
for the present problem in this study, in identi�cation
of acoustics stemming from supercavitation, the per-
turbing term will be " = ~QL= ~U . The reason for this
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selection is that, in supercavitation ow, the existence
of very small bubbles inside the cavity is regarded as
perturbation in a ow without cavitation. Hence, (Q)
has to be viewed as a perturbing term in the equations.
An interesting point is that one of the major sources
of acoustic noise generation is uctuations of bubbles
inside the cavity. Results presented at the end of this
section in the form of obtained acoustical equations,
are indicative of the point stated above. Therefore,
initially, the following assumptions will be entered in
the equations:

p�(X; t; ") =h0(")p0(X; t) + h1(")p1(X; t)

+ o(h1("));

~u�(X; t; ") =f0(")~u0(X; t) + f1(")~u1(X; t)

+ o(f1("));

��(X; t; ") =g0(")�0(X; t) + g1(")�1(X; t)

+ o(g1("));

Q�(X; t; ") =m0(")Q0(X; t)+m1(")Q1(X; t)

+ o(m1(")): (12)

In these relations, parameters which have zero indexes,
include ~u0; �0; p0 and Q0, which are dimensionless
velocity vector, dimensionless density, dimensionless
pressure and dimensionless volume source uctuations,
respectively, in the order of hydrodynamic. Also,
parameters which have one index, include ~u1; �1; p1 and
Q1, which are dimensionless velocity vector, dimension-
less density, dimensionless pressure and dimensionless
volume uctuations, respectively, in the order of hy-
droacoustics. Terms h0; h1; :::;m0;m1 are the indicated
weight of dimensionless parameters.

xn+1(") = o(xn(")); " =
~QL
~U
:

After placing Eq. (12) in the dimensionless Eqs. (8)
to (10), they need to be separated into two di�erent
orders. This requires that the relation of weighing
terms with perturbation parameter ("), in terms of
order, is being determined. Also, according to the
de�nition applied in this study, leading order equations
must be satis�ed conditions, which govern the hydro-
dynamics of uid ow, and �rst order equations must
be satis�ed conditions governing hydroacoustics. In
other words, the relation between weighing terms and
perturbation terms has to be found, such that, after
decomposition of equations into di�erent orders, the
obtained equations in the leading order must be able to
display the ow �eld precisely. Moreover, the obtained

equations of the �rst order have to be indicative of
linear wave equations after applying linear acoustics
assumptions (non-viscous and stationary background
uid ow). Beside these assumptions, the de�nition
of xn+1(") = o(xn(")), and the principle of minimum
possible conditions have been used. By doing so, in
Eqs. (8) to (10), and then simplifying, by using the
principle of minimum possible conditions, it becomes
evident that the above parameters need to be presented
in the following form:

p� = p0 + "p1; ~u� = ~u0 + "~u1;

�� = �0 + "�1; Q� = Q0 + "Q1: (13)

Placing the parameters as Eq. (13) causes di�erent
orders of equations to be formed. By separation
of all terms having one order, O(1) as the terms
of leading order equations and all terms having (")
order 0("), as �rst order equations, it will be possible
to recognize equations related to the dynamics of
supercavitation ow (hydrodynamics of ow), as well as
acoustics generated by it. The leading order of formed
equations represents the modeling of cavitation and
supercavitation ow, and �rst order equations present
their acoustics.

As the work is preceded, initially, results obtained
for di�erent orders are presented and, then, while
the validation of leading and �rst order equations is
inspected, the interpretation of terms related to these
equations is developed.

4. Results

Results indicate that acoustical equations are at a
lower order compared to the dynamics of cavitation
(or supercavitation) ow. In other words, acoustics
as a \perturbation phenomena" have been imposed
on the cavitation (or supercavitation) ow. Hence,
in light of obtained results, two groups of leading
and �rst order equations could be designated as a
mathematical model of the uid dynamics of cavitation
and supercavitation, and as a mathematical model for
its acoustics.

4.1. Mathematical hydrodynamic model for
simulating of cavitation or
supercavitation ow

On the basis of obtained results and by separating
terms having the order of one, a group of leading order
equations for simulation of cavitation (or supercavita-
tion) ow is used. The leading order system related to
continuity and momentum equations, as well as those of
combined equations of state and energy, are presented
in Eqs. (14) to (16):
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Consequently, it becomes evident that obtained results
for a leading order system, in fact, indicating that
used equations for the simulation of cavitation or
supercavitation ow are true, by the assumption of
uid ow being viscous and compressible.

4.2. Mathematical acoustics model for
simulating of cavitation or
supercavitation ow

Since acoustical equations are in a lower order com-
pared with hydrodynamic equations, the order of these
equations is assumed equal to that of the perturba-
tion parameter mentioned in Eq. (12). Similarly, by
reordering the available terms in the equations on the
basis of a perturbation term, otherwise known as terms
with an order of ("), equations of the �rst order could
be obtained. In this regard, systems of governing
equations are presented in the following form:

(St)
@�1

@t
+r:(�0~u1) +r:(�1~u0) = �0Q0; (17)

(St)
�
@(�1~u0)
@t

+
@(�0~u1)
@t

�
+ (~u0:r)(�1~u0)

+ (~u0:r)(�0~u1) + (~u1:r)(�0~u0) = (Eu)[�rp1]

+
1

Re

�
r2~u1+

�
1
3

+
�v
�

�
(rdiv(~u1))

�
+�0u0Q0;

(18)

(St)(Eu)
@p1

@t
+ (Eu)(~u0:r)p1 + (Eu)(~u1:r)p0

= �� c~U �2�0(r:~u1)� � c~U �2�1(r:~u0) +
�c2�
cp

�
"

2
Rev (r:~u0)(r:~u1)+ 2

Ref 1
4
@uoi
@xj

@u1j
@xi + 1

4
@uoi
@xj

@u1i
@xj

+ 1
4
@u1i
@xj

@u0j
@xi + 1

4
@uoj
@xi

@u1j
@xi � 2

3 (r:~u0)(r:~u1)g
#
:

(19)

These equations are indicative of the fact that a group
of acoustic equations are coupled with equations of
leading order and are a�ected by them. In other words,
although acoustic equations of ow have no e�ect
on the hydrodynamic equations of cavitation ow, as
presented by Eqs. (14) to (16), the hydrodynamics
equations of ow a�ect the acoustic equations. Then,
the validity of the system of leading and �rst order
equations is inspected regarding certain assumptions.
After obtaining the equations from di�erent orders, the
validity of these equations needs to be veri�ed.

4.3. Validity inspection of hydrodynamic
model of supercavitation ow

In order to inspect the validity of equations of leading
order, they should be compared with equations of
momentum, continuity, energy and state used in the
simulation of supercavitation ow. However, since
equations were presented in previous studies of the
simulation of supercavitation as incompressible, in this
study, also, that assumption was held. Then, the
equation systems of leading order were obtained and,
subsequently, incompressible forms of the equations
were compared with the results of other studies. There-
fore, incompressible forms of governing equations in
supercavitation ow are presented. Also, it is assumed
in these equations that the Strouhal and Euler number
are in the order of one. Initially, it is assumed that the
ow is incompressible. So, in that case:

r:(~u0) = 0: (20)

By considering this assumption in the leading order
equations, continuity equations will be presented in the
following form:
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Obtained results are the same equations as the gov-
erning equation of incompressible uid ow in the
Open Foam [16]. Also, these equations are those
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used in Moghimi's PhD dissertation [16] for simulation
of arti�cial supercavitation assuming incompressible
uid. Consequently, in light of points discussed, the
validity of leading order equations for compressible ow
is realized.

4.4. Validity inspection of acoustic model
generated by supercavitation ow.

In order to inspect the validity of �rst order equations,
these equations are compared with those of momentum,
continuity, energy and state, all presenting simulation
of supercavitation ow acoustics. Since obtaining lin-
ear equations of acoustics is also done using equations
of continuity, momentum, energy and state, utilizing
this method to inspect the validity of obtained acous-
tics equations in the �rst order is suitable. To do this,
initially, assumptions relating to linear acoustics are
entered into the equations and, then, obtained results
are compared with the results of linear acoustics. Also,
it is assumed that Euler and Strouhal numbers are in
the order of one. Assumptions used in obtaining linear
acoustic equations are as follows:

�0 = cons; u0 = 0;

� = 0; Q = 0: (24)

By exerting these assumptions in the equations of
continuity, momentum, energy and state of �rst order,
the following equations are obtained:
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= [�r(p1)]; (26)

@p1

@t
= �� c~U )2�0(r:~u1): (27)

It is evident that these equations are equal to those of
linear acoustics equations [20]. Therefore, in the light
of points presented in the preceding two sections, the
validity of the obtained equations is realized from both
leading order equations, as well as �rst order.

5. Discussions

As mentioned earlier, equations of leading order are
indicative of a system of equations for determination
of uid ow conditions. These equations introduce
a general form of principle equations in uids. Lack
of thermal charge existence, otherwise known as non-
occurrence of work on the basis of heat transfer, is the
only assumption in this form of equations. On the other
hand, this assumption, in light of the problem under
consideration, meaning simulation of supercavitation
ow, is a suitable and logical point. Considering the

obtained leading order Eqs. (14) to (16), as well as
the dimensionless weight of their di�erent terms, it
becomes possible to decide about problem formation
in di�erent conditions. In simple terms, this means
that in a given problem, the e�ect of a term with lower
weight could be neglected against other terms and
vice versa. At any rate, having this type of equation
(leading order) at hand enables researchers to simulate
supercavitation ow in a compressible viscous ow in
a designated time.

Regarding acoustic equations of the �rst order, it
is also fair to state that these obtained equations are a
general form of those equations used in the analysis of
linear acoustics. Di�erences between the obtained �rst
order equations and linear acoustics equations are:

a) Equations of linear acoustic are connected to sta-
tionary uid ow. Whereas, obtained equations in
this study include the velocity of uid ow as well.
The term expressing the uids velocity is depicted
by ~u0.

b) In equations of linear acoustics, the uid is assumed
to be incompressible with �xed density. In condi-
tions where obtained equations from a perturbation
method have regarded the uid as compressible,
then, density in these acoustic equations could not
be constant.

c) Contrary to linear acoustic equations, in these
equations, the term of the acoustics source exists
and is shown by (Q), which is present in both
continuity equations as well as momentum. Never-
theless, the importance of this term becomes evident
when large supercavity occurs in the uid ow
comprised of many smaller bubbles. These small
bubbles are transferred from low pressure areas
to high pressure areas via the movement of ow.
This causes considerable changes in the volume and
radii of each bubble. Fluctuations of each bubble,
in addition to being observed experimentally, are
monitored through numerical analysis by utilizing
the equation of Rayleigh{Plesset [13]. Since noise
is generated by the uctuation of each bubble, it
can be regarded as the source of acoustic noise
production. Therefore, this term (Q) has to be
considered. Another interesting point is that the
term of the volume source in equations of leading
order is not evident. The reason for this is the small
order of these uctuations compared with those of
leading order, despite being in equations of the �rst
order. So, even though leading order equations are
producers of supercavitation ow, it is expected that
by using equations of leading order, the uctuations
of each bubble become recognized. Then, by using
equations of the �rst order, the acoustic noise of each
uctuation could be obtained.
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d) Equations of linear acoustics are for non-viscous
uid ow, whereas the acoustic equations of the
present study contain terms related to uid viscosity.
Viscosity terms could be observed in the form of
Reynolds number in the equations. The left side
of the combined equation of state and energy are
representative of acoustic pressure distribution, and
its right side presents two e�ective mechanisms
on the distribution of acoustic pressure. Those
terms are like dilatation terms, having Mach number
as their coe�cient, and another term related to
viscosity could be obtained via equations, in which,
by comparing the weight of Reynolds number and
Mach number, each mechanism's contribution to
acoustic pressure could be determined.

6. Conclusions

As the acoustic modeling of cavitation and super-
cavitation are instrumental in recognition of these
hydrodynamic phenomena, presenting a precise and
valid model for estimating propagated acoustic noise is
of great importance. Consequently, as presented earlier
in this study,

1. In order to provide a more precise numerical and
mathematical model of the noise produced by
supercavitation, initially, governing equations of
the uid containing equations of state, continuity,
momentum and energy were divided into di�erent
orders. This was done by dimensional analysis and
the perturbation method. Obtained results from
di�erent orders of the equations were indicative
of acoustic noise present as a perturbation term
in the governing equations of uid hydrodynamics.
It is noteworthy that the terms of the equations
were scaled and had become unity ordered using
dimensional analysis and gauge functions. The
degree of scaled leading equations is in the order of
the unit. Also, the order of the acoustic equations is
from the order of volume source uctuations. These
volume sources in supercavitation ow are bubbles
inside a large cavity.

2. According to the conducted analysis, in order to
analyze the acoustic behavior of supercavitation,
�rst, equations of the leading order need to be
solved. Under most general conditions, in order to
estimate propagated noise as precisely as possible
from cavitation and supercavitation, �rst, equa-
tions of continuity, Navier stokes, energy and state
for compressible uid (with or without viscosity)
have to be solved.

3. By solving this system of equations, a supercavity
and bubbles inside it will be formed. Then, by
considering the conditions of ow (location of each

bubble, pressure and pressure gradient distribution,
velocity distribution, density and gradient of veloc-
ity and density) as boundary conditions, as well
as initial conditions, equations of �rst order, oth-
erwise known as acoustic equations (coupled with
equations of hydrodynamic of ow), will be solved.
Through solving these equations, acoustic pressure
distribution, velocity and the density induced by
noise can be calculated.
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