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Abstract. This paper presents a methodology for solving shape optimization problems
where the unknown is the shape of the problem domain. The proposed algorithm is based
on minimization of the stress along the design boundary calculated by the Modi�ed Fixed
Grid Finite Element Method (MFGFEM). Using MFGFEM eliminates mesh adaptation
and re-meshing processes, as needed in the standard �nite element method, and reduces
the analysis cost signi�cantly. In this study, a new approach for computing the sti�ness
matrix of boundary intersecting elements is also presented and the optimal shape of the
problem domain is obtained via a simple optimization algorithm. The performance of the
proposed approach is investigated for shape optimization problems. It is concluded that
the results of the present method are in good agreement with other analytical and �nite
element solutions.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Shape optimization problems are associated with �nd-
ing the optimum pro�le of a component to improve
the behavior of a mechanical system and minimize
some properties, e.g. the weight of the body or high
stress concentrations near the corners. Many investi-
gations have been carried out and various structural
optimization methods have been proposed for di�erent
optimization problems [1].

Conventional shape optimization methods are
based on using the Finite Element Method (FEM) and
a set of elements formed from the boundary of the
problem domain. A direct relationship is then created
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between the problem boundary and the �nite element
meshes and any changes in the domain boundary
will also be produced in the computational meshes.
The drawback of this strategy is clear: Signi�cant
boundary changes can necessitate the adaptation or
regeneration of the mesh, as it no longer provides a
correct representation of the medium. Therefore, in the
standard shape optimization methods based on FEM,
re-meshing cannot be avoided during the optimiza-
tion process if accurate analysis is to be guaranteed,
especially for design problems with large changes in
shape [2]. These factors incorporate a considerable
amount of ine�ciency in the shape optimization meth-
ods based on FEM.

An interesting approach to decrease FEM de-
pendency on conventional mesh in shape optimization
problems is to use the Fixed Grid Finite Element
Method (FGFEM) [3-10] and eXtended Finite Element
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Method (XFEM) [11,12]. Both FGFEM and XFEM
use a �xed non-boundary-�tted grid to perform a
�nite element analysis. In FGFEM, the problem
domain is covered with uniform �nite elements, and
a homogenization technique [3] is used to compute
the sti�ness matrix for boundary intersecting elements.
The problem domain is discretized with uniform or
non-uniform �nite elements in XFEM, and the step
function is used to carry out integration over boundary
intersecting elements [12]. It has been shown that
the FGFEM and XFEM are e�ective in approximating
the strain and stress �eld by their low requirements
of time and computational resources. Though the
above mentioned methods are equipped with excel-
lent remesh-free properties and avoid cumbersome
remeshing processes, the homogenization procedure
and step function used in FGFEM and XFEM re-
sult in an inaccurate representation of the problem
domain and decreases the accuracy of numerical so-
lution [4,5,9].

The integration over discontinuous elements has
already been treated by several authors and has been
applied in multiphase problems [13]. In the present
study, basic modi�cations are introduced in the original
FGFEM and a new approach, called Modi�ed FGFEM
(MFGFEM), is introduced to encounter the boundary
intersecting elements. The modi�cation deals with
sti�ness matrix computation of boundary intersecting
elements by introducing material coordinates (r; s) that
map the internal part of the boundary intersecting
element to the rectangular or triangular master element
when the internal part of the boundary element is a
rectangle or triangle. A new formulation is also pre-
sented for mapping the internal part of the boundary
when the internal part of the boundary intersecting
element is a pentagon.

It should be noted that the stress gradient infor-
mation must also be determined through a sensitivity
analysis in the structural optimization problems to
minimize stress concentrations [14-19]. Since the sensi-
tivity calculation time is usually high when the number
of design variables is large, a gradientless approach is
used in this paper. The gradientless approaches [20-27]
do not use stress derivatives for determining optimal
geometries. It is well-known that the convergence
rate is independent of the number of design variables
in these approaches, and they are particularly appro-
priate for minimizing stress concentrations in shape
optimization problems with a large number of design
variables. The underlying strategy for these methods
is to achieve a constant or nearly constant stressed
design boundary by adding material where stresses are
`high' and removing it where stresses are `low'. This
strategy has been shown to be consistent with the aim
of minimizing the peak stress [22-27].

In the present study, the modi�ed �xed-grid

method, based on a gradientless approach for shape
optimization of components and for minimizing stress
concentration, is developed to overcome drawbacks
in solving shape optimization problems with FEM
gradient-based methods. Cubic splines are also used in
the proposed method to model the shape of the design
boundary and the optimal shape of the design bound-
ary with constant stress is achieved iteratively. The
validity and performance of the method are demon-
strated by solving numerical examples and comparing
the results of the present analysis with those reported
in the literature.

The paper is organized as follows: First, the de-
sign parameterization is described and then the notion
of non-boundary �tted grids is presented. The original
FGFEM is described followed by an explanation of
MFGFEM. After that, the application of boundary
conditions is discussed and the numerical integration
of a Galerkin weak form is presented. Finally, the opti-
mization approach is described and numerical examples
are conducted. The results obtained are also compared
with analytical or numerical solutions.

2. Design parameterization

Several methods are available in representing the
boundary geometry of the structure. Most researchers
use the nodal coordinates of the discrete �nite element
model as design variables [25,27]. However, it is not
suitable for the �xed-grid solver, since node locations
for the analysis remain unchanged throughout the
optimization process.

Various types of parametric spline are commonly
used for representing the local shape of geometric mod-
eling. The cubic spline curves and cubic B-spline curves
are as certain varieties of cubic spline function. In the
cubic spline representation, the cubic spline curve is
expressed in terms of the coordinates of control points
and their corresponding tangents, whereas, in the B-
spline [9-10] representations, the curve is represented
in terms of control points of a polygon. However, when
the curve passes through a set of given points, the cubic
spline function, which has two continuous derivatives
everywhere and possesses minimum mean curvature, is
a useful representation of the design boundary. The
B-spline curve is particularly useful where the curve is
�tted by interactive manipulation.

In this paper, cubic spline curves are selected
to represent the design boundary. Because a cubic
spline is a piece-wise cubic polynomial curve that has
a smooth shape, the movement of a point on the line
can be controlled precisely and the control points are
part of the generated curve. Waldman et al. [27]
tested the suitability of using a typical cubic spline
interpolation on optimal shoulder �llet shapes and
found good results.
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3. Non-boundary-�tted meshes

In the shape optimization problems based on the stan-
dard �nite element method, the problem domain must
be divided into a set of boundary �tted elements with
prede�ned shapes. The elements are used for shape
function construction and numerical integration. The
main drawbacks of these boundary �tted elements are
the di�culties that arise during the mesh generation
period. Although there are many automatic mesh
generation techniques, the generation of an acceptable
boundary �tted mesh for bodies with a moving bound-
ary is not a simple task.

Another strategy for the numerical solution of
shape optimization problems is the use of non-
boundary �tted meshes. In this strategy, it is not
necessary for the elements to coincide with domain
boundaries and, therefore, the boundaries can intersect
the elements. The use of non-boundary-�tted meshes
in the analysis of shape optimization problems reduces
the mesh generation costs, because the mesh generation
process is performed without considering the boundary
movement. In the same way, using non-boundary-�tted
meshes in the shape optimization problems reduces
analysis costs signi�cantly. A typical non-boundary-
�tted mesh is shown in Figure 1. As can be seen
from this �gure, the intersection of elements with
boundaries causes the production of elements, some
portions of which are located outside the problem
domain. These elements, in this paper, are called
Boundary Intersecting Elements (BIE). The elements
located completely inside the problem domain are
named Internal Elements (IE) and the others are
named External Elements (EE). The collection of IE
and BIE is considered an active element set. As shown
in Figure 1, the nodes are also divided into three
categories: Internal Nodes (IN), External Nodes (EN),
and External Boundary Nodes (EBN) which locate
outside the domain boundary; this type of nodes lie
on the corners of boundary intersecting elements. The
collection of IN and EBN is considered an active node
set.

Figure 1. A non-boundary-�tted mesh and classi�cation
of nodes and elements.

4. Fixed grid �nite element method

The original FGFEM uses the idea of the application of
non-boundary-�tted grids in the �nite element solution
of the problems. In this method the homogenization
technique is used for the formulation of boundary inter-
secting elements [3]. In the homogenization technique,
it is assumed that the problem is not restricted by
the original domain boundaries, and the material is
distributed over the entire space with the assumption
that the density and sti�ness of the media is a function
of space. In other words, it is assumed that the sti�ness
of IE is equal to the original material, but that the
sti�ness of EE is very low compared to the sti�ness of
IE. With these assumptions, the sti�ness of BIE is a
value between the sti�ness of IE and EE corresponding
to the area fraction of the internal part of BIE. In this
approach, if Ci is the elasticity tensor of IE, Ce is the
elasticity tensor of EE; the elasticity tensor of BIE is
written as:

Cb = rCi + (1� r)Ce; r =
Ai
A
; (1)

where A and Ai are the total area and area of the
internal part of the BIE, respectively, and, therefore,
r fraction. This representation of BIE causes some
inaccuracy in the formulation of BIE because only
the area fraction is used for the formulation of BIE
and the orientation of the boundary, with respect to
the element and the shape of the internal part of the
element, is not introduced in the formulation of BIE.
Figure 2 shows examples of 6 di�erent BIE which
intersect the boundary in 6 di�erent con�gurations.
The area fraction, r, for all these elements is equal and,
from the view point of the homogenization technique,
the sti�ness matrices of all these elements are the same.
This causes an inaccurate representation of boundary
intersecting elements.

5. Modi�ed �xed grid �nite element method

In this paper, some modi�cations on the formulation
of BIE are implemented to improve the accuracy
of the sti�ness matrix and application of boundary
conditions. The following sections explain these modi-
�cations.

5.1. Governing equations
Thepagebreak[3] governing equations for the static
deformations of body, 
, with boundary �, are as

Figure 2. Examples of di�erent BIEs with same area
fraction.
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follows:

r:� + b = 0 in 
; (2)

u = �u on �u; (3)

t = �:n = �t on �t: (4)

In these equations, u is the displacement vector and
b is the body force. The domain boundary, �, is
divided into two parts, �u and �t, which represent
the boundaries with essential and natural boundary
conditions, respectively, where �u \ �t = 0 and
�u [ �t = �. Vectors �u and �t are the prescribed
displacements and traction forces, respectively, which
are applied on the domain boundaries. n is the unit
outward normal vector on the boundary. The total
potential energy of a continuous system can be written
as follows [28]:

� = �S ��L; (5)

in which �S is the strain energy and �L is the work
done by external forces. We have:

�S =
1
2

Z



�T "d
; (6)

�L =
Z



uT bd
 +
Z
�t

uT �td� +
mlX
i=1

uT (xi)Ft: (7)

Fi is the external concentrated force applied at point xi,
m1 is the total number of point forces, u is displacement
vector, � is stress vector and " is strain vector. For 2D
case, these values are de�ned as:

u = [ux uy]T ; (8)

� = [�x �y �xy]T ; (9)

" = ["x "y 
xy]T : (10)

The stress strain relation for a linear elastic material
without residual stress and strains can be de�ned using
elasticity matrix C as follows:

� = C": (11)

5.2. Essential and natural boundary conditions
In the presented method, the penalty function method
is used only for essential boundary conditions, and the
natural boundary conditions are applied via numerical
integration of traction forces on the boundary. In
this approach, for application of essential boundary
conditions, the total potential energy of the system is

modi�ed as:

�� =�S ��L +
1
2
�1

Z
�u

(u� �u)T (u� �u)d�

+
1
2
�2

m2X
i=1

(u(xi)� �ui)T (u(xi)� �ui); (12)

where, �ui is the prescribed displacement in the point
constraint at point xi, m2 is the total number of point
constraints and �1 and �2 are the penalty parameters.
The use of a penalty function in the application of
essential boundary conditions means that the rigid
supports are actually replaced by a set of deformable
supports, which are much sti�er than the materials
used in the problem.

5.3. Discretization process
In this paper, a new approach for the construction of
sti�ness is presented. In this approach, in contrast to
traditional FGFEM, the degrees of freedom of all ENs
are deleted and only the degrees of freedom of INs and
EBNs remain as the unknown degrees of freedom.

In this method, IEs are treated as standard �nite
elements with no di�culty. The strain energy of
BIEs is computed using the integration of the strain
energy density over the internal parts of these elements.
Displacement, u(x), is approximated as:

u(x) = N(x)U; (13)

where N(x) is the shape function matrix and U is the
global displacement vector. The strain vector is de�ned
using di�erentiation operator B as:

� = Bu = (BN)U: (14)

Using Eq. (14), the stress vector can be written as:

� = C" = C(BN)U: (15)

�� is then obtained by substituting Eqs. (6), (7), (13),
(14) and (15) into Eq. (12) as follows:

�� =
Z



UT (BN)TC(BN)Ud

Z



UTNT bd


�
Z
�t

UTNT �td��
m1X
i=1

UTNT
i Fi

+
1
2
�l
Z
�u

(NU � �u)T (NU � �u)d�

+
1
2
�2

m2X
i=1

(NiU � �ui)T (NiU � �ui): (16)
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It should be noted that Ni = N(xi). Using the
minimum potential energy principle and di�erentiating
Eq. (16), with respect to displacement vector U , we
have:� Z




(BN)TC(BN)d
 + �l
Z
�u

NTNd�

+ �2

m2X
i=1

NT
i Ni

�
U =

� Z



NT bd
 +
Z
�t

NT �td�

+
miX
i=1

NT
i Fi + �l

Z
�u

NT �ud� + �2

m2X
i=1

NT
i �u
�
:
(17)

The above equation is a set of algebraic equations that
can be solved simultaneously for the unknown vector,
U . This equation can be written as:

(K +K�)U = R+R�; (18)

K =
Z



(BN)TC(BN)d
;

K� = �1

Z
�

NTNd� + �2

m2X
i=1

NT
i Ni; (19)

R =
Z



NT bd
 +
Z
�t

NT �td� +
mlX
i=1

NT
i Fi;

R� = �l
Z
�u

NT �ud� + �2

m2X
i=1

NT
i �u: (20)

These integrals must be numerically evaluated using
nonboundary-�tted mesh. The intersection of the mesh
with the domain boundary will divide the domain
boundary into some boundary segments. These bound-
ary segments are approximated by straight lines. The
boundary segment of a typical boundary intersecting
element (e), in Figure 1, is shown in Figure 3.

To improve the solution accuracy substantially,
we develop a new scheme to calculate accurately the
sti�ness matrix of the corresponding element. To this
end, we �rst determine the intersection points of the
domain boundary and the element boundaries, e.g.
points 3 and 4 in Figure 3, and connect these points
to form the approximate boundary line. Note that the
oblique boundary usually crosses the element domain
without passing through the analysis nodes.

Now, we propose a new strategy to evaluate the
sti�ness. Here, we simply work with one element
denoted by e in Figure 1. First, we express the sti�ness

Figure 3. Typical boundary intersecting element with
local coordinates (�; �) and material coordinate (r; s).

matrix, ke, as:

ke =
1Z
�1

lZ
�1

(BN)T (�; �)CbBN(�; �)jJ jd�d�: (21)

where (�; �) are the element local coordinates, jJ j
is the Jacobian relating local coordinates (�; �) and
global coordinates, and BN denotes the matrix relating
strains to nodal displacements. To integrate Eq. (21),
we introduce the material coordinates (r; s), which
maps a normalized rectangular domain, [-1,1]�[-1,1],
to the region bounded by 1-2-3-4 in Figure 3. In
Figure 3, wei and 
ei j!ei are the approximations of
internal and external parts of the BIE, respectively.
As in the standard bilinear �nite element, the element
local coordinates are expressed as:�

�
�

�
=

4X
i=1

Ni(r; s)
�
�i
�i

�
; (22)

where (�i; �i) are the coordinates of points 1, 2, 3 and
4 in Figure 3 and Ni(r; s) represent standard bilinear
functions. If !ei becomes a triangular region, it can be
also treated by Eq. (22) as a degenerate case. Using the
transformation (22), the element sti�ness in Eq. (21)
can be written as:

ke =
1Z
�1

1Z
�1

(BN)T (�; �)CbBN(�; �)jJ jd�d�

�
Z
wi

(BN)T (�; �)CBN(�; �)jJ jd�d�

=
1Z
�1

1Z
�1

(BN)T (�(r; s);

�(r; s))CBN(�(r; s); �(r; s))jJ jj bJ jdrds; (23)
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where j bJ j is the Jacobian relating (r; s) and (�; �):

bJ =
�@�
@r

@�
@r

@�
@s

@�
@s

�
: (24)

When 
ei j!ei is a triangle, !ei becomes a pentagon. In
this case, Eq. (23) is not applicable and the sti�ness
matrix for the element is obtained by subtracting the
sti�ness of 
ei j!ei from the sti�ness of an internal
element:

ke =
1Z
�1

1Z
�1

(BN)T (�; �)CBN(�; �)jJ jd�d�

�
Z


ij!i
(BN)T (�; �)CBN(�; �)jJ jd�d�

=
1Z
�1

1Z
�1

(BN)T (�; �)CBN(�; �)jJ jd�d�

�
1Z
�1

1Z
�1

(BN)T (�(r; s); �(r; s))CBN)T (�(r; s);

�(r; s))jJ jjJ�jdrds;
(25)

where jJ�j results from the mapping between a normal-
ized rectangle and 
ei j!ei .

As mentioned above, the domain integrals have
been divided to integrations over IEs and BIEs. We
emphasize that the sti�ness evaluation above is applied
only to elements lying on the boundary. For IEs, the
element sti�ness evaluation is exact in the proposed
method. Thus, the advantages of �xed grid-based
methods are the fast meshing and fast formulation of
the sti�ness matrix. It only requires small additional
expenses to calculate the intersection points and
element sti�ness matrices along the boundary of the
domain.

6. Optimization approach using splines

Figure 4 shows a plate with a �llet with a free boundary,
�, on which there are a number of control points,
p1; p2; � � � ; pk. To achieve a boundary shape with a con-
stant tangential stress distribution around the bound-
ary, a number of �nite element based gradientless meth-
ods have been proposed in the literature [25,29]. The
underlying optimization algorithms for these methods
are based on biological growth analogies, as elucidated
by Heller et al. [25]. We add material where stresses
are high and remove it where stresses are low. The
amount of material added or removed at any point on

Figure 4. Geometry of plate with a �llet-shaped
boundary.

the boundary is taken to be directly proportional to
the di�erence between the local tangential stress and a
suitable reference value. This process is then repeated
iteratively until the boundary hoop stress is constant or
nearly constant, within a prescribed tolerance. Hence,
the amount to move a given point, pi, on the design
boundary (in the normal direction) is speci�ed by the
following equation [25,27,29]:

�i = K
�i � �th
�th

; i = 1; 2; :::; n; (26)

where positive �i indicates material addition, �i is the
tangential stress at pi on the boundary, �th is the
nonzero threshold boundary hoop stress, and K is
an arbitrary to accelerate convergence and should be
determined by trial.

The selection of the threshold stress will de�ne the
type of optimization process and the initial boundary
shape [25,27]. For example, if �th is selected to be
equal to the maximum (minimum) stress, only material
removal (addition) will occur. However, parameter
�th is initially unknown and, hence, an arbitrary
magnitude of the threshold stress has to be selected.

In this paper, for the optimization problem of
minimizing the stress concentration with the prescribed
design domain, a �xed point on the design boundary,
p1, in Figure 4 is selected. This point is �xed
throughout the optimization process and its stress
should converge to the uniform solution stress, �nally.
It should be noted that the optimization logic will
become much simpler if the stress at this point is
selected as �th [29]. Here, the cubic splines, which
are determined by a set of control points, p1; p2; :::; pk,
are used to de�ne the design boundary, as shown in
Figure 4. The coordinates of control points are changed
by simulating biological adaptive growth and the design
boundary is updated accordingly. The coordinates of a
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control point are updated in the following way:

Y j+1
i (Pi) = Y ji (Pi) + �ji � dji ; i = 1; 2; :::;m; (27)

where Y j+1
i (Pi) and Y ji (Pi) are the coordinates of con-

trol point, Pi, at the (j+1)th and jth iterations, respec-
tively. dji is the direction of movement for Pi (normal
direction, n, in Figure 4), m is the total number of
control points, �ji is the step of Pi along the movement
direction, which can be obtained by Eq. (26).

All the control points are updated sequentially
using Eqs. (26) and (27), and the splines are updated
accordingly. With the new shape, the stress distri-
bution along the new design boundary will become
more uniform and another modi�ed �xed-grid �nite
element analysis is then undertaken. This process
is repeated until the boundary tangential stress is
constant or nearly constant. For such an iterative
procedure, an appropriate function, RE, to monitor
the solution convergence, can be written as clearly as
RE approaches zero; the stresses become more uniform
around the boundary:

RE =
�����max � �min

�max + �min

����: (28)

7. Illustrative examples

Three numerical examples are presented and discussed
here to demonstrate the accuracy and power of the
boundary curve approximation and proposed shape
optimization method. It must be mentioned that in
the �rst example, only the e�ciency of the MFGFEM
is considered and no optimization is done.

7.1. In�nite plate with a circular hole subject
to a unidirectional load

In this example, the problem of 2D stress analysis
around a circular hole in an in�nite plate under
unidirectional tension was examined. The schematic
diagram of the problem is presented in Figure 5.
This problem is essentially a two-dimensional elasticity
problem and has an analytic solution. The problem
was solved in plane strain condition with a circular hole
in its center. Due to symmetry, only a quarter of the
problem is considered. In the cutting lines, the proper
boundary conditions must be applied to simulate an in-
�nite media. Therefore, traction boundary conditions
from the exact solution were applied on these lines.
The analytic solution of this problem can be written in
the following form [30]:

u =
1 + �v

�E
�
�

1
1 + �v

r cos � +
2

1 + �v
a2

r
cos �

+
1
2
a2

r
cos 3� � 1

2
a4

r3 cos 3�
�
; (29)

Figure 5. Geometry of the plate with circular hole.

v =
1 + �v

�E
�
� ��v

1 + �v
r sin � +

1� �v
1 + �v

a2

r
sin �

+
1
2
a2

r
sin 3� � 1

2
a4

r3 sin 3�
�
; (30)

�x = �
�
1� a2

r2

�
3
2

cos 2� + cos 4�
�

+
3a4

2r4 cos 4�
�
;
(31)

�y = �
�
� a2

r2

�
1
2

cos 2� + cos 4�
�

+
3a4

2r4 cos 4�
�
;
(32)

�xy = �
�
� a2

r2

�
1
2

sin 2� + sin 4�
�

+
3a4

2r4 sin 4�
�
:
(33)

The material properties are E = 2 GPa and v = 2:26.
The problem is solved for 3 di�erent grid resolutions.
The �rst grid density consists of 16 square elements,
the second grid density consists of 64 square elements
and the �nal mesh density consists of 256 square
elements. A schematic diagram of the problem domain
and boundary conditions are shown in Figure 5. The
relative error in energy and displacement norms is used
as a measure to compare the results. The relative
error in the displacement norm is calculated using the
following expression:

d =

 R



(uex � unu)T (uex � unu)d
R


uexT uexd


! 1
2

; (34)

and the relative error in strain energy norm is calcu-
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lated using:

e =

 R



("ex � "nu)TC("ex � "nu)d
R


"exTC"exd


! 1
2

: (35)

In these equations, superscripts ex and nu denote the
exact and numeric values of the parameters, respec-
tively. To calculate the relative errors in displacement
and energy norm (Eqs. (33) and (34)), the domain
integrals should be divided into integrations over IEs
and internal parts of BIEs using the Gauss quadrature
formula, where uex and unu are written as:

uex =
�
u
v

�
; unu =

2664
4P
i=1

ueiNi
4P
i=1

veiNi

3775 ; (36)

where u and v are substituted from Eqs. (29) and (30).
uei ; vei are nodal displacements of the element obtained
from the present method.

The relative error norms in strain energy and
displacement are presented in Figures 6 and 7 for
di�erent three type grid densities. It can be seen
that the error in displacement and energy norms in
MFGFEM for grid density #1 are 0.5% and 8.8%, for
grid density #2 are 0.12% and 4.5%, and for the third
mesh density are 0.04% and 2.3%, respectively. It is

Figure 6. Relative error norm in displacement for
di�erent numbers of element.

Figure 7. Relative error norm in strain energy for
di�erent numbers of element.

also obvious that the error norms in the present method
are less than those obtained by FEM and FGFEM
solvers.

7.2. Hole in a biaxial stress �eld
In this section, the benchmark structural optimization
problem of a biaxial loaded plate of �nite width with
a hole at its center is studied. The objective of
this problem is to �nd out the optimal hole pro�le
to produce the minimum Von-Mises stress on the
boundary of the hole. The geometry, dimensions,
boundary conditions and loading of the plate are shown
in Figure 8. Only a quarter of the plate has been
analyzed due to symmetry. On the symmetry lines,
the proper boundary conditions must be applied to
simulate the complete media. A circular arc is used to
de�ne the initial design boundary and six control points
are selected to parameterize the design boundary. After
assuming the initial geometry, a �xed non-boundary-
�tted mesh is used to solve the shape optimization of
the stress concentration problem. The stress �eld is
obtained using the MFGFEM and the parameters are
then updated via a conjugate gradientless algorithm.
This process is continued until achieving convergency.
A typical mesh and an initial guess for the hole pro�le
are shown in Figure 9.

To display the results, a polar coordinate system
is used, in which � = 0 and � = 90 show points B
and A, respectively (Figures 8 and 9). Point A is the
�xed point and the stress at this point is selected as
the threshold stress.

The stress far away from the concentration zone
is 38.971 MPa. It is the value of stress which would
exist in the plate without a hole. Therefore, this
value has been taken for normalization of the results.

Figure 8. Dimensions, loads and boundary conditions of
the problem.
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Figure 9. Fixed-grid mesh of one quarter of the plate
with a hole.

Figure 10(a)-(c) shows the normalized Von-Mises stress
contours for the initial and other iterations around
the hole boundary as a function of �. The stress
concentration around the initial hole is 3.2637 at � = 0
and the minimum stress is 0.51 at � = 90. It can be
seen from Figure 10(a) and (b) that the convergence
speed during the �rst iterations is considerably higher
than the last iterations, because the driving force in
Eq. (26) diminishes with increasing iteration. Note
that the uniform von-Mises stresses appear along the
hole boundary in Figure 10(c). The ratio of the major
to minor axes of the resulting ellipse is 1.951, which
is close to the analytical solution for the in�nite plate
with an ellipse, with the aspect ratio of 2:1.

The minimum possible uniform stress level along
the boundary of an elliptical hole in an in�nite plate
is 67.5 MPa [20]. In the present results, the Von-Mises
stress along the design boundary is an essentially con-
stant level in the range 62.87-67.502 MPa, which has
good agreement with the result for the in�nite plate.
Tekkaya and Guneri [24] investigated the same problem
with the same plate geometry and boundary conditions
using the biological growth method. They reported the
Von-Mises stress along the design boundary is within
the range 62.3- 77.9 MPa. Zhixue [29] also reported
that the Von-Mises stress along the design boundary
is within the range 68.98{70.30 MPa. Comparing the
above results, it can be concluded that the results of
the present study have extremely high accuracy.

The normalized distributions of Von-Mises stress
along both the initial and �nal hole boundaries are
shown in Figure 10(c) as a function of �. It can be noted
that the stress concentration is initially 3.2637 and is
reduced to 1.7404 for the optimal shape of the hole.

A summary of di�erent results that are available

Figure 10. Normalized distribution of Von-Mises stress
along the hole boundary.

in the literature for the same problem is presented
in Table 1. The analytical solution for an in�nite
plate and the result of our optimization for normalized
maximum Von-Mises stress around the optimal hole
are given. It is shown that the present normalized
maximum Von-Mises stress is lower, and there is good
agreement between the present result and analytical
solution.

Figure 11 shows the variation of the normalized
maximum Von-Mises stress with iteration number.
This result clearly shows the stability and high ef-
�ciency of the proposed optimization method. In
Figure 12, the variation of boundary hole with iteration
number is also shown.
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Table 1. Comparison of published results for normalized maximum Von-Mises stress around optimal hole with the present
method.

Research Analysis method and
optimization approach

Normalized maximum
Von-Mises stress around

optimal hole

Present study
MFGFEM based on
gradientless method

1.7405

Tekkaya and Guneri [20]
FEM based on biological
growth method

1.998

Zhixue Wu [25]
FEM based on
gradientless method

1.804

Timoshinko [26]
Analytic solution
for in�nite plate

1.732

Figure 11. Variation of normalized maximum Von-Mises
stress with iteration.

Figure 12. Variation of hole pro�le with iteration

In the following, the e�ect of an initial guess for
the hole boundary on convergency of the uniform stress
distribution along the optimal shape is considered.
Thus, we assume the following curves for this purpose:�

x
a

��
+
�
y
a

��
= 1: (37)

The above equation is plotted for di�erent values of
� in Figure 13. It is obvious that the above equation
gives a circle arc for � = 2.

The normalized maximum Von-Mises stress along
the initial hole boundary for di�erent values of � is
shown in Table 2. It is obvious that the normalized
maximum Von-Mises stress decreases with increasing
the value of � .

In Figure 14, the normalized distributions of the
Von-Mises stress along the optimal hole boundary, as

Figure 13. The assumed curves for initial hole pro�le.

Figure 14. Normalized distribution of Von-Mises stress
along the optimal hole boundary for di�erent values of �.

a function of �, for di�erent initial guesses for the hole
boundary, are shown. It can be seen that for all initial
guesses, the normalized stress distributions along the
optimal hole boundary are the same. These results
clearly show the stability and high e�ciency of the
optimization method.
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Table 2. Normalized maximum Von-Mises stress around di�erent initial hole boundaries.

� 1 1.5 1.75 2 2.5 3
Normalized maximum

Von-Mises stress around initial hole
4.2377 3.665 3.299 3.2637 2.833 2.686

Figure 15. Geometry, dimension and boundary
conditions of the shoulder �llet.

7.3. Fillet plate under tension
The general geometry and notation for a symmetric

at plate with a shoulder �llet subject to uniaxial
tension is shown in Figure 15. The objective of this
optimization problem is to �nd out the optimal �llet
shape to produce the minimum stress concentration
factor. Due to symmetry, only one-half of the complete
plate is modeled in the MFGFE analysis. Values of
la = lb = 5l are used to keep the e�ect of plate length
on the state of stress in the vicinity of the �llets at a
negligible level. The load is assumed to be the uniform
tension of 1 MPa. A wide range of �llet geometries
was optimized in order to produce useful design data.
The values of a=b = 1:33, 1.50, 1.67, 2, and the values
of l=h = 1, 2, 3, 4, 5 are considered in this example.
A straight line is used to de�ne the initial �llet shape.
Point A is the �xed point and the stress at this point is
selected as the threshold stress. The number of control
points is 20.

The iteration history of the maximum principle
stress is shown in Figure 16(a)-(d). These results show
that the maximum principle stress converges after a
few iterations.

The optimum normalized maximum principal
stress values (Kt) obtained for all combinations of a=b
and l=h are presented in Table 3. It can be seen that for
a given a=b, the Kt value decreases with increasing l=h,

Table 3. The optimum normalized maximum �rst
principal stress values for di�erent geometries.

l=h a=b =1.33 a=b =1.5 a=b =1.67 a=b =2
1 1.5501 1.4157 1.3481 1.2365
2 1.2545 1.1856 1.13 1.0591
3 1.1625 1.1023 1.0567 1.0142
4 1.1066 1.0543 1.0158 1.0047
5 1.0696 1.0238 1.0028 1

Figure 16. Variations of maximum �rst principle stress
with iteration number for l=h = 1 and
a=b = 1:33; 1:5; 1:67; 2.
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as expected. Also, for a given l=h, Kt decreases with
increasing a=b, which demonstrates the �nite width
e�ects. Clearly, the lowest values of Kt are, therefore,
obtained for cases where both a=b and l=h are large.
It is interesting to note that in many instances, it is
possible to reduce the Kt values very close to unity, and
a signi�cant reduction for Kt values is achieved. The
normalized maximum principle stress along both the
initial and optimal shoulder �llet boundaries, as a func-
tion of x=l, for di�erent values of a=b and l=h = 1, are
shown in Figure 17(a)-(d). It is seen that the stresses
are uniform along the full length of the optimal �llet
boundary and the reduction of the maximum principal
stress along the optimal �llet boundary for a=b = 1:33,
1.5, 1.67, 2 (l=h = 1) are 33.1%, 40.5%, 34.7% and
39.9%, respectively. For instance, the stresses along
the optimal �llet boundary for a=b = 1:67 and l=h = 1
are in the range of 1.313-1.348, while the initial line
�llet gives maximum stress, which is 34.7% higher. he
optimal stress concentration factor with the present ge-
ometry is reported in the study by Waldman et al. [27]
to be 1.351, which shows excellent agreement with that
achieved using the present method. This comparison
demonstrates that the present method can achieve
good result quality in terms of accuracy and e�ciency.

Non-dimensional optimal tension �llet shapes for
di�erent values of a=b and l=h are also shown in

Figure 18. Optimal non-dimensionalised tension �llet
shape for a=b = 1:33 and l=h = 1, 2, 3, 4, 5.

Figures 18-21. It is obvious that, as the �llet gets
longer (i.e. l=h gets larger), the optimal �llet geometry
becomes 
atter.

8. Conclusion

In this paper, a new method is developed for shape
optimization problems using a modi�ed �xed grid FEM

Figure 17. Distributions of normalized �rst principle stress along initial and optimal �llet boundaries as a function of x=l
for l=h = 1 and a=b = 1:33; 1:5; 1:67; 2.
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Figure 19. Optimal non-dimensionalised tension �llet
shape for a=b = 1:5 and l=h = 1, 2, 3, 4, 5.

Figure 20. Optimal non-dimensionalised tension �llet
shape for a=b = 1:67 and l=h = 1, 2, 3, 4, 5.

and a gradientless approach. The objective of the
shape optimization problem is to minimize the stress
concentration. A new formulation for calculating the
BIEs sti�ness matrix is also presented. The shape of
the design boundary is modeled using cubic splines.
The optimal shape of a design boundary with constant
stress is achieved iteratively by adjusting the design
boundary shape, based on a simple algorithm. Accu-
rate pro�le shapes and associated stress concentration
factors have been determined for optimal �llets in
shoulder plates subjected to remote tension. A signi�-
cant range of �llet geometries has been considered. The
main advantage of using non-boundary-�tted meshes is
to reduce the computational costs of the analysis via
relaxation of the boundary conforming requirements
of an acceptable mesh. This approach simpli�es the
preprocessing stage signi�cantly and it is clear that
preprocessing makes up a noticeable part of analysis

Figure 21. Optimal non-dimensionalised tension �llet
shape for a=b = 2 and l=h = 1, 2, 3, 4, 5.

cost. The only cost that should be paid for this gain
is the slight increase of e�ort required for evaluation of
the sti�ness matrix of boundary intersecting elements.
Obviously, this additional e�ort is negligible when com-
pared to the cost of boundary-�tted mesh generation,
as in standard FEM. The accuracy and convergence
of the proposed method are analyzed via numerical
examples and results are compared with analytic or
numerical solutions. The results show good agreement
with these analytic or numerical solutions.
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