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Abstract. In the present study, the dynamic stability of double-walled boron nitride
nanotubes (DWBNNTs) including surface stress e�ects, is investigated, based on the
Gurtin-Murdoch continuum theory. Nonlocal piezoelasticity is incorporated into shell
theory to develop a non-classical model for DWBNNT. The e�ects of van der Waals
(vdW) forces, viscose uid passes through the inner nanotube and visco-Pasternak medium
are evaluated. Fluid-DWBNNT interaction is evaluated considering the slip boundary
condition and bulk viscosity. Hamilton's principle is utilized to derive governing equations
with regard to von K�arm�an geometric nonlinearity. Finally, the Incremental Harmonic
Balance Method (IHBM) indicates the Dynamic Instability Region (DIR) of DWBNNT.
A detailed parametric study is conducted, focusing on the combined e�ects of the surface
parameters, nonlocality, uid velocity, Knudsen number, thermal changes, vdW forces and
surrounding medium on the DIR of DWBNNT. Numerical results indicate that considering
surface stress e�ects shifts the DIR to a higher frequency zone.
c 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) and boron nitride nan-
otubes (BNNTs) have a similar hexagonal structure
and both are produced by rolling corresponding sheets.
BNNTs have more resistance to oxidation at high
temperature than other conventional nanotubes such
as CNTs, so they can be used in equipment with high
thermal resistance. CNTs exhibit metallic or semi-
conducting properties depending on their chirality,
but BNNTs are always considered semi-conducting
materials which are approximately independent of chi-
rality. Unlike CNTs, BNNTs have a strong piezo-
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electric property. This property makes them a novel
choice for producing sensors, actuators and other smart
control applications, such as the reinforcement of smart
nanocomposites. BNNTs possess extraordinary prop-
erties, such as high elastic modulus, high thermal con-
ductivity, low density, constant wide band gap, superb
structural stability and chemical inertness. BNNTs,
in general, have two highly symmetrical structures:
zigzag and armchair. For uniaxial strain, zigzag tubes
exhibit a longitudinal piezoelectric response, while the
armchair tubes have an electric dipole moment linearly
coupled to torsion [1].

Fluid-conveying structures have attracted a large
number of studies in literature [2-5]. In recent years, a
large amount of research work has been carried out on
the buckling and vibration of nanotubes with conveying
uid due to the application of nanotubes as uid
transport, gas storage and drug delivery devices. In
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order to mechanically model these structures, higher-
order continuum theories, such as partial nonlocal elas-
ticity, exact nonlocal elasticity, nonlocal piezoelasticity,
modi�ed couple stress, strain gradient elasticity and
surface elasticity theory have been recently employed.
Khosravian and Ra�i-Tabar [6] investigated viscous
uid through Multi-Walled CNTs (MWCNTs) for the
�rst time. The dynamic behavior of triple-walled CNTs
is reported by Yan et al. [7] considering the vdW
e�ect. Lee and Chang [8] reported the linear vibration
of Double-Walled CNTs (DWCNTs) conveying uid
based on nonlocal continuum mechanics. The e�ect
of internal moving uid and compressive load on the
nonlinear vibration and stability of CNTs is reported
by Rasekh and Khadem [9] based on the method of
multiple scales. Results show that beyond critical
uid velocity, buckling occurs. Wang and Ni [10]
showed that the e�ect of viscosity can be ignored
in the vibration analysis of CNTs conveying viscous
uid. Wang [11] found that the e�ect of small length
parameters on critical ow velocity can be ignored
in the vibration analysis of DWCNTs. Noncoaxial
vibration of uid-�lled MWCNTs is studied by Yan
et al. [12]. Ghavanloo et al. [13] studied the e�ect of
viscoelastic Winkler foundation on the instability of
CNTs conveying uid. They also obtained the e�ect
of viscoelastic modulus and damping factors on the
resonance frequency of the CNTs, based on the Finite
Element Method (FEM). The vibration and instability
of DWCNTs, based on the modi�ed couple stress
theory, which contains a material length parameter,
are investigated by Ke and Wang [14]. Results show
that the imaginary component of the frequency and
critical uid velocity of the uid-conveying DWCNTs
increase with an increase in the length scale parameter.
Farshidianfar and Soltani [15] investigated the non-
linear ow-induced vibration of Single-Walled CNTs
(SWCNTs) considering geometrical imperfection based
on the nonlocal continuum theory. The surrounding
medium is assumed as a Pasternak type and the e�ect
of imperfection on nonlinear frequency is discussed
using the method of multiple scales. Rashidi et al. [16]
reported a novel model for the vibration of nanotubes
conveying nanoow. The e�ect of small-size on the
bulk viscosity and slip boundary conditions of nanoow
through Knudsen number (Kn) is considered in this
paper. They found that incorporating the nanoow
slip boundary conditions hypothesis changes the results
drastically, as compared to continuum ow models.
Khoddami Maraghi et al. [17] studied the vibration and
instability of DWBNNT conveying viscous uid using
the nonlocal piezoelasticity theory and the Di�erential
Quadrature Method (DQM). The nonlinear dynamic
response of embedded uid-conveyed micro-tube re-
inforced by BNNTs is investigated by Ghorbanpour
Arani et al. [18]. Results show that electric and

thermal loadings are the controlling parameters to im-
prove the stability of the smart composite micro-tube.
Ghorbanpour Arani et al. [19] reported the nonlinear
nonlocal vibration of embedded DWCNT conveying
uid using a shell model. According to this study,
increasing the circumferential wave number leads to
enhanced nonlinearity. Nonlocal wave propagation in
an embedded DWBNNT conveying uid via the strain
gradient theory is reported by Ghorbanpour Arani et
al. [20]. They found that the phase velocities predicted
by the strain gradient theory are lower than those
predicted by Eringen's theory, because strain gradient
and Eringen theories contain three and one material
length scale parameters to capture the size e�ect,
respectively.

The partial nonlocal elasticity theory derives a
higher-order equation of motion without the corre-
sponding higher-order boundary conditions, but the
exact nonlocal elasticity theory derives a higher-order
governing di�erential equation with the corresponding
higher-order boundary conditions via the variational
principle. Recently, Lim [21] successfully established
an exact nonlocal elasticity theory and proved that
the sti�ness of a nanobeam is strengthened with the
presence of a nonlocal nanoscale.

As discussed above, the dynamic stability of
nanotubes conveying uid is not reported in literature.
Few studies have been done on the dynamic response of
CNTs. Ansari et al. [22] reported the dynamic stability
of SWCNT, including thermal environment e�ects,
based on Timoshenko beam and Euler-Bernoulli beam
theories. Results of linear dynamic stability show that
the di�erence between the instability region of local
and nonlocal beams is signi�cant for nanotubes with
lower aspect ratios. Nonlinear dynamic instability of
DWCNT under periodic excitation is reported by Fu et
al. [23], based on Euler-Bernoulli beam theory. Results
show that the area of DIR could be reduced by a
sti�ness medium and an increment in the aspect ratio
of nanotubes. Recently, Li and Wang [24] reported
the e�ect of small scale on the dynamic characteristic
of CNTs under axially oscillating loading. Parametric
resonance frequency is observed in the range of oscil-
lating frequencies, even for dynamic oscillating loads
smaller than the static buckling load.

Due to di�erences between the bulk and surface
properties, Gurtin and Murdoch developed classical
continuum mechanics [25]. The surface layer sur-
rounds the material bulk without slipping. In nano
structures, due to the high surface area to volume
ratio, the e�ect of the surface is signi�cant [26,27].
The vibration analysis of uid-conveying nanotubes
considering surface e�ects is investigated by Wang [28].
The results show that the surface e�ects with positive
elastic constant or positive tensile residual surface
stress tend to increase the natural frequency and
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critical ow velocity. Wang [29] studied the nonlinear
buckling analysis of nanobeams containing internal
owing uid. According to this study, the e�ect of
surface on buckling amplitude is very strong. Lei et
al. [30] investigated surface e�ects on the vibration
analysis of DWCNT based on the Timoshenko beam
theory.

As illustrated above, the dynamic stability of
BNNT is not reported in literature. In this article, the
dynamic stability of DWBNNTs is studied considering
internal viscose owing uid. Axial oscillating loading
is applied to the DWBNNT in a thermal environment.
Higher order nonlocal shell theory is used to derive the
nonlinear governing equations of embedded DWBNNT
considering electric-mechanical coupling. Also, the
e�ects of surface stress, nonlinear vdW forces and
visco-Pasternak medium are studied in this survey.
Galerkin and IHBMs are used to discretize space
and time domains and, �nally, an iterative approach
indicates the DIR of DWBNNT.

2. Deriving governing equations

Figure 1 shows a DWBNNT conveying owing uid
in a visco-Pasternak medium. This �gure shows a
DWBNNT with inner radius, R1, outer radius, R2,
thickness, h, and length, L. The uid velocity through
the DWBNNT is assumed as V0 in this study.

2.1. Nonlinear shell model
DWBNNT is modeled as coaxial cylindrical shells.
According to Donnell's cylindrical shell theory, the
displacement �eld can be expressed as:

~ui(x; �; z; t) = ui(x; �; t)� z @wi(x; �; t)@x
;

~vi(x; �; z; t) = vi(x; �; t)� z
Ri

@wi(x; �; t)
@�

;

~wi(x; �; z; t) = wi(x; �; t); (1)

where ~ui, ~vi and ~wi are the total displacements in the
axial (x), circumferential (�) and radial (z) directions
of the inner (i = 1) and outer (i = 2) tubes; ui, vi
and wi are the corresponding middle surface displace-
ments; and t represents time. The strain-displacement
relationship, according to the von K�arm�an nonlinear
theory, can be expressed as:

"xi = ui;x +
1
2
wi;x2 � zwi;xx;

"�i =
1
Ri

(vi;� + wi) +
1

2R2
i
wi;�2 � z

R2
i
wi;��;

x�i =
1
Ri
ui;� + vi;x +

1
Ri
wi;xwi;� � 2z

Ri
wi;x�: (2)

2.2. Fluid-DWBNNT interaction
The velocity components of the owing uid in the
axial, radial and circumferential directions can be
expressed as [3]:

Vx =
@~u1

@t
+ V0 cos(&);

Vr =
@ ~w1

@t
+ V0 sin(&);

V� =
@~v1

@t
; (3)

where & represents the attack angle of ow. The above
equations can be simpli�ed by considering cos(&) = 1
and sin(&) = @w1

@x [3]. To evaluate the interaction

Figure 1. DWBNNT conveying uid embedded in visco-Pasternak medium.
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between DWBNNT and uid, considering the viscosity
e�ect, Navier-Stokes equation can be used, as:

�f
DV
Dt

= �rp+ �fg + �r2V; (4)

where �, �f and p are the viscosity, density and
pressure of the uid, respectively, and D

Dt represents
the material derivative. The energy of viscosity
terms can be calculated applying an integral on the
uid area (Af ) to derive governing equations (Vf =RR

p;rw1dxdAf ) [17]. As described in [16], a modi�ed
Navier-stokes equation should be used to consider the
small-size e�ects on the ow �eld. However, the
viscosity of the uid should be replaced with e�ective
viscosity (�e) in Eq. (4), which is a function of Knudsen
number (Kn) as follows:

�e = �0

�
1

1 + aKn

�
; (5)

where �0 is the bulk viscosity and a is a coe�cient [16].
Eq. (4) should be modi�ed to consider slip boundary
conditions. Hence, the Velocity Correction Factor
(VCF) is calculated as [16]:

VCF =
Vavg,slip

Vavg,no slip

= (1 + aKn)
�

4
�

2� �v
�v

��
Kn

1 +Kn

�
+ 1
�
;
(6)

where Vavg,slip and Vavg,no slip are average ow velocities
through the nanotube, considering the slip boundary
condition and ignoring it. Also, �v is dependent on the
molecules tangential momentum [16]. The average ow
velocity of no-slip boundary conditions could be used
instead of the average ow velocity of slip-boundary
conditions by applying a velocity correction factor.

2.3. Energy method
Governing dynamic equations of DWBNNT are derived
using an energy method. Di�erent energy components
are calculated in this section. Strain energy can be
expressed as:

�i =
1
2

ZZZ
(�xi"xi + ��i"�i + �x�ix�i)Ridxd�dz:

(7)

The kinetic energy of the DWBNNT can be evaluated
as:

Ki =
1
2

ZZZ
�t
� _~u2
i + _~vi + _~wi

�
Ridxd�dz; (8)

where �t denotes the mass density of BNNT and the dot
indicates the time derivation. Also, the kinetic energy

of uid passing through the inner BNNT is:

Kf =
1
2

ZZ
�f

"� _~u1 + Vavg,slip
�2

+
� _~w1 + Vavg,slipw1;x

�2
+ _~v2

1

#
dxdAf : (9)

The Lennard-Jones model is used to evaluate the
vdW interlayer force in DWBNNT, so the work done
regarding the visco-Pasternak medium and vdW e�ect
can be expressed as:

Vv =
1
2

Z L

0
q1w1dx+

1
2

Z L

0
q2w2dx+

1
2

Z L

0
�Fmw2dx;

(10)

where q1 and q2 represent the interlayer vdW interac-
tion and Fm is the visco-Pasternak e�ect:

q1 = c(w2 � w1) + cn(w2 � w1)3;

q2 = �c(w2 � w1)� cn(w2 � w1)3;

Fm = Kww2 + cv _w2 �KGw2;xx; (11)

where c and cn are the linear and nonlinear vdW
coe�cients, Kw and KG are the spring and shear
constants of the Winkler and Pasternak foundations
and cv is the damping factor of the visco medium. The
electric �eld energy is:

Vei =
Z
DxiExidV; (12)

where Dxi and Exi are the electric displacement and
electric �eld in the axial direction for the ith tube,
respectively. The relation between the electric �eld and
the electric potential ('x) is expressed as:

Exi = �@'xi
@x

: (13)

2.4. Hamilton's principle
The governing equations can be derived using Hamil-
ton's principle:

�
Z t

0
(�1 + �2 �K1 �K2 �Kf � Vv

� Ve1 � Ve2 � �Vf )dt = 0: (14)

Substituting the energy terms into Eq. (14) and setting
the coe�cients of �ui, �wi, �vi and �'xi to zero results
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in:

�ui :

�Nxi;x � 1
Ri
Nx�i;� + �th�ui +m0

1
2R1

�fR2
1I �u1 = 0;

(15a)

�wi :

� [Nxiwi;x];x �Mxi;xx +
N�i
Ri
� 1
R2
i

[N�iwi;�];�

� 1
R2
i
M�i;�� � 2

Ri
Nx�iwi;x�

� 1
Ri
Nx�i;�wi;x � 1

Ri
Nx�i;xwi;�

� 2
Ri
Mx�i;x� � �th3

12
�wi;xx � �th3

12
1
R2
i

�wi;��

+ �th �wi + �fm0

�
R2

1I
2R1

�w1

+ �f
R2

1I
2R1

(VCFVavg,no slip)2 w1;xx

+ �f
R2

1I
R1

VCFVavg,no slip _w1;x

��f R
4
1I

8R1

�
�w1;xx +

1
R2

1
�w1;��

��
= �e

R2
1I

2R1
m0 [ _w1;xx + VCFVavg,no slipw1;xxx

+
1
R2

1I
_w1;�� � 1

R2
1I

_w1

+ VCFVavg,no slip
1
R2

1I
w1;x��

� 1
R2

1I
VCFVavg,no slipw1;x � 2

R2
1I

_v1;�

�
� (�1)i

R1o

Ri
(c(w2 � w1) + cn(w2 � w1)3)

�m1
R2o

Ri
(Kww2 + cv _w2 �KGr2w2);

(15b)

�vi :

� 1
Ri
N�i;� �Nx�i;x + �th�vi +m0�f

R2
1I

2R1
�v1 = 0;

(15c)

�'xi :

Dxi;x = 0; (15d)

where RiI and Rio are the internal and external radius
of the ith tube, and Nxi and Mxi are the resultant force
and moment per unit length, which are de�ned as:

Nxi =
Z
�xidz; N�i =

Z
��idz;

Nx�i =
Z
�x�idz; Mxi =

Z
�xizdz; (16)

and m0 = 0 for i = 2 and m0 = 1 for i = 1. Also
m1 = 0 for i = 1 and m1 = 1 for i = 2.

Neglecting the e�ects of owing uid, nonlinear
vdW force and the damping factor of the medium,
Eqs. (15) reduce to the governing equations of Ref. [31].

3. Surface elasticity theory

According to the Gurtin-Murdoch theory, the interac-
tion between the surface and bulk material causes in-
plane loads on BNNT [32] as:

�sxi = (2�s + �s)"xi + 2� s;

�s�i = (2�s + �s)"�i + 2�s;

�sxzi = �swi;x;

�s�zi =
1
Ri
�swi;�; (17)

where �s and �s are the surface Lame constants
and �s is the residual surface stress under an un-
strained condition; all of them having the (N/m)
unit. Also, superscript s refers to the surface layer.
In Eq. (17), � can be replaced by N , according to
Eq. (16). Unlike classical beam theory, stress in a
radial direction is signi�cant, considering the surface
stress e�ect, and changes linearly through the surface
thickness [25,32,33] (see Eq. (18) in Box I).

4. Nonlocal piezoelasticity theory

Nonlocal constitutive relations for a Donnell cylindri-
cal shell considering surface e�ect can be expressed
as [19,31,32,34]:

Nxi � (e0a)2r2Nxi =
Eh

1� �2

 
ui;x +

1
2
w2
i;x

+
�
Ri

(vi;� + wi) +
�

2R2
i
w2
i;�

!
� EhT (�x + ���)

1� �2 � h11Exih; (19a)
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�z =

�
�sxz;x + 1

R�
s
�z;� � �s �w

�
at top

+
�
�sxz;x + 1

R�
s
�z;� � �s �w

�
at bottom

2

�
�
�sxz;x + 1

R�
s
�z;� � �s �w

�
at top

� ��sxz;x + 1
R�

s
�z;� � �s �w

�
at bottom

h
z: (18)

Box I

N�i � (e0a)2r2N�i =
Eh

1� �2

�
1
Ri
vi;� +

wi
Ri

+
1

2R2
i
wi;�2 + �ui;x +

�
2
w2
i;x

�
� EhT (�� + ��x)

1� �2 ; (19b)

Nx�i � (e0a)2r2Nx�i

=
Eh

2(1 + �)

�
1
Ri
ui;� + vi;x +

1
Ri
wi;�wi;x

�
;
(19c)

Mxi � (e0a)2r2Mxi

=
�Eh3

12(1� �2)

�
wi;xx +

�
R2
i
wi;��

�
+

�h2

6(1� �)

�
� swi;xx + �s

1
R2
i
wi;�� � �s �wi

�
;
(19d)

M�i � (e0a)2r2M�i

=
�Eh3

12(1� �2)

�
1
R2
i
wi;�� + �wi;xx

�
+

�h2

6(1� �)

�
�swi;xx + �s

1
R2
i
wi;�� � �s �wi

�
;
(19e)

Mx�i � (e0a)2r2Mx�i

=
�Eh3

12(1 + �)

�
1
Ri
wi;x�

�
; (19f)

Dxi � (e0a)2r2Dxi

= h11

 
@ui
@x

+
1
2

�
@wi
@x

�2

+ z
@ i
@x
� �xT

!
+ �11Exi; (19g)

where e0a, E, T , h11, �11, �x and �� represent
the nonlocal parameter, Young's modulus, thermal
changes, piezoelectric coe�cient, dielectric permittiv-
ity, and thermal expansion coe�cients in axial and
circumferential directions, respectively. Also (r2)
denotes the Laplace operator [31]. The above equations
can be applied to bulk material. Considering Eq. (17),
nonlocal equations for the surface layer in electric and
thermal environments can be derived as:

(1� (e0a)2r2)Ns
xi =(2�s + �s)("xi � �sxT )

� hs11Exi + 2�s; (20a)

(1�(e0a)2r2)Ns
�i=(2�s+�s)("�i��sxT )+2�s;

(20b)

(1� (e0a)2r2)Ms
xi

= �(2�s + �s)
�
R2
iI +R2

io
2

wi;xx
�
; (20c)

(1� (e0a)2r2)Ms
�i

= �(2�s + �s)
�
R2
iI +R2

io
2R2

i
wi;��

�
; (20d)

(1� (e0a)2r2)Ds
xi = hs11

�
ui;x +

1
2
wi;x2 � �sxT

�
+ �s11Exi; (20e)

The �nal governing equations are derived by substitut-
ing Eqs. (19)-(20) into Eq. (15) as:h Eh

1� �2

�
ui;x +

1
2
wi;x2 +

�
Ri

(vi;� + wi) +
�

2R2
i
w2
i;�

�
� EhT (�x + ���)

1� �2 � h11Exih
i
;x

+

"
(2�s + �s)

�
ui;x +

1
2
w2
i;x � �sxT

�
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� hs11Exi + 2� s
#
;x

+
1
Ri

"
Eh

2(1 + �)

 
1
Ri
ui;�

+ vi;x +
1
Ri
wi;�wi;x

!#
;�

= (1� (e0a)2r2)

"
(�th+ 2�s)�ui

+m0
1

2R1
�fR2

1I �u1

#
; (21a)

�(1� (e0a)2r2)

(
[Nxiwi;x];x +

1
R2
i

[N�iwi;�];�

+
2
Ri
Nx�iwi;x� +

1
Ri
Nx�i;�wi;x +

1
Ri
Nx�i;xwi;�

)
�
" �Eh3

12(1� �2)

�
wi;xx +

�
R2
i
wi;��

�
+

�h2

6(1� �)

�
�swi;xx +

�s

R2
i
wi;�� � �s �wi

�#
;xx

+

"
(2�s + �s)

�
R2
iI +R2

io
2

wi;xx
�#

;xx

� 2�swi;xx

+
1
Ri

"
Eh

1� �2

 
1
Ri
vi;� +

wi
Ri

+
1

2R2
i
wi;�2

+ �ui;x +
�
2
w2
i;x

!
� EhT (�� + ��x)

1� �2

#
+

1
Ri

"
(2�s + �s)

 
1
Ri

(vi;� + wi) +
1

2R2
i
wi;�2

� �s�T
!

+ 2�s
#
� 1
R2
i

" �Eh3

12(1� �2)

 
1
R2
i
wi;��

+ �wi;xx

!
+

�h2

6(1� �)

 
�swi;xx +

�s

R2
i
wi;��

��s �wi

!#
;��

+
1
R2
i

"
(2�s+�s)

 
R2
iI+R2

io
2R2

i
wi;��

!#
;��

� 2�s
1
R2
i
wi;�� +

2
Ri

"
Eh3

12(1 + �)

�
1
Ri
wi;x�

�#
;x�

= (1� (e0a)2r2)

"
�e
R2

1I
2R1

m0

 
_w1;xx

+ VCFVavg,no slipw1;xxx +
1
R2

1I
_w1;�� � 1

R2
1I

_w1

+ VCFVavg,no slip
1
R2

1I
w1;x��

� 1
R2

1I
(VCF)Vavg,no slipw1;x � 2

R2
1I

_v1;�

!#
� (�1)i

R1o

Ri
(c(w2 � w1) + cn(w2 � w1)3)

�m1
R2o

Ri

�
Kww2 + cv _w2 �KGr2w2

�
; (21b)

1
Ri

"
Eh

1� �2

 
1
Ri
vi;� +

wi
Ri

+
1

2R2
i

(wi;�)2

+ �ui;x +
�
2
wi;x2

!
� EhT (�� + ��x)

1� �2

#
;�

+
1
Ri

"
(2�s + �s)

  
1
Ri

(vi;� + wi)

+
1

2R2
i

(wi;�)2 � �s�T
!
� �sxT

!
+ 2�s

#
;�

+

"
Eh

2(1 + �)

�
1
Ri
ui;� + vi;x +

1
Ri
wi;�wi;x

�#
;x

=(1�(e0a)2r2)
�

(�th+2�s)�vi+m0�f
R2

1I
2R1

�v1

�
;

(21c)"
h11h

�
ui;x +

1
2
wi;x � �xT

�
� �11h'xi;x

#
;x

+

"
hs11

 
ui;x +

1
2
wi;x2 � �sxT

!
� �s11'xi;x

#
;x

= 0; (21d)

It should be noted that a combination of electro-
thermo-mechanical loading is exerted on the surface
and bulk material of DWBNNT in the axial and
circumferential directions, which are:

Nxi = NM
xi +NT

xi +NE
xi +NsT

xi +NsE
xi + 2�s;

N�i = NT
�i +NsT

�i + 2�s; (22)
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where superscript M , T and E indicate the mechanical,
thermal and electric components of the load as:

NT
xi =

�Eh�xT
1� � ;

NT
�i =

�Eh��T
1� � ;

NsT
xi = �(2�s + �s)�sxT;

NsT
�i = �(2�s + �s)�s�T;

NsE
xi = �hs11Exi;

NE
xi = �h11Exih;

NM
xi = N; (23)

and torsional loading is neglected (Nx�i = 0).
The following dimensionless parameters are de-

�ned to simplify the governing equations:

X =
x
L
; Ui;Wi; Vi =

ui; wi; vi
Ri

; � =
h
L
;

� =
e0a
L
; � =

t
L

s
E
�t
; 'ni =

'xih11

EL
;

� =
�f
�t
; �� =

�s

�tL
; Rni =

Ri
L
;

�x = �xT; �� = ��T; ��x = �sxT;

��� = �s�T; Cvdw =
cL
E
; CN =

cnL3

E
;

�n =
�

L
p
E�t

; Knw =
KwL
E

; KnG =
KG

EL
;

v=Vavg,no slip

r
�t
E
; Cvis=

cvp
E�t

; In=
If

A1L2 ;

H =
h2

11
E�11

; �H =
hs11
h11L

; �e =
�s11
�11L

;

NM =
N
EL

; ��s =
�s
EL

; ��s =
�s
EL

;

tn =
�s

EL
; RniI =

RiI
L
; Rnio =

Rio
L
: (24)

Substituting the above dimensionless relations to
Eqs. (21), yields the dimensionless motion equations.

5. Solution method

5.1. Galerkin approach
The Galerkin method is used to convert the govern-
ing equations to ordinary di�erential equations. So,
dimensionless mechanical displacements and electric
potential are assumed as:

Ui(X; �) = ui(X)Ui(�);

Wi(X; �) = wi(X)Wi(�);

Vi(X; �) = vi(X)V i(�);

'ni(X; �) = �i(X)�i(�); (25)

where Ui(�), Wi(�), V i(�) and �i(�) are related to
dynamical response and ui(X), vi(X), wi(X), �i(X)
should satisfy the boundary conditions resulted from
the variational process:

ui(X) = wi(X) = �i(X) = �i(X) = sin(�X);

at X = 0; 1: (26)

Time dependent equations are derived as follows, after
substituting Eqs. (25) and (26) into a dimensionless
form of Eq. (21) and applying the Galerkin method.
It should be noted that through this process, electric
and mechanical �elds will be decoupled, considering
Eq. (21d).

!2M
d2(Y (��))
d��2 + ! �C

d(Y (��))
d��

+ (KL+KNL�(N0+Ns cos(2��))Kg)Y =0;
(27)

where �� = !� is a new parameter containing the non-
dimensional frequency of excitation (2!) and:

NM = N0 +Ns cos(2��); (28)

is substituted in Eq. (27), where N0 is the static
component of dimensionless harmonic axial load (NM )
andNs is its dynamic component [23]. Also, M , �C, KL,
KNL and Kg are the mass, damping, linear sti�ness,
nonlinear sti�ness and geometric sti�ness matrices,
respectively, and Y is the displacement vector as:

M =

26666664
m11 0 0 0 0 0

0 m22 0 0 0 0
0 0 m33 0 0 0
0 0 0 m44 0 0
0 0 0 0 m55 0
0 0 0 0 0 m66

37777775 ;
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KL =

26666664
k11 0 0 0 0 0
0 k22 0 0 0 0
0 0 k33 k34 0 0
0 0 k43 k44 0 0
0 0 0 0 k55 0
0 0 0 0 0 k66

37777775 ;

�C =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 �c33 0 0 0
0 0 0 �c44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;

KNL =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 KN33 KN34 0 0
0 0 KN43 KN44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;

Kg =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 kg33 0 0 0
0 0 0 kg44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;
Y = [U1; U2;W1;W2; V 1; V 2]T : (29)

The components of the above matrices have been stated
in Appendix A.

5.2. IHBM
IHBM represents high precision in dynamic stability
analysis [22,35,36]. In this approach, (N�s ; !�) are
considered as known instability boundary points cor-
responding to the solution of Eq. (27), i.e. Y �(��), a
neighboring instability point, is assumed as:

Y (��) = Y �(��) + �Y (��);

Ns = N�s + �Ns; ! = !� + �!: (30)

Linear incremental equations can be obtained by sub-
stituting Eq. (30) into Eq. (27) and neglecting higher
order terms as:

!�2M d2(�Y (��))
d��2 + !� �C

d(�Y (��))
d��

+ (KL +K�N � (N0 +N�s cos(��))Kg)�Y (��)

= R�
�

2!�M d2(Y �(��))
d��2 + �C

d(Y �(��))
d��

�
�!

+ cos(��)KgY �(��)�Ns; (31)

where:

R =�
"
!�2M d2(Y �(��))

d��2 + !� �C
d(Y �(��))

d��

+(KL+K�NL�(N0+N�s cos(��))Kg)Y �(��)

#
;
(32)

is the corrective term and will be zero on the exact
instability boundary points [22]. KNL equals K�NL
when Y (��) is Y �(��), and K�N is:

K�N =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 kn33 kn34 0 0
0 0 kn43 kn44 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;

kn33 =� K1K3

R3
n1

[�6Rn2W2�:W1�:R2
n1

+ 3Rn1R2
n2(W2�)2 + 3R3

n1(W1�)2];

kn34 =� K1K3

R3
n1

[6Rn1W2�:W1�:R2
n2

� 3Rn2R2
n1(W1�)2 � 3R3

n2(W2�)2];

kn43 =
K2K3

R3
n2

[�6Rn2W2�:W1�:R2
n1

+ 3Rn1R2
n2(W2�)2 + 3R3

n1(W1�)2];

kn34 =
K2K3

R3
n2

[6Rn1W2�:W1�:R2
n2

� 3Rn2R2
n1(W1�)2 � 3R3

n2(W2�)2]; (33)

where K1, K2 and K3 are de�ned in Appendix A.
The principal region of instability can be de-

termined by considering Y �(��) and �Y (��) as the
harmonic functions with period 2�. So, Fourier series
expansion is used in this method as:

Y �n (��) =
NhX
i=1

(
an(2i�1) cos [(2i� 1)�� ]

+ bn(2i�1) sin [(2i� 1)�� ]

)
= �:An;

n = 1; 2; � � � ; 6;
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�Yn(��) =
NhX
i=1

(
�an(2i�1) cos [(2i� 1)�� ]

+ �bn(2i�1) sin[(2i� 1)�� ]

)
= �:�An;

(34)

where Nh is a large integer, and:

� = [ cos(��); cos(3��); � � � ; cos[(2Nh � 1)�� ];

sin(��); sin(3��); � � � ; sin[(2Nh � 1)�� ]];

An = [an1; an3; � � � ; an(2Nh�1); bn1; bn3; � � � ;
bn(2Nh�1)]T ;

�An = [�an1;�an3; � � � ;�an(2Nh�1);

�bn1;�bn3; � � � ;�bn(2Nh�1)]T ;

n = 1; 2; � � � ; 6: (35)

On the other hand:
Y � = �Q:A; �Y = �Q:�A; (36)

where:

�Q =

26666664
� 0 0 0 0 0
0 � 0 0 0 0
0 0 � 0 0 0
0 0 0 � 0 0
0 0 0 0 � 0
0 0 0 0 0 �

37777775 ;

A =

26666664
A1
A2
A3
A4
A5
A6

37777775 ; �A =

26666664
�A1
�A2
�A3
�A4
�A5
�A6

37777775 : (37)

Inserting Eq. (36) into Eq. (31) and applying the
Galerkin method results in:

2�Z
0

�(�Y (��))T :

"
!�2M d2(�Y (��))

d��2 + !� �C
d(�Y (��))

d��

+ (KL +K�N � (N0 +N�s cos(��))Kg)�Y (��)

#
d��

=
2�Z
0

�(�Y (��))T :

"
R�

 
2!�M d2(Y �(��))

d��2

+ �C
d(Y �(��))

d��

!
�! + cos(��)KgY �(��)�Ns

#
d�� :

(38)

A linear system of equations containing �A, �! and
�Ns can be obtained as:

S1:�A = RR+ S2�! + S3�Ns; (39)

where:
S1 = !�2H1 + !�H2 +H3 +H5 +H6;

S2 = �(2!�H1 +H2):A;

S3 = H7:A;

RR = � �!�2H1 + !�H2 +H3 +H4 +H5
�
:A;

H1 =
Z 2�

0

�QTM
d2 �Q
d��2 d�� ;

H2 =
Z 2�

0

�QTC
d �Q
d��

d�� ;

H3 =
Z 2�

0

�QTKL �Qd�� ;

H4 =
Z 2�

0

�QTK�NL �Qd�� ;

H5 = �
Z 2�

0

�QT (N0 +N�s cos(��))Kg �Qd�� ;

H6 =
Z 2�

0

�QTK�N �Qd�� ;

H7 = �
Z 2�

0

�QT cos(��)Kg �Qd�� : (40)

The following procedure should be done to derive
dynamic instability regions.

Step 1: Linear free vibration analysis. After
neglecting the nonlinear sti�ness matrix and dynamic
axial load, Eq. (27) will be reduced to:

!2M
d2(Y (��))
d��2 + ! �C

d(Y (��))
d��

+KLY = 0: (41)

This equation is a generalized eigenvalue problem
and could be changed into the standard form [17,37].
Eq. (41) can be written in state-space representation:

_Z = BZ; (42)

in which B and Z are de�ned as:

B =
�

0 I
�M�1KL �M�1 �C

�
; Z =

�
Y
_Y

�
; (43)

where 0 and I represent zero and unitary matrices,
respectively.

The fundamental frequency and corresponding
eigenvector in a linear problem will be considered as
primary values of !� and vector A in Eq. (39).
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Step 2: Static buckling analysis. By neglecting
inertia terms, the dynamic component of axial load
(Ns), and assuming N0 = Pcr, Eq. (27) will be reduced
to:

(KL +KNL � PcrKg)Y = 0; (44)

where Pcr stands for dimensionless static critical buck-
ling load and can be determined by solving the above
eigenvalue problem. N0 and Ns will be considered as:

N0 = �1Pcr; Ns = �2Pcr; (45)

where �1 and �2 are the static and dynamic load
factors.

Step 3: Dynamic instability analysis. Eq. (39)
denotes a linear system with 2N equations and 2N + 2
unknowns (�A, �!, �Ns). One of the components
of vector A is chosen as a reference constant, with its
corresponding increment set to zero (in this analysis
a31 = 1 and �a31 = 0) and �Ns (or �!) is speci�ed as
an active increment. Other unknowns can be derived
from Eq. (39) considering initial values described in
previous steps. New values for A and ! can be
calculated as a1 + �a1; b1 + �b1; � � � ; !� + �!. This
procedure will be continued until the value of RR is
small enough, then a new iterative step begins, giving
an active increment �Ns to Ns.

Finally, the �rst boundary of DIR will be deter-
mined. The other boundary of DIR can be speci�ed
considering b31 as a reference constant (b31 = a31,
�b31 = 0) and repeating Step 3.

6. Results and discussion

In this paper, the dynamic stability of DWBNNT con-
veying viscose uid is investigated considering surface
stress e�ects. DWBNNT is under periodic excitation
in a thermal environment and embedded in a visco-
Pasternak medium. Hamilton's principle is used to
derive nonlinear governing equations based on nonlocal
shell theory. IHBM is utilized to derive dynamic
instability regions. The results of this study are based
on the following geometric and mechanical data for the
bulk material [17,38,39]:

R1 = 11:43 nm; R2 = 12:31 nm;

L
R1

= 10; h = 0:075 nm;

�x = 1:2� 10�6 1
�C ;

�� = 0:6� 10�6 1
�C ; T = 20 �C;

E = 1:8 Tpa; �t = 3487
kg
m3 ;

�f = 1000
kg
m3 ;

�0 = 0:653� 10�3 Pa.s;

Kw = 8:9995035� 1017 N
m3 ;

KG = 2:071273
N
m
;

cv = 4:491989398� 10�7 N.s
m3 ;

c = 9:91866693� 1019 N
m3 ;

cn = 2:201667� 1031 N
m5 ;

h11 = 0:95
C

m2 ; �11 = 0:9824� 10�8 F
m
:

In Figure 2, the results of this study are compared with
the results of [24] for DIR of SWCNT. The e�ects of
surface stress, vdW force, uid owing, shear and the
damping constant of the medium are neglected in this
�gure. As can be seen, the two analyses agree well and
show similar results.

In Figures 3 to 12, DIRs of DWBNNT are shown
and the e�ects of various parameters on them are
discussed. The vertical axis indicates 
, which is the
ratio of nonlinear to linear frequency (
 = !NL=!L),
and the horizontal axis represents the dynamic load
factor (�2).

Figure 3 depicts the e�ect of the nonlocal param-
eter on DIR of DWBNNT. As can be seen, increasing
the nonlocal parameter shifts the DIR to the lower
frequency zone. Increasing the nonlocal parameter in-
creases the length of the b�N bond and, subsequently,
the sti�ness of DWBNNT decreases.

In Figure 4, the DIR of DWBNNT is shown for
di�erent dimensionless ow velocities. Increasing the

Figure 2. Comparison between the results of present
study and the results of [24] for SWCNT.
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Figure 3. The e�ect of nonlocality on DIR of a
DWBNNT.

Figure 4. The e�ect of uid velocity on DIR of a
DWBNNT.

uid velocity through the inner nanotube decreases the
frequency. Shifting the DIRs is more obvious in higher
ow velocities. Flowing uid through the DWBNNT
exerts compressive axial load, and for higher velocities,
the magnitude of this load increases. So, increasing
ow velocity results in a decrease in frequency.

Figure 5 indicates the e�ect of Knudsen number
on DIR of DWBNNT. As shown in this �gure, con-
tinuum uid (Kn = 0) predicts the highest frequency
zone. Considering uid with higher Knudsen number
results in shifting the DIR to the lower frequency zone
very slowly. In dynamic stability analysis, the small-
size e�ect of liquid nanoow can be ignored because the
Knudsen number has small values. As the Knudsen
number increases, the mean free path of the liquid
molecules increases and results in lower sti�ness.

Figure 6 represents the e�ect of viscosity on the
DIR of DWBNNT. When viscosity is neglected, the
DIR of DWBNNT consists of two di�erent boundaries,
but considering viscosity results in one integrated path
with a U-turn portion. This result can be seen in [36],
as the damping coe�cient e�ect on DIR is studied.

Figure 7 shows that DWBNNT's DIR shifts to a

Figure 5. The e�ect of Knudsen number on DIR of a
DWBNNT.

Figure 6. The e�ect of viscosity on DIR of a DWBNNT.

Figure 7. The e�ect of surrounding medium on DIR of a
DWBNNT.

higher frequency zone as the medium becomes stronger.
Considering the Winkler medium leads to a higher
frequency zone, very drastically, because of the Winkler
coe�cient's large value. Also, by considering the
Pasternak medium, DIR acts in the same manner with
slower changes.
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Figure 8. The e�ect of vdW forces on DIR of a
DWBNNT.

Figure 9. The e�ect of high temperature environment on
DIR of a DWBNNT.

In Figure 8, the vdW e�ect is represented. This
�gure shows that considering vdW e�ects results in a
higher frequency zone. Also, considering the nonlinear
term of vdW forces has an important role in DIRs. As
shown in this �gure, considering this e�ect moves the
origin of DIR towards the higher frequency zone.

Figure 9 illustrates the e�ect of temperature
change on the DIR of DWBNNT considering high
temperature environments. At high temperatures (�x,
�� � 0), an increase in temperature change leads the
DIR to the lower frequency zone. As shown in this
�gure, the e�ect of temperature change on DIR is very
negligible. Drastic thermal changes result in reducing
the strength of the b � N bond, so, limited thermal
changes should be applied. According to Eq. (23),
increasing temperature induces compressive load in
DWBNNT and, subsequently, a decrease in frequency
is not unexpected.

The e�ect of static load factor (�1) on the DIR
of DWBNNT is shown in Figure 10. It is found that
increasing the static load factor shifts the DIR towards

Figure 10. The e�ect of static load factor on DIR of a
DWBNNT.

Figure 11. The e�ect of residual surface stress on DIR of
a DWBNNT.

Figure 12. The e�ect of surface modulus on DIR of a
DWBNNT.

the origin. Considering Eq. (45), axial loading with a
higher static load factor is relevant to a higher static
compressive load, so, this result is reasonable.

Finally, the e�ect of surface parameters on the
DIR of DWBNNT is shown in Figures 11 and 12.
According to Figure 11, a higher frequency zone refers
to higher residual surface stress. Based on [25], positive
values of �s make DWBNNT sti�er, due to applying
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tensile loading. The e�ect of surface modulus on the
DIR of DWBNNT is presented in Figure 12. As the
surface modulus increases, the DIR moves to a higher
frequency zone due to sti�ness increasing.

7. Conclusion

By applying IHBM and considering the charge equa-
tion, the dynamic stability of embedded DWBNNT
conveying viscous uid was investigated using a nonlo-
cal shell model. The e�ects of the surrounding elastic
medium and nonlinear vdW forces between the inner
and outer nanotubes were taken into account. Also,
the e�ect of uid-DWBNNT interaction was studied
considering slip boundary conditions. The following
conclusions may be made from the results:

� Considering surface e�ects in DWBNNT is very
signi�cant; increasing residual surface stress and
surface modulus shift DIR to a higher frequency
zone.

� Increasing the nonlocal parameter shifts the DIR to
the lower frequency zone.

� Considering uid velocity and Knudsen number
results in shifting the DIR to the lower frequency
zone, and, for liquid uid, the e�ect of Knudsen
number can be vanished.

� Considering viscosity results in one integrated path
for DIR instead of di�erent boundaries.

� Considering the surrounding medium results in a
higher frequency zone.

� Considering vdW e�ects results in a higher fre-
quency zone.

� At high temperatures, an increase in temperature
change shifts the DIR to the lower frequency zone.

� It is obvious that increasing the static load factor
shifts DIR to a higher frequency zone.

Acknowledgments

The author would like to thank the reviewers for their
comments and suggestions to improve the clarity of
this article. The authors are grateful to the Uni-
versity of Kashan for supporting this work by Grant
No. 65475/48. They would also like to thank the
Iranian Nanotechnology Development Committee for
their �nancial support.

References

1. Salehi-Khojin, A. and Jalili, N. \Buckling of boron ni-
tride nanotube reinforced piezoelectric polymeric com-
posites subject to combined electro-thermo-mechanical
loadings", Compos. Sci. Tech., 68(6), pp. 1489-1501
(2008).

2. Pa��doussis, M.P., Chan, S.P. and Misra, A.K. \Dynam-
ics and stability of coaxial cylindrical shells containing
owing uid", J. Sound and Vib., 97(2), pp. 201-235
(1984).

3. Pa��doussis, M.P., Fluid-Structure Interactions: Slen-
der Structures and Axial Flow, Academic Press, Lon-
don (1998).

4. Amabili, M., Pellicano, F. and Pa��doussis, M.P. \Non-
linear dynamics and stability of circular cylindrical
shells conveying owing uid", Comput. Struct., 80(9-
10), pp. 899-906 (2002).

5. Amabili, M., Karagiozis K. and Pa��doussis, M.P. \Ef-
fect of geometric imperfections on non-linear stability
of circular cylindrical shells conveying uid", Int. J.
Non-Linear Mech., 44(3), pp. 276-289 (2009).

6. Khosravian, N. and Ra�i-Tabar, H. \Computational
modelling of the ow of viscous uids in carbon
nanotubes", J. Phys. D: Appl. Phys., 40(22), pp. 7046-
7052 (2007).

7. Yan, Y., He, X.Q. and Zhang, L.X. \Dynamic behavior
of triple-walled carbon nanotubes conveying uid", J.
Sound and Vib., 319(3-5), pp. 1003-1018 (2009).

8. Lee, H.L. and Chang, W.J. \Vibration analysis of uid-
conveying double-walled carbon nanotubes based on
nonlocal elastic theory", J. Phys. Condens. Matter,
21(11), pp. 115302-1:5 (2009).

9. Rasekh, M. and Khadem, S.E. \Nonlinear vibration
and stability analysis of axially loaded embedded
carbon nanotubes conveying uid", J. Phys. D: Appl.
Phys., 42(13), pp. 135112-1:8 (2009).

10. Wang, L. and Ni, Q. \A reappraisal of the com-
putational modelling of carbon nanotubes conveying
viscous uid", Mech. Res. Commun., 36(7), pp. 833-
837 (2009).

11. Wang, L. \Dynamical behaviors of double-walled car-
bon nanotubes conveying uid accounting for the role
of small length scale", Comput. Mat. Sci., 45(2), pp.
584-588 (2009).

12. Yan, Y., Wang, W.Q. and Zhang, L.X. \Noncoaxial vi-
bration of uid-�lled multi-walled carbon nanotubes",
Appl. Math. Model., 34(1), pp. 122-128 (2010).

13. Ghavanloo, E., Daneshmand, F. and Ra�ei, M. \Vi-
bration and instability analysis of carbon nanotubes
conveying uid and resting on a linear viscoelastic
Winkler foundation", Physica E, 42(9), pp. 2218-2224
(2010).

14. Ke, L.L. and Wang, Y.S. \Flow-induced vibration
and instability of embedded double-walled carbon
nanotubes based on a modi�ed couple stress theory",
Physica E, 43(5), pp. 1031-1039 (2011).

15. Farshidianfar, A. and Soltani, P. \Nonlinear ow-
induced vibration of a SWCNT with a geometrical
imperfection", Comput. Mat. Sci., 53(1), pp. 105-116
(2012).



2370 A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356{2374

16. Rashidi, V., Mirdamadi, H.R. and Shirani, E. \A
novel model for vibrations of nanotubes conveying
nanoow", Comput. Mat. Sci., 51(1), pp. 347-352
(2012).

17. Khodami Maraghi, Z., Ghorbanpour Arani, A., Ko-
lahchi, R., Amir, S. and Bagheri, M.R. \Nonlocal
vibration and instability of embedded DWBNNT con-
veying viscose uid", Compos. Part B, Eng., 45(1),
pp. 423-432 (2013).

18. Ghorbanpour Arani, A., Shajari, A.R., Atabakhshian,
V., Amir, S. and Loghman, A. \Nonlinear dynamical
response of embedded uid-conveyed micro-tube rein-
forced by BNNTs", Compos. Part B, Eng., 44(1), pp.
424-432 (2013).

19. Ghorbanpour Arani, A., Zarei, M.S., Amir, S. and
Khodami Maraghi, Z. \Nonlinear nonlocal vibration of
embedded DWCNT conveying uid using shell model",
Physica B, 410(0), pp. 188-196 (2013).

20. Ghorbanpour Arani, A., Kolahchi, R. and Vossough,
H. \Nonlocal wave propagation in an embedded
DWBNNT conveying uid via strain gradient theory",
Physica B, 407(21), pp. 4281-4286 (2012).

21. Lim, C.W. \On the truth of nanoscale for nanobeams
based on nonlocal elastic stress �eld theory: Equilib-
rium, governing equation and static deection", Appl.
Math. Mech., 31, pp. 37-54 (2010).

22. Ansari, R., Gholami, R. and Sahmani, S. \On the
dynamic stability of embedded single-walled carbon
nanotubes including thermal environment e�ects", Sci-
entia Iranica, 19(3), pp. 919-925 (2012).

23. Fu, Y., Bi, R. and Zhang, P. \Nonlinear dynamic
instability of double-walled carbon nanotubes under
periodic excitation", Acta Mech. Solida Sin., 22(3),
pp. 206-212 (2009).

24. Li, H.B. and Wang, X. \E�ect of small scale on
the dynamic characteristic of carbon nanotubes under
axially oscillating loading", Physica E, 46, pp. 198-205
(2012).

25. Gurtin, M.E. and Murdoch, A.I. \A continuum theory
of elastic material surface", Arch. Ration. Mech. An.,
57(4), pp. 291-323 (1975).

26. Ansari, R. and Sahmani, S. \Bending behavior and
buckling of nanobeams including surface stress e�ects
corresponding to di�erent beam theories", Int. J. Eng.
Sci., 49(11), pp. 1244-1255 (2011).

27. Assadi, A. and Farshi, B. \Vibration characteristics
of circular nanoplates", J. Appl. Phys., 108(7), pp.
074312-074315 (2010).

28. Wang, L. \Vibration analysis of uid-conveying nan-
otubes with consideration of surface e�ects", Physica
E, 43(1), pp. 437-439 (2010).

29. Wang, L. \Surface e�ect on buckling con�guration of
nanobeams containing internal owing uid A nonlin-
ear analysis", Physica E, 44(4), pp. 808-812 (2012).

30. Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. \Surface
e�ects on the vibrational frequency of double-walled
carbon nanotubes using the nonlocal Timoshenko
beam model", Compos. Part B: Eng., 43(1), pp. 64-69
(2012).

31. Ghorbanpour Arani, A., Amir, S., Shajari, A.R.
and Mozdianfard, M.R. \Electro-thermo-mechanical
buckling of DWBNNTs embedded in bundle of CNTs
using nonlocal piezoelasticity cylindrical shell theory",
Compos. Part B: Eng., 43(2), pp. 195-203 (2012).

32. Ansari, R. and Sahmani, S. \Surface stress e�ects on
the free vibration behavior of nanoplates", Int. J. Eng.
Sci., 49(11), pp. 1204-1215 (2011).

33. Lu, P., He, L.H., Lee, H.P. and Lu, C. \Thin plate
theory including surface e�ects", Int. J. Solids and
Struct., 43(16), pp. 4631-4647 (2006).

34. Ke, L.L., Wang, Y.S. and Wang, Z.D. \Nonlinear
vibration of the piezoelectric nanobeams based on the
nonlocal theory", Compos. Struct., 94(6), pp. 2038-
2047 (2012).

35. Fu, Y.M., Zhang, J. and Bi, R.G. \Analysis of the
nonlinear dynamic stability for an electrically actuated
viscoelastic microbeam", Microsys. Tech., 15(5), pp.
763-769 (2009).

36. Wu, G.Y. \The analysis of dynamic instability on the
large amplitude vibrations of a beam with transverse
magnetic �elds and thermal loads", J. Sound and Vib.,
302(1-2), pp. 167-177 (2007).

37. Amabili, M., Nonlinear Vibrations and Stability of
Shells and Plates, Cambridge University Press, New
York (2008).

38. Ra�ei, M., Mohebpour, S.R. and Daneshmand, F.
\Small-scale e�ect on the vibration of non-uniform
carbon nanotubes conveying uid and embedded in
viscoelastic medium", Physica E, 44(7-8), pp. 1372-
1379 (2012).

39. Ghorbanpour Arani, A., Roudbari, M.A. and Amir, S.
\Nonlocal vibration of SWBNNT embedded in bundle
of CNTs under a moving nanoparticle", Physica B,
407(17), pp. 3646-3653 (2012).

Appendix A

F1 =
1

�1 + �2 ; F2 = �2;

m11 =
�

4R2
n1

�
�2 +R2

n1 + �2�2R2
n1
�

�
2Rn1� + 4Rn1 ��+ �R2

n1I
�
;

m22 =
�

2Rn2
(R2

n2 +R2
n2�

2�2 + �2)(2��+ �);



A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356{2374 2371

m33 =� 1
12
����2F1(R2

n1�2 + 1)�
Rn1

� �F1

48R4
n1

��2R5
n1�

4�3�2 � 24R5
n1�

2��2

� 4R5
n1�

2�2 ��� 48R5
n1�

2 ���2 + 3�R4
n1I�

2F2

+12�R2
n1IF2R4

n1+24�2�F2R3
n1+8���2F2R3

n1

+2�3�2F2Rn1+3�R4
n1IF2R2

n1+48���2F2R3
n1

� 4���2�2Rn1 + 24R5
n1�F2 � 3�R4

n1IR
2
n1

+ 48R5
n1 ��F2 � 48���2R3

n1 � 3�R4
n1I�

2

� 4���2R3
n1 + 2�3F2R3

n1 � 12�R2
n1IR

4
n1

� 24�2�R3
n1 � 2�3�2Rn1 + 8�2 ���2�2F2R3

n1

+ 3�4�R4
n1I�

2F2R4
n1 + 12�2�R2

n1I�
2F2R4

n1

+ 4R5
n1�

4�2 ���2F2 + 6�2�R4
n1I�

2F2R2
n1

+ 12�R2
n1I�

2F2R2
n1 + 4���2�2F2Rn1

+ 2R5
n1�

4�3�2F2 + 24R5
n1�

2��2F2

+ 3�2�R4
n1IF2R4

n1 + 8R5
n1�

2�2 ��F2

+ 48R5
n1�

2 ���2F2 � 12�2�R2
n1I�

2R4
n1

� 3�4�R4
n1I�

2R4
n1 � 4R5

n1�
4�2 ���2

+ 4�2�3�2F2R3
n1 � 8�2 ���2�2R3

n1

� 6�2�R4
n1I�

2R2
n1 � 24�R5

n1 � 48R5
n1 ��

� 2�3R3
n1 � 2R5

n1�
2�3 � 12�R2

n1I�
2R2

n1

� 4�2�3�2R3
n1 + 2R5

n1�
2�3F2

� 3�2�R4
n1IR

4
n1

�
;

m44 =� 1
12
����2F1(R2

n2�2 + 1)�
Rn2

� �F1

24R3
n2

�
12R4

n2�F2 + 2���2�2F2

� 2���2�2 + �3�2F2 � �3�2 � 24R4
n2�

2�2 ��

�R4
n2�

4�3�2 � 2R4
n2�

2 ���2 � 12R4
n2�

2�2�

+R4
n2�

2�3F2 � 2�2�3�2R2
n2 + 24 bar��2F2R2

n2

+ 4���2F2R2
n2 + 12�2�F2R2

n2

+ 2R4
n2�

4 ���2�2F2 + 4�2 ���2�2F2R2
n2

� 12�2�R2
n2 � 24���2R2

n2 �R4
n2�

2�3

+ 24R4
n2 ��F2 � 2���2R2

n2 + �3F2R2
n2

+ 2�2�3�2F2R2
n2 � 4�2 ���2�2R2

n2

+ 24R4
n2�

2�2 ��F2 +R4
n2�

4�3�2F2

+ 4R4
n2�

2 ���2F2 + 12R4
n2�

2�2�F2

� 2R4
n2�

4 ���2�2 � �3R2
n2 � 24R4

n2 ��

� 12R4
n2�
�
;

m55 =
�

4R2
n1

(�2 +R2
n1 + �2�2R2

n1)

(2Rn1� + 4Rn1 ��+ �R2
n1I);

m66 =
�

2Rn2
(�2 +R2

n2 + �2�2R2
n2)(� + 2��);

�c33 =� ��nF1

4R2
n1

�
�2R2

n1IF2R2
n1 + 2F2R2

n1

+ �2R2
n1I�

2F2 � 2�2 � �2R2
n1IR

2
n1

� �2R2
n1I�

2 � �4R2
n1I�

2R2
n1 � 2R2

n1

� 2�2�2R2
n1 + �4R2

n1I�
2F2R2

n1

+ 2�2F2 + 2�2�2F2R2
n1

�
;

�c44 =� �Rn2oCvisF1

2R2
n2

��R2
n2 + F2R2

n2

+ �2�2F2R2
n2 �R2

n2�
2�2 � �2 + �2F2

�
;

kg33 =� F1�3

2Rn1

��R2
n1 � �2 � �2�2R2

n1

+ �2�2F2R2
n1 + F2R2

n1 + �2F2

�
;

kg44 =� F1�3

2Rn2

��R2
n2 � �2 � �2�2R2

n2

+ �2�2F2R2
n2 + F2R2

n2 + �2F2

�
;

k11 =
���F1

4Rn1
+

�F1

4(�e+ �)Rn1

h
2R2

n1�
2(2��s+��s)F2�e



2372 A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356{2374

+ 2R2
n1�

2(2��s + ��s)F2� + 2�2HR2
n1

�H2F2

+ 4�2HR2
n1

�H2F2� + 2�2HR2
n1�

2F2

� 4�2HR2
n1� �H � 2�2HR2

n1�
2 � 2�2HR2

n1
�H2

� 2R2
n1�

2��e� 2R2
n1�

2�2 � ��e� �2

� 2R2
n1�

2(2��s + ��s)�e� 2R2
n1�

2(2��s + ��s)�
i
;

k22 =
���F1

4Rn2
+

�F1

4(�e+ �)Rn2

h
2R2

n2�
2(2��s + ��s)F2�e

+ 2R2
n2�

2(2��s + ��s)F2� + 2�2HR2
n2

�H2F2

+ 4�2HR2
n2

�HF2� + 2�2HR2
n2�

2F2

� 4�2HR2
n2� �H � 2�2HR2

n2�
2 � 2�2HR2

n2
�H2

� 2R2
n2�

2��e� 2R2
n2�

2�2 � ��e� �2

� 2R2
n2�

2(2��s + ��s)�e� 2R2
n2�

2(2��s + ��s)�
i
;

k33 =� ��F1�
12R3

n1

�
6R4

n1�
2�x+ 6�2�2�xR2

n1

+ �tn+ 2�2�tnR2
n1 +R4

n1�
4�tn+ 6�2��

+ 6��R2
n1 + 6�2�2��R2

n1 + 6R4
n1�

4�x�2
�

� �F1

24R3
n1

h
6R4

n1�
4(2��s + ��s)R2

n1oF2

� 12R4
n1�

2(2��s + ��s) ��xF2

+ 6R4
n1�

4(2��s + ��s)R2
n1IF2 + 12R4

n1�
4(2��s

+ ��s) ��x�2 + 12�2�2(2��s + ��s) ��xR2
n1

+ 12�2�2(2��s + ��s) ���R2
n1 + 4�2�2tnF2R2

n1

+ 48�2tn�2F2R2
n1 + 2R4

n1�
4�2tnF2

+ 24R4
n1�

4tn�2F2 � 12�2CvdwRn1o�2R3
n1

+ 12�2�2���R2
n1 + 12�2�2�x�R2

n1

+ 12Rn1Rn1o�2CvdwF2 + 12R4
n1�

4��x�2

+ 12R4
n1�

2(2��s + ��s) ��x� 6R4
n1�

4(2��s

+ ��s)R2
n1I � 6R4

n1�
4(2��s + ��s)R2

n1o

+ 48R4
n1�

2tnF2 � 48�2tn�2R2
n1

� 24R4
n1�

4tn�2 � 12Rn1Rn1o�2Cvdw

+ 12CvdwRn1oF2R3
n1 � 12(2��s + ��s) ���F2R2

n1

� 12�2(2��s + ��s) ���F2 + 12R4
n1�

2��x

+ 6�2�VCF2v2R2
n1IR

3
n1

+ 12�2CvdwRn1o�2F2R3
n1

� 12R4
n1�

4(2��s + ��s) ��x�2F2

� 12�2�2(2��s + ��s) ��xF2R2
n1

� 12(2��s + ��s)R2
n1 � 48tnR2

n1 � 24tn�2

� 12�R2
n1 � 6(2��s + ��s)R2

n1I � 6(2��s

+ ��s)R2
n1o + 6�4�VCF2v2R2

n1I�
2R3

n1

� 6�2�VCF2v2R2
n1IF2R3

n1

+ 6�2�VCF2v2R2
n1I�

2Rn1 �R4
n1�

4�3

+ 12�2��� + 48tnF2R2
n1 � 12CvdwRn1oR3

n1

+ 12(2��s + ��s)F2R2
n1 + 12(2��s

+ ��s) ���R2
n1 + 12�2(2��s

+ ��s) ��� � 48R4
n1�

2tn+ 6(2��s

+ ��s)R2
n1oF2 + 6(2��s + ��s)R2

n1IF2

+ 2�2tnF2 + 12���R2
n1 � 2�2�3R2

n1

+ 24tn�2F2 � �3 � 6�2�VCF2v2R2
n1I�

2F2Rn1

� 6�4�VCF2v2R2
n1I�

2F2R3
n1

i
;

k34 =
�CvdwRn1oRn2F1

2R3
n1

h�R2
n1 � �2 � �2�2R2

n1

+ �2�2F2R2
n1 + F2R2

n1 + �2F2

i
;

k43 =
�Rn1F1

4R4
n2

h
2�2Rn1oCvdwF2Rn2

� (2��s + ��s)R2
n1oF2 � 2Rn1oCvdwR3

n2

� 2�2�2Rn1oCvdwR3
n2

+ 2�2�2Rn1oCvdwF2R3
n2 � (2��s + ��s)R2

n1IF2



A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356{2374 2373

� 2�2Rn1oCvdwRn2 + (2��s + ��s)R2
n1o

+ (2��s + ��s)R2
n1I + 2Rn1oCvdwF2R3

n2

i
;

k44 =� ��F1�
12R3

n2R2
n1

h
6��R2

n2R
2
n1 +R4

n2�
2�tn

+ 6R4
n2�

2�xR2
n1 + 6�2��R2

n1 + �tnR2
n1

+ 6�2�2�xR2
n1R

2
n2 +R4

n2�
4�tnR2

n1

+ �2�tnR2
n2R

2
n1 + 6R4

n2�
4�2�xR2

n1

+ 6�2�2��R2
n1R

2
n2

i
� �F1

24R4
n2R2

n1

h
12R5

n2�
2�x�R2

n1

� 12�2Rn2oKnGR4
n2R

2
n1 + 2R5

n2�
2�2tnF2

� 48�2tn�2R3
n2R

2
n1 + 48�2tnF2R5

n2R
2
n1

� 12(2��s + ��s) ���F2R3
n2R

2
n1

+ 12�2(2��s + ��s) ���F2Rn2R2
n1

+ 12Rn2oKnwF2R4
n2R

2
n1 � 24R5

n2�
4�2tnR2

n1

+ 2�2tnF2Rn2R2
n1 + 24�2tnF2Rn2R2

n1

+ 12�2(2��s + ��s) ��xR5
n2R

2
n1

� 6�4(2��s + ��s)R5
n2R

2
n1R

2
n1I

� 6�4(2��s + ��s)R5
n2R

2
n1R

2
n1o

� 12�2Rn1oCvdwR2
n2R

2
n1

� 12�2Rn2oKnwR2
n2R

2
n1 + 12�2���Rn2R2

n1

+12�2Rn2oKnGF2R2
n1+12Rn2oKnGF2R2

n2R
2
n1

+ 12Rn1oCvdwF2R4
n2R

2
n1 � 2�2�3R3

n2R
2
n1

� �4�3R5
n2R

2
n1 � 24tn�2Rn2R2

n1

+ 48tnF2R3
n2R

2
n1 + 12(2��s + ��s)F2R3

n2R
2
n1

+ 12(2��s + ��s) ���R3
n2R

2
n1

� 12�2Rn2oKnGR2
n1 � 12Rn2oKnGR2

n2R
2
n1

+ 12���R3
n2R

2
n1 � 12Rn1oCvdwR4

n2R
2
n1

� 12Rn2oKnwR4
n2R

2
n1 � 48�2tnR5

n2R
2
n1

� 12(2��s + ��s)R3
n2R

2
n1 � 48tnR3

n2R
2
n1

� �3Rn2R2
n1 + 12�2�2(2��s + ��s) ��xR3

n2R
2
n1

+ 12�2�2(2��s + ��s) ���R3
n2R

2
n1

� 12�2(2��s + ��s) ��xF2R5
n2R

2
n1

+ 6R2
n1o�

4(2��s + ��s)F2R5
n2R

2
n1

+ 6R2
n1I�

4(2��s + ��s)F2R5
n2R

2
n1

+ 12�4�2(2��s + ��s) ��xR5
n2R

2
n1

+ 12�2Rn2oKnwF2R2
n2R

2
n1

+ 12�2Rn1oCvdwF2R2
n2R

2
n1

+ 12�2Rn2oKnGF2R4
n2R

2
n1

+ 12�4�2�x�R5
n2R

2
n1

� 12�2Rn1oCvdw�2R4
n2R

2
n1

� 12�4�2Rn2oKnGR4
n2R

2
n1

� 12�2�2Rn2oKnwR4
n2R

2
n1

� 24�2�2Rn2oKnGR2
n2R

2
n1

+ 12�2�2�x�R3
n2R

2
n1 + 12�2�2���R3

n2R
2
n1

� 12�2(2��s + ��s) ���F2Rn2R2
n1

+ 2R5
n2�

4�2tnF2R2
n1 + 24R5

n2�
4�2tnF2R2

n1

+ 2�2�2tnF2R3
n2R

2
n1 + 48�2�2tnF2R3

n2R
2
n1

� 12�R3
n2R

2
n1 + 12�2Rn1oCvdwF2�2R4

n2R
2
n1

+ 12�2�2Rn2oKnwF2R4
n2R

2
n1

+ 24�2�2Rn2oKnGF2R2
n2R

2
n1

� 12R5
n2�

4�2(2��s + ��s) ��xF2R2
n1

� 12�2�2(2��s + ��s) ���F2R3
n2R

2
n1

� 12�2�2(2��s + ��s) ��xF2R3
n2R

2
n1

i
;

k55 =
1
4
Rn1�3��F1 +

�F1

4Rn1

h�2(2��s + ��s)

� 2� �R2
n1�

2� + 2(2��s + ��s)F2

i
;



2374 A. Ghorbanpour Arani and M. Hashemian/Scientia Iranica, Transactions F: Nanotechnology 20 (2013) 2356{2374

k66 =
1
4
Rn2�3��F1 +

�F1

4Rn2

h�2(2��s + ��s)

� 2� �R2
n2�

2� + 2(2��s + ��s)F2

i
;

KN33 = �K1K3

R2
n1

[W12R2
n1 + 3W22R2

n2];

KN34 =
Rn2K1K3

R3
n1

[W 2
2R

2
n2 + 3W22R2

n1];

KN43 =
Rn1K2K3

R3
n2

[W12R2
n1 + 3W22R2

n2];

KN44 = �K2K3

R2
n2

[W22R2
n2 + 3W12R2

n1];

K1 =�2�2F2R2
n1 + F2R2

n1 � �2 � �2�2R2
n1

+ �2F2 �R2
n1;

K2 =�2�2F2R2
n2+F2R2

n2��2��2�2R2
n2+�2F2�R2

n2;

K3 =
9
32
Rn1oCNF1�; (A.1)

Biographies

Ali Ghorbanpour Arani received his BS degree
from Sharif University of Technology, Tehran, Iran,
in 1988, his MS degree from Amirkabir University of
Technology, Tehran, Iran, in 1991, and his PhD degree
from Esfahan University of Technology, Esfahan, Iran,
in 2001. He is currently Professor in the Mechanical
Engineering Faculty of the University of Kashan, Iran.
He has authored more than 100 refereed journal papers
and 9 books. His current research interests include
stress analyses, stability and vibration of nanotubes,
smart nanocompsites, and FGMs.

Mohammad Hashemian received his BS degree, in
2005, from the Islamic Azad University, Khomein-
ishahr, Iran, and his MS degree, in 2008, from the
University of Kashan, Iran, where he is currently a
PhD degree student. His research interests include
nanomechanics, continuum mechanics, dynamic stabil-
ity, buckling and vibration.




