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Abstract. The synthesis and characterization of ZnO nanorods using low power DC
thermal plasma were successfully performed. Several tests were conducted using X-ray

uorescence, a particle size analyzer, scanning electron microscopy, X-ray di�raction and
transmission electron microscopy. The diameter of ZnO nanorods varies from 43 nm to
200 nm, which can be seen from SEM images, and their length varies from 160 nm to
1000 nm. These nanopowders are rod shaped, as can be seen from TEM images. The XRD
data shows a sharp peak at 36.21�, which indicates a good crystal growth and agrees well
with JCPDS card no. 36-1451. The e�ects of electrical current variations of 20, 25 and
30 Amperes to the size of ZnO nanorods are also indicated from aspect ratios of about
8.27, 8.44 and 8.81, respectively. The ultraviolet absorption test results show that the ZnO
nanorods can absorb UV with absorbance ranges of 300 nm and 340 nm wave lengths; the
peak being at the wave length of 311 nm. The photoluminescence test con�rms that the
ZnO spectra are in blue emission with an optimum excitation wavelength of 240 nm. It
can be concluded that this method is well proven in synthesizing high purity compound
ZnO nanorods, with UV-blocking ability and good luminescence.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Due to their diverse applications in optical, elec-
trical, optoelectronic, photo catalytic, hydrophilic,
hydrophobic, pigments, metal compounds, medi-
cal ointments and cosmetics, nanometric ZnO such
as nanospheres, nanoplates, nanosheets, nanoboxes,
nanomallets, nanotripods, nanobelts, nanosprings,
nanorings, nanocages, nanoneedles, nanorods, nan-
otubes, nanopropellers, nano
owers and nanowindmills
has been an attractive research topics in nano science
and technology for a few decades [1-17]. A large num-
ber of publications signi�cantly address this material
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because of its remarkable physical and chemical proper-
ties, which are distinct from those of conventional bulk
material. Zinc oxide, as a semiconductor material, has
direct band gap energy of about 3.37 eV, an excitation
binding energy of 60 eV, and its tunable electrical
conductivity depends on its content of charge carriers.
Other bene�ts that have attracted much attention are
its ability to also photo-decompose harmful bacteria
[18], and protect skin and eyes from UV radiation with-
out causing irritation [10]. There is also no evidence of
carcinogenicity, genotoxicity and reproduction toxicity
in humans [19,20].

To date, various techniques have been proposed
for ZnO nanoparticle fabrication. These can be
classi�ed into either physical or chemical methods
[21,22], such as thermal hydrolysis [23], hydrothermal
processing [24], sol-gel [25-27], vapor condensation [28],
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spray pyrolysis [29-31], pulse laser decomposition [32],
laser ablation [33], thermal evaporation [34,35], pulse
combustion spray pyrolysis [36], electro-mechanical
[37], 
ame spray pyrolysis [38], direct precipitation [39]
and thermal plasma [18,21,40]. More speci�cally, the
synthesis of ZnO nanorods has also been performed us-
ing various techniques, such as the hybrid wet chemical
route [41], the solution process at low temperature [42],
physical evaporation [43-45], electrophoretic deposition
[46], Radio Frequency (RF) magnetron sputtering [47],
templating against anodic alumina membrane [48] and
PTFE capillary tube reaction [49]. Nonetheless, it
is important to note that e�ciency and size control
are still major research problems in synthesizing ZnO
nanoparticles [40].

In this study, preparation of ZnO nanorods has
been performed by low power DC thermal plasma
technology, in which, during the process, the electrical
power required is less than 20 kW. Variations of current
input to the reactor were provided at about 20, 25
and 30 Amperes with a rating voltage of 220 V. These
are the basic di�erence between previous work, as in
[18,21,40], in which the DC thermal plasma process
[18,21] employed N2 gas 
ow as a raw material carrier
during the intake step, while, in [40], after the burning
process, the materials are subjected to the cooling
gas 
ow in the reactor. These two conditions make
our process more superior, in that it is simple and
gives the results of ZnO nanorods with a controllable
aspect ratio (L/D). Moreover, the nanoparticles shape
resulted from [18,21,40] were tetrapod-like, tetrapod
and rod-like, respectively. These convince us that the
method used in this study is a novel technique used in
ZnO nanorod fabrication.

2. Experimental setup

ZnO nanorods were successfully synthesized by a low
power DC thermal plasma reactor, as shown in Fig-
ure 1, which operated at atmospheric pressure and with
less than 20 KW input plasma power. The reactor

Figure 1. Experimental setup of low power DC thermal
plasma reactor.

is composed of �ve main parts, among which are a
screw conveyor as the zinc feeder, a plasma reactor
as the main reaction place, DC plasma as the plasma
power source, a �lter and a suction blower. Commercial
zinc powders (MERCK, Germany) having an average
particle size of about 45 m�m were employed in this
study. The impurity of the raw material has been
checked using X-ray Fluorescence (XRF-PANalytical-
Minipal QC), giving results as 98.98% purity of zinc
and containing impurities such as P, Ca, Cr, Fe, Ni, Er
and Yb.

The screw conveyor fed zinc powder into the
plasma reactor at the �x rate of 1.5 g/min without
the gas carrier. Having entered the plasma reactor and
faced the plasma zone, vaporization and oxidation were
experienced by the zinc powders, immediately forming
ZnO nanoparticles. The time elapsed to form ZnO
nanoparticles under this process takes about 0.01 s [18].
The resulted vapors from the burning process were then
sucked by a blower passed through the �lter tank, so
that the ZnO powders could be seized by the �lter
membrane. Electrical currents inputted to the plasma
poles (cathode and anode) were varied from 20, 25, 30
and 40 Amperes.

Several tests were conducted to examine the
resulted ZnO nanopowders, including X-Ray Fluo-
rescence (XRF), Particle Size Analysis (PSA), X-
Ray Di�raction (XRD) and Transmission Electron
Microscopy (TEM). To ensure the purity of the synthe-
sized rod-like ZnO nanopowders, XRF (PANalytical-
Minipal QC) operated at 20 kV was used as the quali-
tative and quantitative elemental analysis. The average
length of nanopowders has also been investigated using
a particle size analyzer, DELSATM NANO, at an
operating temperature of 25�C, scattering intensity of
10250 cps and a refractive index of 1.3611.

In terms of crystallite size and phase identi�ca-
tion, examination of the as-prepared ZnO nanorods
involved X-ray di�raction analysis using the 2-2�
method. XRD (PHILLIP-XPERT PRO) was equipped
with Cu K�1 (� = 0:154060 nm) radiation at 40
kV and 30 mA. For each step, the scanning step
size and collection time were set at 0.02� and 0.5s,
respectively. A scanning electron microscope (FEI-
Inspect S50) operated at 20 kV was used to capture
the morphology of the synthesized ZnO nanorods.
The individual structure and microstructural analysis
were observed using a transmission electron microscope
(JEOL, JEM-1400) operating at 120 kV.

The optical behavior of the resulted ZnO
nanorods has been characterized in UV absorption and
photoluminescence tests. The absorbance character-
istics test was conducted in a UV/VIS spectrometer
(LAMBDA 25 / PERKINELMER, Singapore). Pho-
toluminescence (PL) characterization was done in a
luminescence spectrometer (LS 55/PERKINELMER,
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Table 1. XRF results.

Pure raw material After Synthesis

Composition Amount (%) Composition Amount (%)
20 Amp. 25 Amp. 30 Amp.

P 0.18 P2O5 0.40 0.40 0.15
Ca 0.16 CaO 0.24 0.14 0.55
Cr 0.051 Cr2O3 0.11 0.10 0.13
Fe 0.14 Fe2O3 0.15 0.02 0.09
Ni 0.104 NiO 0.08 0.09 0.13
Zn 98.98 ZnO 98.46 98.72 98.34
Er 0.11 Er2O3 0.03 0.03 0.06
Yb 0.30 Yb2O3 0.48 0.51 0.54

Singapore). The parameters used in PLE and PL
tests were emission and excitation slits of 5 nm and
a scanning speed of 500 nm/min.

3. Results and discussion

Since the raw materials contain several impurities,
it is important to ensure the purity of the resulted
ZnO using XRF. Table 1 illustrates the contents of
the chemical elements/compounds before and after
synthesis. It can be said that low power DC thermal
plasma is e�ective for fabricating ZnO nanorods with
results of more than 98 percent or less than 2 percent
of impurity. The average length of ZnO nanorods and
its distribution were observed using PSA examination.
The results show that the spread of particle length for
the 30 Amperes current applied lies near a maximum
value of 743 nm. It has the average length and standard
deviation of 807.8 nm and 106.4, respectively. Other
PSA examination results for 20 and 25 Amperes give
average lengths of 594.9 nm, 747.8 nm, and 120.7, 103.4
standard deviation.

Figure 2 shows the XRD patterns of resulted ZnO

Figure 2. XRD paterns of various ZnO nanorods.

nanorods. In this study, each crystalline structure of
ZnO nanorods is a perfect crystal, with the growth
direction in the c axis. Three XRD patterns are
indexed as a hexagonal wurtzite structure of ZnO,
having a space group of P63 mc, and lattice constant
sets of a, b = 3.2488 �A and c = 5.2049 �A, which is
consistent with the values in the database of JCPDS 36-
1451. Eight peaks appear at 2� = 31.7�, 34.3�, 36.2�,
47.5�, 56.5�, 62.8�, 66.3� and 67.9�, with respect to
the miller indexes of (100), (002), (101), (102), (110),
(103) and (112). From the �gure, impurities indicated
by unusual ZnO di�raction peaks are not found in the
XRD patterns. It con�rms the high purity of the ZnO
nanorods. The peaks of each miller index almost reduce
in the increments of the applied currents. This will
a�ect the nano-crystalline size. These phenomena may
be caused by the increments of electric power supplied,
which make the higher plasma temperature. It can
be explained that when zinc materials are subjected
to higher temperatures, the temperature di�erence in
the oxidation process will a�ect crystal growth. In this
case, the opportunity for the crystal to grow in a lower
di�erence temperature is better than the higher one in
an equal oxidation time.

Moreover, the strong and narrow intensity di�rac-
tion peaks imply the good crystalline nature and size
of the synthesized products. Average nano-crystalline
sizes (D) obtained from the broadening of XRD peaks
are calculated using Scherrer's formula as follows [21]:

D =
0:94�
B cos �

; (1)

where D is the crystal size, B the broadening from
the sample or its full width half medium (FWHM), �
the wave length of the X-ray, and � the Bragg's angle.
Calculation results using Eq. (1) are listed in Table 2.

The micrographs of synthesized powders are de-
picted in Figure 3(a), (b) and (c) by various input
currents of 20, 25 and 30 Amperes, respectively. ZnO
nanorods with diameters ranging from 40 nm to 160 nm
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Table 2. FWHM and crystalline size of ZnO by di�erent plasma current.

Miller index �2 Th. FWHM Crystalline size (nm)

20A 25A 30A 20A 25A 30A

(100) 31.7401 0,1771 0,1968 0,2362 46,0038 41,4060 34,5071

(002) 34.3890 0,1378 0,1378 0,0984 60,9293 60,9415 85,3593

(101) 36.2199 0,1181 0,1771 0,1378 72,7204 48,5035 62,3431

Figure 3. SEM micrographs of ZnO nanorods: (a) 20 A; (b) 25 A; (c) 30 A; and (d) TEM results.

Table 3. Length to diameter ratio of ZnO nanorods.

Number Variable Variation (nm)

20 A 25 A 30 A

1 Average diameter (D) 71.95 88.58 91.74

2 Average length (L) 594.9 747.8 807.8

3 L=D 8.27 8.44 8.81

have been prepared conveniently using low power DC
thermal plasma. The average length of the products
and average diameter observed from SEM micrographs
are tabulated in Table 3. The length to diameter
ratio of ZnO nanorods has been calculated resulting
in values of 8.27, 8.44 and 8.81. Figure 3(d) depicts a
typical transmission electron microscopy image of ZnO
nanorods for 25 Amperes current applied. It shows

a similar morphology to that of SEM observations.
The ZnO nanorods shown in Figure 3(d) have uniform
length, are straight and have a smooth shape.

The UV absorption characteristic of the ZnO
nanorods obtained from DC thermal plasma in current
variation is shown in Figure 4. The ability to absorb
UV increases by the increment of applied current,
which is not too di�erent in each peak. The absorbance
ranges are about 300 nm and 340 nm wave lengths,
the peak being at the wave length of 311 nm, which is
classi�ed to short UV. Moreover, the as-prepared ZnO
nanorods exhibit a high UV-blocking capacity, which
is useful in cosmetic applications such as sun block.
However, the resulted ZnO nanorods still need more
investigation to comply with safety issues.

To know the optimum excitation wave length to
get the highest intensity of ZnO nanorods samples,
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Figure 4. UV absorbance characteristics.

Figure 5. PLE spectra at emission wavelength of 385 nm.

photoluminescence excitation (PLE) is investigated in
an emission wavelength of 385 nm. The PLE spectra
shown in Figure 5 shows that the absorbtion peaks are
around 210 nm to 260 nm. From the �gure, it can be
seen that there is no signi�cant di�erence between the
particles resulted by 20 Amperes and 25 Amperes. This
may be due to the excited wavelength, which is not op-
timum for absorbtion of the photon occurred [50]. How-
ever, the optimum wavelength required for optimum
emission can be de�ned from the spectra. After several
investigations, by applying emissions of 210, 220, 230,
240, 250 and 260 nm to the sample of 20 Amperes
applied current, as shown in Figure 6, the optimum
excited wavelength is around 240 nm. This value will
then be used as the PL test parameter of all samples.

Figure 7 shows PL spectra of ZnO nanorods under
several current variations at excited wavelength of
about 240 nm. The peaks of luminescence intensity
increase by an increase in applied current in which
all behavior belongs to the blue emission since the
wavelength lies between 350 nm and 550 nm. The
luminescence characteristics of ZnO nanorods resulted
from this plasma process can be achieved by applying
a relatively simple method. In comparison, the blue
emission of ZnO has been obtained by [51] via a non
equilibrium process, including laser ablation in liquid
and subsequent zinc-rich annealing. Another method
has also been proposed in [52] in which blue emissions

Figure 6. Peak emission test of ZnO nanorods prepared
by 20 Ampere applied current.

Figure 7. PL spectra of ZnO nanorods by DC thermal
plasma.

of ZnO particles were obtained with an additional
calcium doping (ZnO:Ca) via the sol gel process. It
can be seen that the proposed DC thermal plasma is
simpler and has the potential to be adopted for ZnO
nanorod mass production.

4. Conclusion

The ability of low power DC thermal plasma to be used
for ZnO nanorod fabrication was proven. It has been
con�rmed from XRD examination and XRF testing
that the resulted powders give a perfect crystalline size
and a high purity compound with a Wurtzite structure.
The diameter regime is 40 nm to 160 nm and its average
length is 594.9 nm to 807.0 nm, even up to 1000 nm.
The consistence of length to diameter ratio has been
investigated through both calculation and SEM and
TEM micrograph observation. The absorbance be-
havior ensures the ZnO ability to absorb short UV
so that the resulted powder also has a potential for
UV protection. The luminescence characteristic also
informs us that the resulted ZnO is suitable for LED
application. The importance of this method is in its
simplicity and its potential use for future large-scale
preparation of nano ZnO, which is useful in many
important applications bene�cial to human beings"
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