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Abstract. This research presents two-dimensional controlled pushing-based nanoma-
nipulation using an Atomic Force Microscope (AFM). A reliable control of the AFM tip
position is crucial to AFM-based manipulation since the tip can jump over the target
nanoparticle causing the process to fail. However, detailed modeling and an understanding
of the interaction forces on the AFM tip have a central role in this process. In the proposed
model, the Lund-Grenoble (LuGre) method is used to model the dynamic friction force
between the nanoparticle and the substrate. This model leads to the stick-slip behavior
of the nanoparticle, which is in agreement with the experimental behavior at nanoscale.
Derjaguin interaction force, which includes both attractive and repulsive interactions, is
used to model the contact between the tip and nanoparticle. AFM is modeled by the
lumped-parameter model. A controller is designed based on the proposed dynamic model
for positioning of the AFM tip during a desired nanomanipulation task. An optimal sliding
mode approach is used to design the controller, and the performance of the controller is
shown by the simulation.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Recently, the Atomic Force Microscope (AFM) has
evolved into a promising tool for micro/nanoparticles
manipulation and assembly [1]. A controlled AFM
probe, as a pushing manipulator, is able to position
the micro/nanoparticles in a two-dimensional space to
build miniaturized structures [1,2]. A precise controller
that guarantees a stable and accurate tip positioning,
is essential for nanomanipulation.
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Thus far, some control schemes have been de-
signed to make the AFM tip track a certain trajectory
for the manipulation task. Delnavaz et al. [1] proposed
a combined classical and second order sliding mode for
vibration suppression of the AFM tip in nanomanip-
ulation tasks, while the AFM has been modeled by a
mass-spring-damper system. In addition, Rai� et al. [3]
established a robust adaptive controller for AFM tip
positioning. In this reference, the proposed modeling
includes the coupled dynamics of the microcantilever
and piezotube actuator. Uncertainties due to the
probe-sample contact are considered in the model.

In this paper, an optimal sliding mode approach is
proposed to control the AFM probe as a nonlinear sys-
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tem. This approach displays a satisfactory performance
and robustness to model uncertainties, while having a
simple control structure. To obtain an optimal control
response, slope tuning of the sliding mode surface,
which is a complex task, is done by the LQ method [4].

During manipulation, the tip-particle-substrate
system experiences complicated dynamics. A perfect
model of nanomanipulation is crucial for a successful
control, and, so far, several research studies have been
conducted to model AFM-based nanomanipulation [5-
9]. Most of these works have applied static friction
models that have shortcomings and are not proper for
nanoscale phenomena. Tafazzoli et al. [5-7] proposed
a model of the AFM-based lateral nanomanipulation
process. They used a traditional coulomb friction
model with an additional modifying term as the nano-
friction force. This friction force reproduces a steady
sliding response of the nanoparticle, which is usually
observed in the macroscale. The dynamic behavior of
a nanoparticle during AFM-based pushing is studied
in [10,11]. The model is composed of the LuGre fric-
tional sub-model, which leads to the stick-slip behavior
of the nanoparticle. Some studies have used molecular
dynamics to investigate the behaviors of the nano-
particle during nanomanipulation [12,13].

The remainder of the paper is organized as fol-
lows. In Section 2, the nanomanipulation modeling
is presented. A new sliding mode control approach,
optimized by the Linear Quadratic (LQ) method, is
introduced in Section 3 and an optimal nonlinear
controller is designed to suppress the vibration of
the AFM microcantilever and make the tip track the
speci�ed trajectory. Finally, simulation results are
illustrated and the conclusion is drawn in Sections 4
and 5, respectively.

2. Nanomanipulation modeling

AFM-based nanomanipulation modeling can be di-
vided into two subsystems: the AFM dynamic model
and the dynamic model of the nanoparticle. Also, three
important phenomena, including nanoscale interaction
forces, contact mechanics, and nanoscale friction force,
are coupled in the dynamical model. The following
sections will be devoted to presenting a suitable model
of the AFM and the nanoparticle during manipula-
tion.

2.1. AFM model
The Atomic Force Microscope (AFM) system is a
promising tool for nanomanipulation. The AFM pro-
vides additional capabilities and advantages compared
to other manipulators; especially its ability to manipu-
late metallic nanoparticles in every environment. The
AFM pushes the individual nanoparticle by exerting
direct force on it in the desired direction. A typical

AFM system consists of a piezoelectric actuator and a
microcantilever chip with a sharp tip mounted on the
piezoelectric. A position sensitive photo detector comes
with the system, which receives a laser beam re
ected
from the end point of the microcantilever to provide its
de
ection feedback [14].

The current AFM model is based on a lumped-
parameters modeling approach [5,15]. The AFM can-
tilever is modeled as a 3-Degree Of Freedom (DOFs)
mass-spring system. The springs include a linear spring
to account for the normal de
ections and a torsional
spring for the lateral twisting of the probe. The lateral
de
ection of the microcantilever is not considerable,
so, it is ignored [5]. The microcantilever has Young's
modulus, E, shear modulus, G, length, L, width,
w, and thickness, t. The sti�ness coe�cients of the
springs, k� and kz, can be calculated as:

k� =
Ewt3

6L(1 + �)
; (1)

kz =
Ewt3

4L3 : (2)

The force (Fz) and moment (M�) of the springs are
proportional to the vertical deformation (zc) and the
torsional angle (�), respectively:

Fz = kz:zc; (3)

M� = k�:�: (4)

A rigid AFM tip is also attached to the microcantilever
lumped model. Figure 1 depicts a free body diagram of
the AFM lumped-parameters model. The spring force
(Fz), moment (M�) and the tip/particle interaction
force (Ftp) are illustrated in Figure 1.

Figure 1. Free body diagram of the AFM
lumped-parameters model during nanomanipulation.
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In Figure 1, yt and yc are tip base and tip apex
lateral movements. Besides, zt and zc are tip base and
tip apex vertical movements, and � is the tip torsional
angle around the x axis. The selected local coordinates
have the following kinematical relationships in y and z
directions:

zt = zc +H 0 cos �;

_zt = _zc �H 0 _� sin �;

�zt = �zc �H 0�� sin � �H 0 _�2 cos �; (5)

yt = yc �H 0 sin �;
_yt = Vstage �H 0 _� cos �;

�yt = �yc �H 0�� cos � +H 0 _�2 sin �; (6)

where Vstage is the probe stage constant velocity. The
Ordinary Di�erential Equations (ODEs) of motion for
the AFM in y and z directions, and the lateral twisting,
�, are as follows:X

~Fy = m~ay;

�Ftp sin � Fy + u = mt�y
 +mc�yc;

= mt

�
�yt + �yc

2

�
+mc�yc; (7)X

~Fz = m~az;

�Ftp cos � Fz = mt�z
 +mc�zc

= mt

�
�zt + �zc

2

�
+mc�zc; (8)X

~Mc = I ��;

Ftp cos :H 0 sin � + Ftp sin :H 0 cos � �M�

= I �� = (It + Ic)��; (9)

H 0 = H +
t
2
; (10)

where u is the control input force which can be exerted
on the microcantilever in the z direction by a piezo
actuator located in the base of the microcantilever; mc
is the equivalent cantilever mass; Ic is the cantilever
moment of inertia through the geometric center of the
cantilever cross section (c); mt is the tip e�ective mass,
It is the inertia moment of the tip through point c,
and H is the AFM tip height. Ftp is the tip/particle
interaction force de�ned in the next section.

 , as illustrated in Figure 1, is the angle of Ftp,
and is calculated as the following equation:

 = tan�1
�
Dset � yt + yp
hset �Rp + �ps

�
: (11)

h(t) is the separation distance between the tip and
the nanoparticle along the pushing direction and is
obtained by:

h(t) =
q

(Dset � yt + yp)2 + (hset �Rp + �ps)2

+ �tp � (Rt +Rp): (12)

In the above equations, Dset is the initial horizontal
distance between the tip and particle centers, hset is the
desired height of the tip apex center from the substrate,
and yp is the total discrete movement of the particle in
the manipulation direction. Rp and Rt are the particle
and the tip apex radius, respectively. Finally, �tp and
�ps are deformation depths in the tip/particle and the
particle/substrate contact surfaces, which are discussed
later. The subscript indicates that t is tip, p is particle
and s is substrate.

2.2. Nanoscale interaction forces
There are di�erent interaction forces dominant at
the nanoscale, including capillary, electrostatic, van
der Waals forces and repulsive forces [16]. Here,
the Derjaguin potential function is applied for the
nanoscale interactions, which represents both attrac-
tive and repulsive interactions between the AFM tip
and the nanoparticle [16,17]. In this model, the van
der Waals force is the sole attractive force between the
tip and the particle for simplicity by assuming that
the nanomanipulation process is performed in a clean
vacuum cell and with a conductive grounding [18,19].
In addition to attractive force, the repulsive force is
considered between the tip and the nanoparticle, which
results in a contact deformation. The corresponding
Derjaguin interaction force, Ftp, along the central line
of the tip/particle is the negative partial derivative
of the Derjaguin potential, VDMT with respect to the
separation distance, h, namely, Ftp = � @

@hVDMT, and
is given as [16,17]:

Ftp(h(t)) =

8>>>>>>><>>>>>>>:

� �Htp ~R
6h(t)2

for : h(t)� a0

� �Htp ~R
6a2

0
+ 4

3E
�p ~R(a0 � h(t)) 3

2

for: h(t) < a0

E� =
�

(1� �t)2

Et
+

(1� �p)2

Ep

��1

; (13)
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Figure 2. The pro�le of the Derjaguin interaction
force [10]

1
~R

=
1
Rt

+
1
Rp

; (14)

where a0 is the interatomic separation distance intro-
duced to avoid numerical divergence of Ftp as proposed
in [10]. �H is the Hamacker constant, E� is the e�ective
tip/particle elastic modulus, Et and Ep are the Young's
modulus of the tip and the particle, and �t and �p are
the Poisson coe�cient of the tip and the particle. ~R is
the e�ective tip/particle radius.

Figure 2 illustrates the pro�le of the Derjaguin
interaction force, Ftp, versus separation distance, h.
The negative value of Ftp demonstrates an attractive
force, while the positive value indicates a repulsive
force. Line h = a0 indicates the boundary line between
the contact and the non-contact region. The initial
contact happens when the outset atoms of the tip and
the nanoparticle touch each other.

2.3. Nanoparticle model
The nanoparticle is assumed to be an elastic spherical
object. A free body diagram of the nanoparticle
is depicted in Figure 3. During nanomanipulation,
the nanoparticle experiences nano friction force, and

Figure 3. Free body diagram of the nanoparticle which
experiences interaction forces and friction force during
manipulation.

tip/particle and particle/substrate interaction forces.
The equation of motion in the y direction and the bal-
ancing equation in the z direction for the nanoparticle
are derived as follows:

Ftp sin � sign( _yp)Ffrict = mp�yp(t); (15)

Ftp cos +Aadh
ps = Fps; (16)

Aadh
ps = 4�
LRp +

�HpsRp
6a2

0
; (17)

where Fps is the normal particle/substrate interaction
force and Ftp is the tip/particle interaction force.
These compressive forces cause deformations at the
contact points between two objects that will be de-
scribed in detail.

Also, Ffrict is the nano friction force in the
nanoparticle and the substrate interface. The proposed
friction model will be presented in the next section.
�yp(t) is the discrete acceleration of the nanoparticle,
Aadh

ps is the adhesion force between the nanoparticle and
the substrate and can be obtained by Eq. (15) [20,21],
and 
L is the liquid surface energy. A combination of
the van der Waals and the capillary attractive forces are
considered as the adhesion forces, and, for simplicity,
no electrostatic force is assumed.

2.4. Contact mechanics
The tip/nanoparticle and nanoparticle/substrate inter-
actions induce deformation on the contact surfaces. To
model the contact elastic deformation, we use JKR
contact mechanics [22-24]. JKR continuum contact me-
chanics includes e�ects of surface interactions between
two contacting solid objects. The contact region radius,
a, the contact area, A, and the penetration depth, �,
between the tip and the particle and also the particle
and the substrate are given by:

A(t) = �(a3)2=3 = �
n

~R=K
h
F (t) + 3� ~R!

+
�

6� ~R!F (t) +
�

3� ~R!
�2
�1=2io

;

� =
a2

~R
� 2

3

r
3�!a
K

;

K12 =
�

(1� �1)2

E1
+

(1� �2)2

E2

�
;

~R = R1R2=(R1 +R2): (18)

In the above equations, F (t) is the normal force in the
contact area. ! is the work of adhesion and for the two
contact surfaces is obtained as [25]:

!12 = 2
p

1:
2;
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where 
 is the surface energy. ~R is the equivalent radius
of the two contact surfaces, K is the equivalent elastic
modulus of the two contact surfaces, and � and E are
Poisson ratio and Young's modulus.

2.5. Dynamic nano friction force
Unlike macroscopic friction, nano friction is velocity
dependent, and stick-slip behavior is a major char-
acteristic of nano friction [26,27]. Researchers have
proposed the LuGre friction model to describe the
observed phenomena in nanoscale [28,29]. The Lu-
Gre friction model exhibits a truly dynamical model
which has been strongly analyzed and contains mathe-
matical properties such as the existence and unique-
ness of a solution and the boundedness of a solu-
tion [30].

The bristle de
ection is presented as the state of
the friction model. The bristle can be conceived as a
cantilever rigidly connected to a body that de
ects and
slips through a terrain as the body is dragged across a
surface. Figure 4 illustrates the schematic of the LuGre
friction model.

In addition to having mentioned mathematical
properties, the LuGre friction model also facilitates
appropriate parameter tuning to obtain the friction
response, as shown in Figure 5. In addition to slick-slip
responses, a dependency on sliding velocity is another
characteristic of the LuGre nano friction model.

The LuGre friction model will be used in this
paper to characterize nano friction interaction between
the nanoparticle and the substrate as follows [30,31]:

Figure 4. LuGre friction model [31].

Figure 5. LuGre friction model response [31].

Ffrict = �0bp(t) + �1( _yp(t))
dbp(t)
dt

+ F� _yp(t);

dbp
dt

= _yp � j _ypjg( _yp)
bp;

g( _yp) =
1
�0

h
Fc + (Fs � Fc)e�( _yp=�s)2

i
;

�1( _yp) = �1e�( _yp=�d)2
; (19)

where bp(t) is bristle de
ection, _yp(t) is the nanoparti-
cle velocity along the manipulation direction, Fs and Fc
are the static and kinetic friction magnitudes, respec-
tively, �0 is bristle sti�ness, �1 is the bristle damping
coe�cient, F� is the viscous damping coe�cient, �s
is the Stribeck velocity constant and �d is a velocity
constant.

3. Controller design

This section is devoted to the design of an optimal
sliding mode-based controller. The purpose of the
controller is to maintain the tip at a constant height
above the sample surface while the probe stage moves
laterally, and the tip manipulates the target nanopar-
ticle by exerting direct pushing force. The control
scheme is illustrated in Figure 6.

3.1. Optimal sliding mode approach
Sliding mode control theory provides some essential
tools to control systems with uncertainties or noise.
The main problem with this method is that large
amounts of control signal may be generated, which
leads to control saturation or high energy expenditure.
Consequently, optimizing this method may be useful.

Designing an optimal sliding surface for a time-
invariant system has been studied by many researchers.
In 1996, Koronodi et al. [4] designed an optimal

Figure 6. Control scheme for positioning the cantilever
tip at a constant height above the sample substrate during
lateral nanomanipulation.
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sliding mode controller using the LQ method for a
linear time invariant system. Tang and Misawa [32]
used the LQR technique for sliding surface design. A
linear sliding surface was utilized by both these papers.
The designed optimal sliding surface in these references
has two main characteristics: Firstly, it passes through
the origin of phase space. Secondly, the slope of the
surface is designed to optimize a desired cost function.
Transforming this system to a regular form will divide
the system into two separate parts; the control law
appears explicitly in the �rst part, but not in the
second part. So, the second part is an uncontrolled
part and is known as the internal dynamics of a system.
The slope of the sliding surface is designed based on
internal dynamics, inasmuch as the stability of the
overall system will be established by this part.

The transformation matrix, which transforms a
system to an appropriate form such as a regular form,
does not exist for all nonlinear systems. Hence, the
choice of an optimal sliding surface is more complicated
in nonlinear systems. Thus far, many methods have
been developed to choose an optimal sliding surface
for a nonlinear function. Zhou et al. [33] designed an
optimal sliding-mode controller for guiding a homing
missile to a maneuvering target. They considered
target maneuvers as a system disturbance. So, sliding
mode control provides them with a robust control
strategy to reliably reach the target. In 2006, Nikkhah
and Ashra�uon [34] developed a method for optimal
control of under-actuated systems. Bahrami et al. [35]
also designed an optimal sliding mode controller for
an aerospace application. Their main goal was to
provide robustness against disturbances and increase
terminal accuracy. In 2000, Salamci and Ozgoren [36]
designed an optimal sliding mode controller for a
missile autopilot by approximating the nonlinear
system as a linear system.

In this study, the results of [36] are used to design
optimal sliding surfaces for the main nonlinear system
(Eqs. (7) to (9) and (14)). First, a linearization of
the nonlinear system about an operating point, via
the Taylor's series expansion method, is used to design
the slope of the sliding surface. The linearized model
does not obviously represent the global behavior of the
original nonlinear system. Hence, the sliding controller
which is modeled based on a linearized system, is
suitable for a close neighborhood of the operating
point. So, utilizing successive linearized models at
operating points can extend the operating region of a
sliding controller. Finally, control inputs which result
from the linearized model are exerted to the nonlinear
system [37,38].

3.2. Optimal sliding mode controller design
approach

The nonlinear system of concern is represented by:

d
dt
x = A(x)x+B(x)u; x 2 Rn; u 2 Rm;

(20)

where, n = 8 is the number of state variables and
m = 1 is the number of control inputs. The states are
�, yt, yp, zt and their derivatives. To design an optimal
sliding surface, the system should be approximated
as a sequence of linear time varying systems. For
this purpose, it is linearized via the Taylor's series
expansion method about each operating point, as
follows [4,36]:
d
dt
x = A(t)x+B(t)u; x 2 Rn; u 2 Rm:

(21)

This equation can be converted to the following form:
d
dt

�
x1
x2

�
=
�
A11 A12
A21 A22

� �
x1
x2

�
+
�

0
B2

�
u; (22)

where x1 2 Rn�m, x2 2 Rm. The sliding surfaces can
be written as:
s = x2 +KLQx1 s 2 Rm; (23)

in which KLQ should be speci�ed as a design parame-
ter. Indeed, di�erent amounts of KLQ cause di�erent
performances. In this work, the LQ method is used to
determine KLQ [4].

So, consider the subsystem:
d
dt
x1 = A11x1 +A12x2; (24)

and the motion on the LQ optimal sliding surface
minimizes the following cost function [6]:

J =
1
2

Z t

0
fx1(t)TQ1x1(t) + x2(t)TR1x2(t)gdt: (25)

So, the KLQ will be calculated from:

KLQ = R�1
1 AT12P; (26)

in which P > 0 is the solution of the following Riccati
equation:

PA11 +AT11P � PA12R�1
1 AT12P +Q1 + 0: (27)

Now, to determine ueq, _s should be equal to zero.

_s = _x2 +KLQ _x1 = 0: (28)

Control signal ui (i = 1 : : :m) equals:

ui = uieq +Misat
�
si
'

�
; (29)

where Mi and ' are constant parameters. Using the
Lyapunov function, V = 1

2s
T s, we must be sure that:

si _si < 0: (30)

In the following section, the proposed approach
is applied to the nonlinear dynamics of the AFM. In
this work, it is assumed that there is no uncertain
parameter in the model.
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4. Simulation results and discussion

Simulation of the nanomanipulation process after im-
plementation of the designed controller is performed.
The simulations include the manipulation of a gold-
coated particle on a silicon oxide substrate by an

AFM tip made of silicon. The chosen materials are
widely used in experiments, so comparison can be made
easily. The values of system parameters are listed in
Table 1 [5,10,19,39,40].

For a nanomanipulation task, the AFM probe
stage moves with a constant lateral velocity (Vstage)

Table 1. System parameters values for simulation [5,10,19].

Symbol Quantity Value

Geometry and mechanical parameters

T Microcantilever beam thickness 1� 10�6 m
W Microcantilever beam width 48� 10�6 m
L Microcantilever beam length 225 � 10�6 m
� Microcantilever beam density 2330 kg/m3

E Microcantilever beam Young's modulus 169� 109 Pa
� Microcantilever beam Poisson's ratio 0.27
H AFM tip height 12� 10�6 m
mt AFM tip mass 3� 10�10 kg
It AFM tip moment of inertia 23:4� 10�22 kg.m2

Rt AFM Tip apex radius 25 � 10�9 m
Rp Particle radius 150 � 10�9 m
�p Particle density 2230 kg/m3

�t Tip Poisson ratio 0.17
�P Particle Poisson ratio 0.42
�S Substrate Poisson ratio 0.16
Et Tip Young's modulus 135� 109 Pa
EP Particle Young's modulus 3:8� 109 Pa
ES Substrate Young's modulus 73� 109 Pa

Adhesion parameters


t Tip surface energy 1.4 J/m2


p Particle surface energy 1.5 J/m2


s Substrate surface energy 0.16 J/m2

a0 Interatomic separation distance 3:75� 10�10 m
�Htp Hamacker constant (Si-Water-Au) [39] 33:6� 10�20 J
�Hps Hamacker constant (Au-Water-SiO2) [40] 8:1� 10�20 J

Friction parameters

FS Static friction magnitudes 1� 10�9 N
FC Kinetic friction magnitudes 6� 10�10 N
�0 Bristle sti�ness 1� 105 N/m
�1 Bristle damping coe�cient 1:5� 10�6 N.s/m
�s Stribeck velocity constant 1� 10�5 m/s
�d Velocity constant 0.1 m/s
F� Viscous damping coe�cient 0 N.s/m

Simulation parameters

Vstage Stage velocity 5� 10�5 m/s
hset Desired tip center height 7:68� 10�8 m
Dset Initial horizontal distance of tip/particle centers 13:34� 10�8 m
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Figure 7. Simulation results of nanoparticle manipulation by an AFM tip controlled using optimal sliding mode.

and approaches the target nanoparticle while the AFM
tip is controlled to track a speci�ed trajectory. The
particle is supposed stationary on the substrate from
the beginning. The separation distance between the
tip-particle decreases gradually until the tip apex
reaches the contact region with the particle and,
then, the attractive interaction force between the tip-
particle converts to a repulsive force. Due to the
repulsive interaction force, the lateral de
ection and
torsional angle of the AFM tip increases, while the
tip vertical position is controlled in order to remain
at the horizontal line. Whenever the repulsive pushing
force overcomes the LuGre friction force between the
particle-substrate, the particle starts sliding on the
substrate. It ceases again when the friction force
becomes larger than the pushing force. The LuGre
friction force is a function of the particle velocity and
increases rapidly after particle movement. This stick-
slip response repeats during the nanomanipulation
task. Simulation of the nanoparticle manipulation is
performed, while the controller is employed to control
the AFM tip height. The simulation results have been
shown over a short time for a better illustration of the
parameters responses and behaviors. Nevertheless, the
simulation results for a much longer simulation time
showed the same bounded responses, as long as we
keep the de�ned experiment conditions and simulation
parameters constant.

Figure 7(a) depicts the tip apex vertical position
versus time. As shown, the proposed controller main-
tains the tip apex on the desired trajectory, which is
chosen as a horizontal line. The tracking simulation
response shows that the tip has a slight undershoot
and then returns to the desired line with an acceptable
resolution. The input force signal is depicted in
Figure 7(b), and it is shown to be bounded. It
initially jumps to an approximately constant value, and

uctuates about this value when the system reaches a
steady-state behavior and the tip-particle remains in
the contact mode.

The particle position versus time is depicted in
Figure 7(c). Initially, the nanoparticle stays motionless
and then moves with a stick-slip behavior on the sub-
strate in the y-axis direction, as shown in Figure 7(c).
This �gure indicates that the particle periodically ex-
periences a positive and negative acceleration. During
the particle stick-slip motion, the particle has positive
acceleration while the pushing force is dominant over
the friction force, and it has negative acceleration when
the friction force becomes larger. The average velocity
of the nanoparticle is about 0.5 �m/s, which is equal
to the velocity of the probe stage.

Figure 7(d) shows the separation distance be-
tween the external surfaces of the particle-tip after
nanoscale deformation. As shown, the parameter
decreases until it reaches the contact region, according
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to the Derjaguin interaction model, and after that, the
nanoparticle starts to move. This parameter 
uctuates
around a constant value of about 21 Angstrom. During
the particle stick-slip motion, the separation distance
increases while the particle slides on the substrate and
decreases when the particle is in the sticking phase.

By solving the Riccati equation for P > 0, optimal
sliding mode coe�cients (KLQi(i = 1 � � � 7)) can be
calculated from Eq. (25), as shown in Figure 8(a)-(d).
These �gures show that the slopes of the optimal sliding
surface are tuned after a while, and then, they reach a
smaller and constant value. Table 2 shows their �nal
values. Figure 8(b) and (c) show that K3, K4 and K5
are larger than other coe�cients. These coe�cients
correspond to the yp, zt and _� states. Consequently,

Table 2. Final values of KLQ.

Final
values

K1 K2 K3 K4 K5 K6 K7

540.3 340.3 9302 8271.8 12030.1 12.3 0.03

they are the chief states in the optimal sliding mode
controller design.

Contact deformations between the tip-particle
and the particle-substrate are obtained using a JKR
contact mechanics model, and are depicted in Figure 9.
The tip-particle penetration depth is presented in
Figure 9(a). The graph has an initial jump, which
corresponds to the tip-particle approaching time, and
when the tip approaches and remains in the contact
region with the particle, the graph shows a stick-slip
pattern. The particle-substrate penetration depth on
the contact surface is also given in Figure 9(b). The
pro�le similarly shows an initial jumping and follows
a stick-slip pattern with increasing and decreasing
amplitude, with respect to time.

5. Conclusion

An optimal sliding mode approach is applied to the
AFM probe in order to control and suppress the

Figure 8. Optimal sliding mode coe�cients over time (KLQi(i = 1 � � � 7)).

Figure 9. Contact deformations results of the nanomanipulation simulation.
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vibration behavior of the AFM microcantilever for a
2-D lateral nanomanipulation task. In this paper, a
complete model of the pushing based manipulation
of a nanoparticle by an AFM probe is presented.
The proposed nanomanipulation model is divided into
the AFM probe and the nanoparticle dynamics, and
consists of all e�ective phenomena in the nanoscale.
Nanoscale interaction forces, elastic deformation in
contact areas, and dynamic friction force are considered
in the tip-particle-substrate system model. The pro-
posed dynamic friction model depends on the relative
velocity and produces the stick-slip behavior of the
nanoparticle.

The optimal sliding mode control approach pro-
vided good performance with a simple control struc-
ture. In this control approach, slope tuning of the
sliding surface is chosen using the LQ method in order
to optimize the cost function. First, a successive
approximation approach is used to approximate the
main nonlinear system as a linear time variant system
at each operating point. Then, the LQ method is
used to design the control input for approximated
systems. The control input which is generated from
the approximated system is applied to the original
nonlinear system. The simulation results showed that
the proposed controller law can track the desired
trajectory with perfect accuracy.
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