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Abstract. In this paper, we study the intuitionistic fuzzy information aggregation
operators based on Einstein operation laws under the condition in which the aggregated
arguments are independent. The Einstein-based Intuitionistic Fuzzy Choquet Averaging
(EIFCA) operator is proposed. Furthermore, the relationship between the EIFCA operator
and the IFCA operator is investigated. The desirable properties of the EIFCA operator,
such as boundeness, monotonicity, shift-invariance and homogeneity are discussed. A
multi-criteria decision making approach, based on the EIFCA operator is proposed under
intuitionistic fuzzy environment. A comparative example is given for demonstrating the
applicability of the proposed decision procedure and for �nding links with other operators-
based decision approach.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Intuitionistic Fuzzy Sets (IFS) [1-2], introduced by
Atanassov, is a generalization of the concept of fuzzy
set. IFS is characterized by three functions, ex-
pressing degrees of membership, non-membership and
indeterminacy, so it is more powerful to deal with
uncertainty and vagueness in real applications than
type-2 fuzzy set [3-4], type-fuzzy set [3], fuzzy multiset
[5-6] and hesitant fuzzy set [7-8] which only consider
the membership degree. For example, if a boy wants
to �nd a girlfriend and evaluates the girl from ten
aspects, there are six aspects which satis�es the boy,
three aspects do not satisfy, and he is uncertain with
one aspect of the girl. In such a case, other types of
fuzzy set can only re
ect the satis�ed aspects which
lose some uncertain information, while intuitionistic
fuzzy set can describe all the satis�ed, unsatis�ed and
uncertain information. Because of its appearance, IFS
has attracted much attention [9-34].

Research on the intuitionistic fuzzy information
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aggregation method is one of the hot topics of the IFS
theory. Based on the famous OWA operator [35-36]
and the GOWA operator [37] proposed by American
scholar Yager, many extended operators have been
appeared. For example, Xu [15] proposed the Intu-
itionistic Fuzzy Weighted Averaging (IFWA) operator,
ordered IFWA (IFOWA) operator and the intuition-
istic hybrid aggregation (IFHA) operator. From the
geometric point of view, Xu and Yager [38] introduced
the Intuitionistic Fuzzy Weighted Geometric (IFWG)
operator, ordered IFWG (IFOWG) operator and the
Intuitionistic Fuzzy Hybrid Geometric (IFHG) opera-
tor. Zhao et al. [39] proposed the generalized forms
of the IFWA, IFOWA and IFHA operators, and they
proofed that the operators proposed by Xu [15] are
special cases of the operators. The above aggregation
operators for intuitionistic fuzzy information are under
the condition in which the aggregated arguments are
independent. However, it cannot meet the requirement
of real situations. Choquet integral [40,41] is a pow-
erful tool to deal with this situation, based on which
Xu [42], Tan and Chen [10] and Tan [43] developed
some intuitionistic fuzzy Choquet operators such as
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the Intuitionistic Fuzzy Choquet Average (IFCA) op-
erator and the Intuitionistic Fuzzy Choquet Geometric
(IFCG) operator. Tan and Chen [11] proposed the
induced intuitionistic fuzzy Choquet integral operator
and applied it to decision making. The prominent
characteristic of those operators is that they cannot
only adapt to the intuitionistic fuzzy environment,
but also re
ect the interrelationship of the individual
criteria.

It needs to be pointed out that the basic opera-
tional laws of IFS for the above aggregation operators
are the algebraic operational laws. Einstein product
and Einstein sum are good alternatives for the algebraic
product and algebraic sum, respectively [44]. The
purpose of this paper is to investigate intuitionistic
fuzzy information aggregation methods based on the
Einstein product and Einstein sum under the assump-
tion that the aggregated arguments are correlative. To
do this, the remainder of this paper is constructed as
follows: Section 2 brie
y reviews some basic concepts.
In Section 3, we propose the Einstein-based Intuition-
istic Fuzzy Choquet Averaging (EIFCA) operator; the
desirable properties of the EIFCA are also studied in
this section. An approach to multi-criteria decision
making based on the proposed operator is proposed in
Section 4; a comparative example is also illustrated in
this section. S ection 5 gives some conclusion remarks.

2. Some basic concepts

As a generalization of fuzzy set, Intuitionistic Fuzzy
Set (IFS) assigns to each element a membership degree
and a non-membership degree. Atanassov [1] gave the
de�nition of Intuitionistic Fuzzy Set (IFS) as follows.

De�nition 1. If a set X be �xed, the concept of
Intuitionistic Fuzzy Set (IFS) A on X is de�ned as
follows:

A = f< x; �A(x); vA(x) > jx 2 X g ; (1)

where the functions �A(x) and vA(x) denote the
degrees of membership and non-membership of the
element x 2 X to the set A, respectively, with the
condition that 0 � �A(x) � 1, 0 � vA(x) � 1 and
0 � �A(x)+vA(x) � 1. For convenience, Xu [15] named
� = (��; v�) an Intuitionistic Fuzzy Value (IFV). In
this paper, we let V be the set of all IFVs.

For three IFVs �, �1, �2 2 V , some Einstein
operational laws were given as follows [44]:

1. �1 �" �2 =
�
��1+��2
1+��1��2

; v�1v�2
1+(1�v�1 )(1�v�2 )

�
,

2. �1 
" �2 =
�

��1��2
1+(1���1 )(1���2 ) ;

v�1+v�2
1+v�1v�2

�
,

3. �� =
�

2���
(2���)�+���

; (1+v�)��(1�v�)�

(1+v�)�+(1�v�)�

�
,

4. �� =
�

(1+��)��(1���)�

(1+��)�+(1���)� ;
2v��

(2�v�)�+v��

�
.

Chen and Tan [45] introduced the score function s(�) =
��� v� to get the score of �, then Hong and Choi [46]
de�ned the accuracy function h(�) = �� + v� to
evaluate the accuracy degree of �. Based on the
score function s and the accuracy function h, Xu and
Yager [38] gave an order relation between two IFVs �1
and �2:

1. If s(�1) < s(�2), then �1 < �2;
2. If s(�1) = s(�2), then:

i) If h(�1) = h(�2), then �1 = �2;
ii) If h(�1) < h(�2), then �1 < �2.

Let �(fxig) (i = 1; 2; � � � ; n) be the weights of the
elements xi 2 X (i = 1; 2; � � � ; n) where � is a
fuzzy measure; Sugeno [47], Wang and Klir [48] and
Denneberg [49] de�ned a fuzzy measure as follows.

De�nition 2. A fuzzy measure � on the set X is
a function � : �(X) ! [0; 1] satisfying the following
axioms:

1. �(;) = 0, �(X) = 1;
2. B � C implies �(B) � �(C), for all B;C � X;
3. �(B[C) = �(B)+�(C)+��(B)�(C), for all B;C �

X and B \ C = ;, where � > �1.

Based on De�nition 2, Xu [42], Tan and Chen [10]
and Tan [43] de�ned Intuitionistic Fuzzy Choquet
Averaging (IFCA) and Intuitionistic Fuzzy Choquet
Geometric (IFCG) operators as follows.

De�nition 3. Let � be a fuzzy measure on X,
and �(xj) = (��(xj); v�(xj)) (j = 1; 2; � � � ; n) be a
collection of intuitionistic fuzzy sets, then:

IFCA(�(x1); �(x2); � � � ; �(xn))

=
n�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�
=
�

1�Yn

j=1
(1� ���(j))

�(B�(j)�B�(j�1)) ;Yn

j=1
(v��(j))

�(B�(j)�B�(j�1))
�
; (2)

IFCG(�(x1); �(x2); � � � ; �(xn))

=
n

j=1

�
�(x�(j))

��(B�(j)�B�(j�1))

=
�Yn

j=1
(���(j))

�(B�(j)�B�(j�1));

1�Yn

j=1
(1� v��(j))

�(B�(j)�B�(j�1))
�
; (3)
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are called the Intuitionistic Fuzzy Choquet Av-
eraging (IFCA) and Intuitionistic Fuzzy Choquet
Geometric (IFCG) operators, respectively, where
(�(1); �(2); � � � ; �(n)) is a permutation of (1; 2; � � � ; n),
such that �(x�(1)) � �(x�(2)) � � � ��(x�(n)), B�(k) =
fx�(j)jj � kg, for k � 1, and B�(0) = ;.

3. Intuitionistic fuzzy Choquet operator based
on Einstein operation laws

In this section, we shall investigate the intuitionistic
fuzzy information aggregation operator combined with
Choquet integral. Based on the Einstein operational
laws described by De�nition 2, we give the de�nition
of the Einstein-based Intuitionistic Fuzzy Choquet
Averaging (EIFCA) operator as follows:

De�nition 4. Let � be a fuzzy measure on X
and �j(j = 1; 2; � � � ; n) be a collection of IFVs, an
Einstein-based Intuitionistic Fuzzy Choquet Averaging
(EIFCA) operator is a mapping V n ! V , and:

E(C)
Z
�d� = EIFCA(�(x1); �(x2); � � � ; �(xn))

=
n�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�
; (4)

where (C)
R
�d� denotes the Choquet integral and

(�(1); �(2); � � � ; �(n)) is a permutation of (1; 2; � � � ; n),
such that �(x�(1)) � �(x�(2)) � � � ��(x�(n)), B�(k) =
fx�(j)jj � kg, for k � 1, and B�(0) = ;.

Based on the operational laws of the IFVs de-
scribed in Section 2, we can derive Theorem 1 easily.

Theorem 1. Let � be a fuzzy measure on X, �j =
(��j ; v�j ) (j = 1; 2; � � � ; n) be a collection of IFVs and
��(j) be the jth largest of them, then their aggregated
value by using the EIFCA operator is also an IFVs,
and is de�ned in Eq. (5) which is shown in Box I.

Proof. The proof including Eqs. (6) to (13) is shown
in Box II. It should be noted that the proof of
Theorem 1 was done by many references such as [15,39-
44].

In order to analyze the relationship between the
EIFCA and IFCA operators proposed by Tan and

Chen [10] and Xu [42], we introduce the following
lemma [50].

Lemma 1. Let xj > 0, !j > 0, j = 1; 2; � � � ; n andPn
j=1 !j = 1, then:

Yn

j=1
x!jj �

nX
j=1

!jxj ; (14)

with equality if and only if x1 = x2 = � � � = xn.

Theorem 2. Let � be a fuzzy measure on X, �j =
(��j ; v�j ) (j = 1; 2; � � � ; n) be a collection of IFVs and
��(j) be the jth largest of them, then:

EIFCA(�1; �2; � � � ; �n) � IFCA(�1; �2; � � � ; �n):
(15)

Proof. On one hand, since �(B�(j)�B�(j�1)) � 0 for
all j and

Pn
j=1 �(B�(j) � B�(j�1)) = 1, then based on

Lemma 1, we have:Yn

j=1

�
1 + ���(j)

��(B�(j)�B�(j�1))

+
Yn

j=1

�
1� ���(j)

��(B�(j)�B�(j�1))

�
nX
j=1

�(B�(j) �B�(j�1))
�
1 + ���(j)

�
+

nX
j=1

�(B�(j) �B�(j�1))
�
1� ���(j)

�
=

nX
j=1

�(B�(j) �B�(j�1))
�
1 + ���(j)

�
+

nX
j=1

�(B�(j) �B�(j�1))
�
1� ���(j)�

=
nX
j=1

�(B�(j) �B�(j�1))

EIFCA (�1; �2; � � � ; �n) =
�Qn

j=1(1+���(j) )�(B�(j)�B�(j�1))�Qn
j=1(1����(j) )�(B�(j)�B�(j�1))Qn

j=1(1+���(j) )�(B�(j)�B�(j�1))+
Qn
j=1(1����(j) )�(B�(j)�B�(j�1)) ;

2
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

!
: (5)

Box I.
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EIFCA (�1; �2; � � � ; �n) =
�Qn

j=1(1+���(j) )�(B�(j)�B�(j�1))�Qn
j=1(1����(j) )�(B�(j)�B�(j�1))Qn

j=1(1+���(j) )�(B�(j)�B�(j�1))+
Qn
j=1(1����(j) )�(B�(j)�B�(j�1)) ;

2
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

!
; (6)

by using mathematical induction on n:
For n = 2: since:

�(B�(1) �B�(1�1))�(x�(1))

=

 
(1+��(1))

�(B�(1)�B�(1�1))�(1���(1))
�(B�(1)�B�(1�1))

(1+��(1))
�(B�(1)�B�(1�1))+(1���(1))

�(B�(1)�B�(1�1)) ;
2v
�(B�(1)�B�(1�1))

�(1)

(2�v�(1))
�(B�(1)�B�(1�1))+v

�(B�(1)�B�(1�1))

�(1)

!
; (7)

�(B�(2) �B�(2�1))�(x�(2))

=

 
(1+��(2))

�(B�(2)�B�(2�1))�(1���(2))
�(B�(2)�B�(2�1))

(1+��(2))
�(B�(2)�B�(2�1))+(1���(2))

�(B�(2)�B�(2�1)) ;
2v
�(B�(2)�B�(2�1))

�(2)

(2�v�(2))
�(B�(2)�B�(2�1))+v

�(B�(2)�B�(2�1))

�(2)

!
: (8)

Then:

�(B�(1) �B�(1�1))�(x�(1))� �(B�(2) �B�(2�1))�(x�(2))

=

0B@ (1+��(1))
�(B�(1)�B�(1�1))�(1���(1))

�(B�(1)�B�(1�1))

(1+��(1))
�(B�(1)�B�(1�1))

+(1���(1))
�(B�(1)�B�(1�1)) +

(1+��(2))
�(B�(2)�B�(2�1))�(1���(2))

�(B�(2)�B�(2�1))

(1+��(2))
�(B�(2)�B�(2�1))

+(1���(2))
�(B�(2)�B�(2�1))

1+
(1+��(1))

�(B�(1)�B�(1�1))�(1���(1))
�(B�(1)�B�(1�1))

(1+��(1))
�(B�(1)�B�(1�1))

+(1���(1))
�(B�(1)�B�(1�1))

(1+��(2))
�(B�(2)�B�(2�1))�(1���(2))

�(B�(2)�B�(2�1))

(1+��(2))
�(B�(2)�B�(2�1))

+(1���(2))
�(B�(2)�B�(2�1))

2v
�(B�(1)�B�(1�1))
�(1)

(2�v�(1))
�(B�(1)�B�(1�1))

+v
�(B�(1)�B�(1�1))
�(1)

2v
�(B�(2)�B�(2�1))
�(2)

(2�v�(2))
�(B�(2)�B�(2�1))

+v
�(B�(2)�B�(2�1))
�(2)

1+

0@1� 2v
�(B�(1)�B�(1�1))
�(1)

(2�v�(1))
�(B�(1)�B�(1�1))

+v
�(B�(1)�B�(1�1))
�(1)

1A0@1� 2v
�(B�(2)�B�(2�1))
�(2)

(2�v�(2))
�(B�(2)�B�(2�1))

+v
�(B�(2)�B�(2�1))
�(2)

1A
1CCCA (9)

=
�Q2

j=1(1+���(j) )�(B�(j)�B�(j�1))�Q2
j=1(1����(j) )�(B�(j)�B�(j�1))Q2

j=1(1+���(j) )�(B�(j)�B�(j�1))+
Q2
j=1(1����(j) )�(B�(j)�B�(j�1)) ;

2
Q2
j=1 v

�(B�(j)�B�(j�1))
��(j)Q2

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Q2
j=1 v

�(B�(j)�B�(j�1))
��(j)

!
. (10)

Box II. Continued on the next page.

+
nX
j=1

�(B�(j) �B�(j�1))

+
nX
j=1

���(j)�(B�(j) �B�(j�1))

�
nX
j=1

���(j)�(B�(j) �B�(j�1)) = 2: (16)

Therefore, Eq. (17) is given in Box III.
On the other hand, since:

Yn

j=1
(2� v��(j))

�(B�(j)�B�(j�1))

+
Yn

j=1
v�(B�(j)�B�(j�1))
��(j)

�
nX
j=1

�(B�(j)�B�(j�1))(2� v��(j))

+
nX
j=1

�(B�(j) �B�(j�1))v��(j) = 2; (18)

then Eq. (19) is given in Box IV. Let EIFCA(�1; �2;
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If Eq. (6) holds for n = k, that is:

k�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�
=
�Qk

j=1(1+���(j) )�(B�(j)�B�(j�1))�Qk
j=1(1����(j) )�(B�(j)�B�(j�1))Qk

j=1(1+���(j) )�(B�(j)�B�(j�1))+
Qk
j=1(1����(j) )�(B�(j)�B�(j�1)) ;

2
Qk
j=1 v

�(B�(j)�B�(j�1))
��(j)Qk

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qk
j=1 v

�(B�(j)�B�(j�1))
��(j)

!
; (11)

then, when n = k + 1, by the operational laws of IFVs, we have:

k+1�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�
=

k�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�� ��(B�(k+1) �B�(k))�(x�(k+1))
�

=
�Qk+1

j=1 (1+���(j) )�(B�(j)�B�(j�1))�Qk+1
j=1 (1����(j) )�(B�(j)�B�(j�1))Qk+1

j=1 (1+���(j) )�(B�(j)�B�(j�1))+
Qk+1
j=1 (1����(j) )�(B�(j)�B�(j�1)) ;

2
Qk+1
j=1 v

�(B�(j)�B�(j�1))
��(j)Qk+1

j=1 (2�v��(j) )�(B�(j)�B�(j�1))+
Qk+1
j=1 v

�(B�(j)�B�(j�1))
��(j)

!
; (12)

i.e. Eq. (6) holds for n = k + 1. Thus, Eq. (6) holds for all n. Then:

EIFCA (�1; �2; � � � ; �n) =
�Qn

j=1(1+���(j) )�(B�(j)�B�(j�1))�Qn
j=1(1����(j) )�(B�(j)�B�(j�1))Qn

j=1(1+���(j) )�(B�(j)�B�(j�1))+
Qn
j=1(1����(j) )�(B�(j)�B�(j�1)) ;

2
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

!
; (13)

which completes the proof of Theorem 1.�

Box II. Continued.

Qn
j=1

�
1+���(j)

��(B�(j)�B�(j�1))�Qn
j=1

�
1����(j)

��(B�(j)�B�(j�1))Qn
j=1

�
1+���(j)

��(B�(j)�B�(j�1))
+
Qn
j=1

�
1����(j)

��(B�(j)�B�(j�1))

= 1� 2
Qn
j=1

�
1����(j)

��(B�(j)�B�(j�1))Qn
j=1

�
1+���(j)

��(B�(j)�B�(j�1))
+
Qn
j=1

�
1����(j)

��(B�(j)�B�(j�1)) � 1�Qn
j=1

�
1� ���(j)

��(B�(j)�B�(j�1)) ; (17)

where the equality holds if and only if ���(j) (j = 1; 2; � � � ; n) are equal.

Box III.

� � � ; �n) = (��; v�) = � and IFCA(�1; �2; � � � ; �n) =
(�0�; v0�) = �0, then Eq. (19) can be transformed to:

�� � �0�; and v� � v0�: (20)

Based on Eq. (20), we have:

s(�) = �� � v� � �0� � v0� = s(�0): (21)

If s(�) < s(�+), then:

EIFCA(�1; �2;� � �; �n)< IFCA(�1; �2;� � �; �n): (22)

If s(�) = �� � v� = �0� � v0� = s(�0), i.e. Eqs. (23)
to (25) are given in Box V. Therefore:

h(�) = �� + v� = h0(�) = �0� + v0�: (26)

Thus, is follows that:

EIFCA(�1; �2; � � � ; �n) = IFCA(�1; �2; � � � ; �n):
(27)

From Eqs. (22) and (27), we know that Eq. (15) always
holds.
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2
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

�Qn
j=1 v

�(B�(j)�B�(j�1))
��(j) : (19)

Box IV.

Qn
j=1(1+���(j) )�(B�(j)�B�(j�1))�Qn

j=1(1����(j) )�(B�(j)�B�(j�1))Qn
j=1(1+���(j) )�(B�(j)�B�(j�1))+

Qn
j=1(1����(j) )�(B�(j)�B�(j�1)) � 2

Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

=
�

1�Qn
j=1

�
1� ���(j)

��(B�(j)�B�(j�1))
��Qn

j=1 v
�(B�(j)�B�(j�1))
��(j) j = 1; 2; � � � ; n (23)

Then we have:

Qn
j=1(1+���(j) )�(B�(j)�B�(j�1))�Qn

j=1(1����(j) )�(B�(j)�B�(j�1))Qn
j=1(1+���(j) )�(B�(j)�B�(j�1))+

Qn
j=1(1����(j) )�(B�(j)�B�(j�1)) =

�
1�Qn

j=1
�
1� ���(j)

��(B�(j)�B�(j�1))
�

(24)

2
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

=
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j) (25)

Box V.

Theorem 3 (Idempotency). Let � be a fuzzy
measure on X, �j = (��j ; v�j ) (j = 1; 2; � � � ; n) be a
collection of IFVs and ��(j) be the jth largest of them.
If all �j (j = 1; 2; � � � ; n) are equal, i.e. �j = �, for all
j, then:

EIFCA(�1; �2; � � � ; �n) = �: (28)

Proof. By De�nition 4, we have:

EIFCA(�1; �2; � � � ; �n)

=
n�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�
=
�
�(B�(1) �B�(1�1))�(x�(1))

�
� ��(B�(2) �B�(2�1))�(x�(2))

�
� ��(B�(n) �B�(n�1))�(x�(n))

�
=
�
�(B�(1) �B�(1�1))�

�
� ��(B�(2) �B�(2�1))�

� � � �
� ��(B�(n) �B�(n�1))�

�
=

0@ nX
j=1

�
�(B�(j) �B�(j�1))

�
�

1A
=
�
�(B�(n) �B�(1�1))�

�
= �: (29)

Theorem 4 (Boundeness). Let � be a fuzzy mea-
sure on X, �j = (��j ; v�j ) (j = 1; 2; � � � ; n) be a
collection of IFVs and ��(j) be the jth largest of them,
and also let:

�� =
�

min
j

(���(j));max
j

(v��(j))
�
;

�+ =
�

max
j

(���(j));min
j

(v��(j))
�
:

Then:

�� � EIFCA (�1; �2; � � � ; �n) � �+: (30)

Proof. Let f(x) = 1�x
1+x , x 2 [0; 1], then f 0(x) =

�2
(1+x)2 < 0, i.e. f(x) is a decreasing function. Since,
min
j

(���(j)) � ��j � max
j

(���(j)) for all j, then:

f(max
j

(���(j))) � f(���(j)) � f(min
j

(���(j))); (31)

i.e.:

1�max
j

(���(j))

1 + max
j

(���(j))
� 1� (���(j))

1 + (���(j))
�

1�min
j

(���(j))

1 + min
j

(���(j))
;

j = 1; 2; � � � ; n: (32)
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Since �(B�(j) �B�(j�1)) � 0 for all j, then we have:

0@1�max
j

(���(j))

1 + max
j

(���(j))

1A�(B�(j)�B�(j�1))

�
 

1� (���(j))
1 + (���(j))

!�(B�(j)�B�(j�1)

�
0@1�min

j
(���(j))

1 + min
j

(���(j))

1A�(B�(j)�B�(j�1))

;

j = 1; 2; � � � ; n: (33)

Thus:

Yn

j=1

0@1�max
j

(���(j))

1 + max
j

(���(j))

1A�(B�(j)�B�(j�1))

�Yn

j=1

 
1� (���(j))
1 + (���(j))

!�(B�(j)�B�(j�1))

�Yn

j=1

0@1�min
j

(���(j))

1 + min
j

(���(j))

1A�(B�(j)�B�(j�1))

;
(34)

)
0@1�max

j
(���(j))

1 + max
j

(���(j))

1A nP
j=1

�(B�(j)�B�(j�1))

�Yn

j=1

 
1� (���(j))
1 + (���(j))

!�(B�(j)�B�(j�1))

�
0@1�min

j
(���(j))

1 + min
j

(���(j))

1A nP
j=1

�(B�(j)�B�(j�1))

; (35)

)
1�max

j
(���(j))

1 + max
j

(���(j))

�Yn

j=1

 
1� (���(j))
1 + (���(j))

!�(B�(j)�B�(j�1))

�
1�min

j
(���(j))

1 + min
j

(���(j))
; (36)

) 2
1 + max

j
(���(j))

� 1 +
Yn

j=1

 
1� (���(j))
1 + (���(j))

!�(B�(j)�B�(j�1))

� 2
1 + min

j
(���(j))

; (37)

)
1 + min

j
(���(j))

2

� 1

1 +
Qn
j=1

�
1�(���(j) )
1+(���(j) )

��(B�(j)�B�(j�1))

�
1 + max

j
(���(j))

2
; (38)

)1 + min
j

(���(j))

� 2

1 +
Qn
j=1

�
1�(���(j) )
1+(���(j) )

��(B�(j)�B�(j�1))

� 1 + max
j

(���(j)); (39)

)min
j

(���(j))

� 2

1 +
Qn
j=1

�
1�(���(j) )
1+(���(j) )

��(B�(j)�B�(j�1))
� 1

� max
j

(���(j)): (40)

And Eq. (41) is shown in Box VI.
Let g(y) = 2�y

y , y 2 (0; 1], then g0(y) = �2
y2 < 0,

i.e. g(y) is a decreasing function. Since min
j

(v��(j)) �
v�j � max

j
(v��(j)), for all j, then:

f
�

max
j

(v��(j))
�
� f �v��(j)

� � f �min
j

(v��(j))
�
;
(42)

i.e.:

2�max
j

(v��(j))

max
j

(v��(j))
� 2� v��(j)

v��(j)

�
2�min

j
(v��(j))

min
j

(v��(j))
;

j = 1; 2; � � � ; n: (43)
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) minj(���(j)) �
Qn
j=1 (1+���(j) )�(B�(j)�B�(j�1))�Qn

j=1 (1����(j) )�(B�(j)�B�(j�1))Qn
j=1 (1+���(j) )�(B�(j)�B�(j�1))+

Qn
j=1 (1����(j) )�(B�(j)�B�(j�1)) � maxj(���(j)): (41)

Box VI.

Since �(B�(j) �B�(j�1)) � 0 for all j, then we have:0@2�max
j

(v��(j))

max
j

(v��(j))

1A�(B�(j)�B�(j�1))

�
 

2� v��(j)

v��(j)

!�(B�(j)�B�(j�1))

�
0@2�min

j
(v��(j))

min
j

(v��(j))

1A�(B�(j)�B�(j�1))

; (44)

)Yn

j=1

0@2�max
j

(v��(j))

max
j

(v��(j))

1A�(B�(j)�B�(j�1))

�Yn

j=1

 
2� v��(j)
v��(j)

!�(B�(j)�B�(j�1))

�Yn

j=1

0@2�min
j

(v��(j))

min
j

(v��(j))

1A�(B�(j)�B�(j�1))

;
(45)

)
0@2�max

j
(v��(j))

max
j

(v��(j))

1A nP
j=1

�(B�(j)�B�(j�1))

�
 

2� v��(j)

v��(j)

! nP
j=1

�(B�(j)�B�(j�1))

�
0@2�min

j
(v��(j))

min
j

(v��(j))

1A nP
j=1

�(B�(j)�B�(j�1))

; (46)

)
2�max

j
(v��(j))

max
j

(v��(j))

�
 

2� v��(j)

v��(j)

! nP
j=1

�(B�(j)�B�(j�1))

�
2�min

j
(v��(j))

min
j

(v��(j))
; (47)

) 2
max
j

(v��(j))

�
 

2� v��(j)

v��(j)

! nP
j=1

�(B�(j)�B�(j�1))

+ 1

� 2
min
j

(v��(j))
; (48)

)
min
j

(v��(j))

2

� 1�
2�v��(j)
v��(j)

� nP
j=1

�(B�(j)�B�(j�1))

+ 1

�
max
j

(v��(j))

2
; (49)

)min
j

(v��(j))

� 2�
2�v��(j)
v��(j)

� nP
j=1

�(B�(j)�B�(j�1))

+ 1

� max
j

(v��(j)); (50)

and Eq. (51) is shown in Box VII. Let:

EIFCA(�1; �2; � � � ; �n) = � = (��; v�); (52)

we have:

min
j

(���(j)) � �� � max
j

(���(j)); (53)

min
j

(v��(j)) � v� � max
j

(v��(j)); (54)

s(�)=���v��max
j

(���(j))�min
j

(v��(j))=s(�+);
(55)

s(�)=���v� � min
j

(���(j))�max
j

(v��(j))=s(��):
(56)
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) min
j

(v��(j)) � 2
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)Qn

j=1(2�v��(j) )�(B�(j)�B�(j�1))+
Qn
j=1 v

�(B�(j)�B�(j�1))
��(j)

� max
j

(v��(j)): (51)

Box VII.

If s(�) < s(�+) and s(�) > s(��), then by order
relation between two IFVs which was described in
Section 2, we have:

�� < EIFCA(�1; �2; � � � ; �n) < �+: (57)

If s(�) = s(�+), i.e. �� � v� = max
j

(���(j)) �
min
j

(v��(j)), we have:

�� = max
j

(���(j)); v� = min
j

(v��(j)): (58)

Therefore:

h(�)=��+v�=max
j

(���(j))+min
j

(v��(j))=h(�+);
(59)

then:

EIFCA(�1; �2; � � � ; �n) = �+: (60)

If s(�)=s(��), i.e. ���v�=min
j

(���(j))�max
j

(v��(j)),

then we have:

�� = min
j

(���(j)); v� = max
j

(v��(j)): (61)

Therefore:

h(�)= ��+��=min
j

(���(j))+max
j

(���(j))=h(��):
(62)

Thus, it follows that:

EIFCA(�1; �2; � � � ; �n) = ��: (63)

From Eqs. (57), (60) and (63), we know that Eq. (30)
always holds. It should be noted that the proof of
Theorems 2 and 4 are referred to the proved methods
provided by Wang and Liu [44].

The Monotonicity of the EIFCA operator can be
obtained by a similar proving method.

Theorem 5 (Monotonicity). Let � be a fuzzy
measure on X, �j = (��j ; v�j ) (j = 1; 2; � � � ; n) and
��j = (���j ; v��j ) (j = 1; 2; � � � ; n) be two collections of
IFVs, ��(j) be the jth largest of �j(j = 1; 2; � � � ; n)
and ���(j) be the jth largest of ��j (j = 1; 2; � � � ; n),
� > 0. If ���(j) � ����(j)

and v��(j) � v���(j)
, for all j,

then:

EIFCA(�1; �2; � � � ; �n) � EIFCA(��1; ��2; � � � ; ��n):
(64)

Theorem 6. Let � be a fuzzy measure on X, �j =
(��j ; v�j ) (j = 1; 2; � � � ; n) be a collection of IFVs and
��(j) be the jth largest of them. If(�01; �02; � � � ; �0n) is
any permutation of �j (j = 1; 2; � � � ; n), then:

EIFCA(�1; �2; � � � ; �n) = EIFCA(�01; �02; � � � ; �0n):
(65)

Proof. According to De�nition 4, we have:

EIFCA(�(x1); �(x2); � � � ; �(xn))

=
n�
j=1

�
�(B�(j) �B�(j�1))�(x�(j))

�
; (66)

and:

EIFCA(�0(x1); �0(x2); � � � ; �0(xn))

=
n�
j=1

�
�(B�(j) �B�(j�1))�0(x�(j))

�
: (67)

Since (�01; �02; � � � ; �0n) is any permutation of �j , we
have:

�(��(i)) = �0(��(i)i = 1; 2; � � � ; n: (68)

Therefore, EIFCA(�1; �2; � � � ; �n) = EIFCA(�01; �02;� � � ; �0n), which completes the proof of Theorem 6.
From De�nition 4, the following property of the

EIFCA operator can be obtained easily.

Property 1 (Shift-invariance). Let � be a fuzzy
measure on X and �j = (��j ; v�j ) (j = 1; 2; � � � ; n) be
a collection of IFVs. If � = (�� ; ��) is an intuitionistic
fuzzy value on X, then:

EIFCA(�1 � �; �2 � �; � � � ; �n � �)

= EIFCA(�1; �2; � � � ; �n)� �: (69)

Property 2 (Homogeneity). Let � be a fuzzy
measure on X and �j = (��j ; v�j ) (j = 1; 2; � � � ; n)
be a collection of IFVs. If � > 0, then:

EIFCA(��1; ��2; � � � ; ��n)

= � EIFCA(�1; �2; � � � ; �n): (70)
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Property 3. Let � be a fuzzy measure onX and �j =
(��j ; v�j ) (j = 1; 2; � � � ; n) be a collection of IFVs. If
� = (�� ; ��) is an intuitionistic fuzzy value on X and
if � > 0, then:

EIFCA(��1 � �; ��2 � �; � � � ; ��n � �)

= � EIFCA(�1; �2; � � � ; �n)� �: (71)

Property 4. Let � be a fuzzy measure on X, �j =
(��j ; v�j ) and �j = (��j ; v�j ) (j = 1; 2; � � � ; n) be two
collections of IFVs, then:

EIFCA(�1 � �1; �2 � �2; � � � ; �n � �n)

= EIFCA(�1; �2; � � � ; �n)

� EIFCA(�1; �2; � � � ; �n): (72)

4. An approach to multi-criteria decision
making under intuitionistic fuzzy
environment

The multi-criteria decision making is a very practical
method in the real world, and have very signi�cant
e�ect on both theory and practical. It aims to �nd
the best alternatives from a �nite number of options.
Multi-criteria decision making, using IFVs, is an impor-
tant variety of decision making theory [15-18]. In the
following, we utilize the EIFCA operator to develop an
approach for multi-criteria decision making using IFVs,
which includes the following steps:

Step 1. The intuitionistic fuzzy decision making
matric B = (bij)m�n always needs to be standardized,
since there are cost attributes (the smaller the attribute
values the better). Xu and Hu [51] have proposed a
standardization method.

rij = (�ij ; vij) =

(
bij ; for bene�t attribute Cj
�bij ; for cos t attribute Cj

i = 1; 2; � � � ;m j = 1; 2; � � � ; n; (73)

where �bij is the complement of bij such that:

�bij = (fij ; tij);

i = 1; 2; � � � ;m; j = 1; 2; � � � ; n: (74)

Based on Eqs. (94) and (95), the standardized decision
making matric R = (rij)m�n can be obtained.

Step 2. By the order relation between IFVs, rij is
reordered such that ri(1) � ri(2) � � � � � ri(n).

Step 3. Based on Choquet integral, calculate the
correlations between the criteria, using the method
given in Section 2 [10,11].

Step 4. Utilize the EIFCA operator to aggregate
all the performance values rij(j = 1; 2; � � � ; n) of the
ith line, and get the overall performance value ri
corresponding to the alternative Ai.

Step 5. Calculate the score function and accuracy
function of the overall values ri (i = 1; 2; � � � ;m), then
utilize order relation between IFVs described in Section
2 to rank the overall performance values ri and select
the best one.

Example 1. Suppose a multinational corporation
in China is planning its �nancial strategy for the
next year, according to the group strategy objective.
After preliminary screening, the four alternatives are
produced.

A1: To invest in the Southeast Asian markets;

A2: To invest in the Eastern European market;

A3: To invest in the North American market;

A4: To invest in the local market.

This evaluation proceeds from the following four as-
pects, such as the growth analysis (c1), the risk
analysis (c2), the sociopolitical impact analysis (c3)
and the environmental impact analysis (c4). The four
alternatives Ai (i = 1; 2; � � � ; 4) are to be evaluated
by corresponding experts, using the IFVs, as shown in
Table 1.

In order to choose the most appropriate invest-
ment program, the main steps are as follows (based on
the EIFCA operator):

Step 1: Since the criteria c2 and c4 are the cost
criteria, the decision matrix need normalization. Nor-
malized decision matrix is shown in Table 2.

Step 2: According to Table 2, by the order relation
between IFVs, the evaluation rij of the candidate Ai
such that ri(1) � ri(2) � � � � � ri(n) (i = 1; 2; � � � ; 4), is

Table 1. The evaluation information on the projects.

c1 c2 c3 c4

A1 (0.6,0.2) (0.2,0.8) (0.8,0.1) (0.5,0.3)
A2 (0.4,0.1) (0.1,0.6) (0.5,0.2) (0.2,0.8)
A3 (0.7,0.3) (0.2,0.8) (0.6,0.3) (0.1,0.4)
A4 (0.5,0.5) (0.1,0.9) (0.8,0.1) (0.2,0.7)
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Table 2. The normalized evaluation information on the
projects.

c1 c2 c3 c4

A1 (0.6,0.2) (0.8,0.2) (0.8,0.1) (0.3,0.5)
A2 (0.4,0.1) (0.6,0.1) (0.5,0.2) (0.8,0.2)
A3 (0.7,0.3) (0.8,0.2) (0.6,0.3) (0.4,0.1)
A4 (0.5,0.5) (0.9,0.1) (0.8,0.1) (0.7,0.2)

reordered as follows:

r1(1) = (0:8; 0:1); r1(2) = (0:8; 0:2);

r1(3) = (0:6; 0:2); r1(4) = (0:3; 0:5);

r2(1) = (0:8; 0:2); r2(2) = (0:6; 0:1);

r2(3) = (0:5; 0:2); r2(4) = (0:4; 0:1);

r3(1) = (0:8; 0:2); r3(2) = (0:7; 0:3);

r3(3) = (0:6; 0:3); r3(4) = (0:4; 0:1);

r4(1) = (0:9; 0:1); r4(2) = (0:8; 0:1);

r4(3) = (0:7; 0:2); r4(4) = (0:5; 0:5):

Step 3. Suppose the fuzzy measures of criteria of C
and criteria sets of C are as follows:

�(;) = 0; �(c1) = 0:38; �(c2) = 0:27;

�(c3) = 0:36; �(c4) = 0:21;

�(c1; c2) = 0:77; �(c1; c3) = 0:64;

�(c1; c4) = 0:51; �(c2; c3) = 0:44;

�(c2; c4) = 0:31; �(c3; c4) = 0:45;

�(c1; c2; c3) = 0:83; �(c1; c2; c4) = 0:69;

�(c1; c3; c4) = 0:78; �(c2; c3; c4) = 0:55;

�(c1; c2; c3; c4) = 1:

Step 4. Utilize the EIFCA operator to aggregate
all the performance values rij(j = 1; 2; � � � ; 4) of the
ith line, and get the overall performance value ri
corresponding to the alternative Ai (i = 1; 2; 3; 4).r1
is calculated and shown in Box VIII. Similarly:

r2 = (0:5804; 0:1372); r3 = (0:6879; 0:2251);

r4 = (0:7291; 0:2318);

Step 5. Calculate the scores of ri (i = 1; 2; 3; 4),
respectively:

S1 = 0:4819; S2 = 0:4432;

S3 = 0:4628; S4 = 0:4973:

Since:

S4 > S1 > S3 > S2;

we have:

A4 � A1 � A3 � A2:

Hence, the best �nancial strategy is A4, i.e. to invest
in the local market.

If we use the IFCA operator proposed by Xu [42]
and Tan and Chen [10] (i.e., Eq. (2) described in
Section 2) to get the overall values r00i of the options
Ai (i = 1; 2; 3; 4) then:

r001 = (0:6757; 0:1821); r002 = (0:5915; 0:1366);

r003 = (0:6922; 0:2231); r004 = (0:7381; 0:2227):

According to the overall values r00i (i = 1; 2; 3; 4), by
the order relations of IFVs, we can obtain that:

r004 > r001 > r003 > r002 ;

i.e.:

A4 � A1 � A3 � A2:

Hence, the best �nancial strategy is A4, i.e. to invest
in the local market. The optimal �nancial strategy and
the ranking of the �nancial strategies are the same as
the ones obtained by EIFCA Operator. Furthermore,
we �nd that:

r1 = (0:6676; 0:1857) < (0:6757; 0:1821) = r001 ;

r2 = (0:5804; 0:1372) < (0:5915; 0:1366) = r002 ;

r3 = (0:6879; 0:2251) < (0:6922; 0:2231) = r003 ;

r4 = (0:7291; 0:2318) < (0:7381; 0:2227) = r004 :

These results satisfy Theorem 2.

5. Concluding remarks

In this paper, we have proposed the Einstein-based
Intuitionistic Fuzzy Choquet Averaging (EIFCA) oper-
ator. Various properties of EIFCA operator have been
studied in this paper. Furthermore, the relationships
between EIFCA operator and some existing operator
such as IFCA have been discussed. The EIFCA
operator were distinguished from the existing operators
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r1 =
�

(1+0:8)0:36(1+0:8)0:44�0:36(1+0:6)0:83�0:44(1+0:3)1�0:83�(1�0:8)0:36(1�0:8)0:44�0:36(1�0:6)0:83�0:44(1�0:3)1�0:83

(1+0:8)0:36(1+0:8)0:44�0:36(1+0:6)0:83�0:44(1+0:3)1�0:83+(1�0:8)0:36(1�0:8)0:44�0:36(1�0:6)0:83�0:44(1�0:3)1�0:83 ,

2�0:10:360:2(0:44�0:36)0:2(0:83�0:44)0:5(1�0:83)

(2�0:1)0:36(2�0:2)(0:44�0:36)(2�0:2)(0:83�0:44)(2�0:5)(1�0:83)+0:10:360:2(0:44�0:36)0:2(0:83�0:44)0:5(1�0:83)

�
= (0:6676; 0:1857)

Box VIII.

not only due to the EIFCA operator, using the Einstein
operations, but also due to the consideration of the
inter-dependent phenomena among the evaluated cri-
teria, which makes the method proposed in this paper
to have more wide practical application potentials.
The results of this paper can be extended to the dual
hesitant fuzzy environment and applied to supplier
selection, personnel evaluation and so on.
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