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Abstract. Unilateral Vocal Fold Paralysis (UVFP) is a type of neurogenic laryngeal
disorder in which vocal folds of patients do not have their normal behaviors, leading to
abnormal talking voices. In this paper, a new noninvasive method for processing telephony
speech signals is proposed to remotely diagnose the voice of the patients with UVFP disease.
The proposed feature extraction method benefits from an adaptive decomposition method,
the Matching Pursuit (MP) algorithm, to decompose the involved signals to some predefined
atoms. Then, the attributes of the obtained atoms assigned to the speech signal converts
to a final feature vector, so called MSDMP. Simulation results indicate the usefulness of the
proposed feature vector with respect to a commonly used wavelet based features (EWPD).
The MSDMP feature vector has improved the classification rate by 4.98%, as compared to
the EWPD feature vector.

© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Development of noninvasive methods in the diagno-
sis of different diseases can lead to spreading and
improvement of prevention and care programs. The
speech signal is an easily accessible signal that clearly
represents the characteristics of larynx and vocal folds.
From this point of view, the speech signal could be an
efficient subject for noninvasive approaches to diagnose
the patients who have larynx problems. By applying
proper feature extraction and classification methods to
the patients’ speech signal, diagnosis of vocal fold dis-
eases such as Unilateral Paralysis, edema, nodules and
polyp could be realized. Development of the vocal folds
screening systems is an interesting engineering field, as
they do not need considerable hardware requirements,
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e.g. pronouncing some certain words by a suspected
case is adequate to be fed to such a recognition system.
In order to use such systems, patients must undergo
a simple self-training process to properly pronounce
some certain words. The processing results of the
voice of suspected subjects (with pathological sounds),
analyzed by a properly developed system, could be
used as a prognosis of laryngeal diseases to assist the
physicians.

Employing proper feature extraction methods is
a key element in signal classification problems. In
the field of this work, there are a large number of
researches in which different types of features are ex-
tracted related to the operation of vocal folds. Acoustic
parameters like shimmer (amplitude perturbation),
jitter (pitch perturbation), ratio of the harmonics
energy to the noise energy, Normalized First Harmonic
Energy (NFHE) and Turbulent Noise Index (TNI)
are some of the introduced primary features [1-4].
Besides, some techniques were introduced to estimate
the pitch frequency of pathological voices, based on
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autocorrelation function and cepstral coefficients [5].
Hansen et al. utilized the non-linear characterization
of the speech production system via the differential
“Teager energy” operator and the energy separation
algorithms to capture irregularity characteristic of the
vocal folds [6].

In the field of the spectral-based feature extrac-
tion approaches, Hartl et al. [7] designed a spectrum-
based measurement method by elimination of inter-
subject variability. They used features such as relative
energy levels of the first harmonic, first formant and
third formant, spectral slope in the low-frequency zone
and relative level of energy above 6 kHz. Based on these
features, they observed a relative increase of energy
level in the mid-frequency and high-frequency ranges
and a decrease in the low-frequency spectral slope of
the voices of the patients with Unilateral Vocal Fold
Paralysis (UVFP), in contrast to normal voices.

Gelzinis et al. [8] compared the effectiveness of
different feature vectors to categorize an input voice
signal into three classes (normal and two pathological
classes, diffuse and nodular) or two classes (normal and
pathological). The obtained results showed that the
pitch and amplitude perturbation are two characteris-
tics that are the best among the other ones. K-Nearest
Neighbor (KNN) and Support Vector Machine (SVM)
were the classifiers employed in their work.

Moreover, there are researchers that are search-
ing for nonlinear dynamic characteristic of the voice
signals [9-11]. Zhang benefited from the Correlation
Dimension (CD) feature, to compare sustained voices
generated by normal against patient subjects with
UVFP defect [10]. In this field, Vaziri et al. [11]
conducted some experiments on the use of phase
space-based features such as CD [12], the Largest
Lyapunov Exponent (LLE) [13], approximate entropy
(ApEn) [14], Fractal Dimension (FD) [15] and Ziv-
Lempel complexity (ZL) [16]. They compared these
features with some perturbation-based features like
jitter and shimmer.

By studying the local characteristic of the speech
signal, Behroozmand and Almasganj introduced a
modified version of wavelet-based feature extraction
method [17]. In their work, a Wavelet Packet De-
composition (WPD) was first applied to the speech
signal to divide it into many sub bands. The energy
and entropy of each sub band was then evaluated to
form the elements of an initial feature vector. Finally,
via a genetic algorithm, a properly selected feature
set was finalized out of the initial feature vector. In
a similar way, Khadivi et al. designed a system to
distinguish three of the most common types of vocal
diseases; unilateral paralysis, polyp and nodules from
each other [18]. They utilized WPD-based feature
set and compared three different feature selection
methods: Davies-Bouldin criteria, genetic algorithm

and k-nearest neighbors in the considered task. Also,
in [19,20], the ability of entropy and energy features,
obtained from the coefficients of an optimum wavelet
packet tree, was proposed along with Linear Discrimi-
nant Analysis (LDA) and Principal Component Analy-
sis (PCA) as feature dimension reduction methods and
individual, forward, backward, and branch-and-bound
methods were examined as feature selection methods.

In [21], a joint time-frequency approach was
proposed using an adaptive time-frequency transform
algorithm to decompose the speech signals. Then,
several features such as octave max, octave mean,
energy ratio, length ratio and frequency ratio were
extracted from the decomposition parameters, and
analyzed using statistical pattern classification tech-
niques. In addition, Ghoraani and Krishnan pro-
posed a methodology to extract the needed features
using adaptive Time-Frequency Distribution (TFD)
and Nonnegative Matrix Factorization (NMF) [22].
This led to meaningful features by which one could
successfully measure the rate of the abnormality of the
speech signal.

On the other hand, a system for remotely detect-
ing vocal fold pathologies, using the telephony speech,
was introduced by Moran et al. [23]. This system
benefited from a linear classifier fed by measurements
of pitch perturbation, amplitude perturbation and
harmonic-to-noise ratio. They showed that the ampli-
tude perturbation features are robust features for the
telephony speech diagnosis. They subcategorized the
pathologic recordings into four groups comprising of
normal, neuromuscular pathologic, physical pathologic
and mixed pathologic.

In this paper, we follow an approach that its
overall framework and test set is nearly similar to [17],
with two main differences: In this work, a different
wavelet-based feature extraction approach is followed;
second, the experiments are conducted over a known
pathological speech corpus, while its speech samples are
passed through a telephone line simulator. We follow
a Matching Pursuit (MP)-based method to extract
the useful features. Matching Pursuit algorithm is
an adaptive signal decomposition method by which
the time-frequency characteristics of a signal could be
extracted, properly. This method provides the main
basis vectors of an input signal, by assigning a number
of atoms, with their corresponding attributes, to every
signal. The attributes deviations of an assigned atoms
group, for a suspected speech signal, perform high po-
tential features for diagnosing the signal. In this work,
the proposed feature vector is used to distinguish the
voices of patients with Unilateral Vocal Fold Paralysis
(UVFP) from normal voices.

The rest of this paper is organized as follows:
In Section 2, UVFP disease is introduced in details.
Section 3 describes the database used in this work. In
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Section 4, the Matching Pursuit method is introduced.
In the following section, our proposed feature vector
(MSDMP) and a commonly used feature vector based
on wavelet are presented. The classification procedure
and the experimental results are provided in Sections
6 and 7, respectively. In the final sections, we have
discussion and conclusion of this paper.

2. Unilateral vocal fold paralysis

Larynx is the source of the sound generated by the
human vocal tract system. It produces periodic sounds
through a rhythmic opening and closing of the vocal
folds. The vocal folds, also known as vocal cords,
are composed of twin infoldings of mucous membrane
stretched horizontally across the larynx.  One of
the most common neurological diseases of the vocal
folds is unilateral paralysis disease. A dysfunction in
the vogues or recurrent nerves innervating the larynx
could lead to a laryngeal disease, so-called Unilateral
Vocal Fold Paralysis (UVFP) [8]. In details, UVFP
commonly occurs for three major reasons: nerve injury
during the surgeries, pressure on the nerve from an
adjacent tumor and viral infection. Together, these
three reasons account for more than 85% of the cases
of paralyzed vocal folds. Of course, there are other less
common causes such as stroke and other neurologic-
based diseases [24]. In Figure 1, two video stroboscopic
images are shown. They are the vocal folds of two
different cases, a normal person and a patient case with
UVFP disease. In both cases, the opening phase of
vocal folds is shown during phonation of a vowel sound.

We could see that normal vocal folds in opening
phase are completely isolated from each other. But,
this is not the case for the ill vocal folds. In addition,
vocal folds of a normal person, in the closing phase,
are completely jointed; but the glottis fissure of the
patients with either unilateral or bilateral paralysis
of the vocal folds remains continuously open, which
leads to the glottal air leakage. As a result, not
only the incomplete closure of vocal folds, but also
the incomplete opening of vocal folds results in airflow
turbulence and chaotic behavior of the voiced portions

Figure 1. Video stroboscopic image of the vocal cords at
the opening phase during phonation of a vowel sound:

(a) Normal vocal folds; and (b) unilaterally paralyzed
vocal folds [24].

of the speech signals of the patients [25]. Such voices
are referred to as breathy or creaky. Because of the
chaotic behavior of the UVFP patients’ voices, caused
by the airflow turbulence in glottis, this effect could
be tracked by studying the form and harmonics of the
related speech signals.

3. Database

The acoustic samples used in this paper are selected
from the disordered voice database of Kay Elemetrics
Corporation [26]. This database is developed by the
Massachusetts Eye and Ear Infirmary Voice and Speech
Lab. To conduct our experiments, we employ 53
normal acoustic samples and 67 unilateral vocal fold
paralysis samples (34 women and 33 men) from this
database. The selected samples are identical to omnes
used in [17]. The acoustic samples include vowel /a/
during long phonation of a word that contains vowel
/a/. The voice signals are recorded on a DAT recorder
at a sampling rate of 44.1 kHz with 16-bit resolution
in a controlled condition.

In the recent years, a big focus has been made
towards the design of remote systems [23]. This is
due to the rapid technological improvements and the
accessibility of communicational devices. As mentioned
earlier, in this work, we are interested to apply and
evaluate our approaches over the telephony speech
signals; so, we have to convert the aforementioned data
set to its telephony version, using the following block
diagram depicted in Figure 2.

Toward this conversion, the sampling rate of the
acoustic signals must be set to 8 kHz. Applying such
distortion to speech signals is necessary to simulate
the telephone transmission line. The final processed
signal is approximately selected in the middle of each
signal (phonation of vowel /a/) with the length of 350
milliseconds.

4. The overall structure of the proposed
feature extraction approach

Matching Pursuit (MP) algorithm is introduced by
Mallat and Zhang [27]. In this method, adaptive
decomposition of a signal is done based on the locally

Samples
at 44.1 kHz

( A

Anti-aliasing and _
resample to 8 kHz G711 (A law)

in 14 bits precision encoding
J
e )
Telephony G.711 (A-law) Band pass filter
samples decoding 300-3400 Hz
- J

Figure 2. Block diagram of the voice conversion (44100
Hz to 8000Hz) method.
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temporal characteristics of the signal; so, this method
would be an appropriate time-frequency decomposition
method applicable to non-stationary signals. The MP
method uses a set of predefined basis functions, so-
called dictionary; a signal could be optimally repre-
sented by a limited set of these functions [28]. Each
of the basis functions is a so-called atom. A group
of properly selected atoms, which constitutes the basis
functions of a considered subspace of signals, creates
a dictionary; by employing such a dictionary, a signal
could be represented by a limited number of atoms.
If a dictionary is properly designed, the MP method
will provide a small set of basis functions that could
reproduce a good approximate of the signal.

A variety of applications such as video coding
and music note detection successfully exploited the MP
method [29,30]. The MP method is also used for signal
classification [31]. Umapathy et al. showed that the
MP method could act as an adaptive time-frequency
transform algorithm [32]. In a similar way, Chu et al.
proposed an MP-based feature extraction method in
the context of processing environmental sounds [33].
They followed the task of analyzing the environmental
sound to understand the scene or context surrounding
an audio sensor.

To understand the MP algorithm, suppose a
dictionary, D, is a collection of some proper atoms [34],
h+(t) given by:

D ={hy(t) :v €T}, (1)

where I' is the index collection of the atoms belonging
to the dictionary. The linear approximation of a signal,
z(t), using a limited number of available atoms, m, can
be written as:

x(t) = Xm: Ay ha, (1) + RO, (2)

where R(™)(t) is the residual signal (error) of the
applied approximation. Notice that the residual signal
is a signal with the same length as the original signal
x(t). In the decomposition process, the coefficient, A.,,,
is the approximated weight of the atom, &, (¢), with the
index of 7;. In the MP method, for a desired number
of atoms (fori =1,--- ;m), iteratively finding the best
index, v;, and the corresponding weight, A,,, is the
main problem.

To implement the MP algorithm, first, the inner
products of the signal with all atoms, included in
the dictionary D, must be evaluated. The atom
corresponding to the largest inner product is assigned
as the winner atom, with the assigned index ~;.
The corresponding inner product magnitude is the
approximated weight of the atom, A,,, as given by:

Ayy = (@(t), hay (1)) - (3)

The first residual signal R(")(t) is then defined by:
RW(t) = a(t) = Ay, hoy (B). (4)

The first atom chosen by the MP algorithm has
the best correlation with the signal structure. The
subsequential atoms are then determined by a similar
manner and iteratively applying the same procedure
on the residual signal obtained in each iteration. By
m times applying to the approach, the signal will be
decomposed to m atoms with the evaluated weights
and a final residual signal as R("™)(t).

4.1. Designing the dictionary

The performance of the MP method is highly related
to its dictionary. Designing a proper dictionary makes
the MP method a quick and efficient tool for signal
decomposition purposes. Comparison among different
sets of dictionaries such as Fourier, Haar and Ga-
bor [28] shows that the set of Gabor functions is the
best choice. Vetterli and Kovacevic showed that the
Gabor-based time-frequency representation is optimal
in minimizing the joint two-dimensional uncertainty
in the combined spatial-frequency space [35]. Based
upon these investigations, we decided to employ the
Gabor dictionary in this research. Gabor functions
are sine-modulated Gaussian functions determined by
a set of four different parameters v = (s,u,w, §); they
represent the scale, time-shift, frequency and phase
of an atom, respectively. The Gabor atoms could
simultaneously provide very good time and frequency
localizations. The general definition of a discrete Gabor
atom is given by:

< 2, .
. IXs,u,w,Q ei,/,r(n,—ﬂ,) /Sz

gS,u,w,G(n) = N
x cos[2rw(n — u) + 6]. (5)

In this work, to prepare the needed dictionary, the
parameters are selected similar to [28] as follows:

- &: The time scale parameter, which corresponds to
the atom width in time;

s=2,  (1<p<8),
- wu: The discrete time shift parameter;
w=6x (=1, (1<j<4),
- w: The nonlinear normalized frequency parameter;
w = K%, (1<i<35 K=05x35"72%%),

- 0#: The phase parameter: We used fixed-parameter;

#=0.
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According to the selected parameters, the number
of Gabor atoms accommodated in the constructed
dictionary is equal to:

L=8x4x35x1.

The processed signal (with the length of 350 mSec)
is segmented to 21 frames (k = 21) with half-frame
shift. For each frame, the length of the window
applied to signal (equal to the length of each atom)
is selected as N = 256 samples, which covers a period
of about 32 mSec, according to the selected telephony
sampling rate. In Figures 3 and 4, a frame of normal
signal and a frame of UVFP signal (disordered) are
shown, respectively. In each of the figures, besides
the original signals, the first three selected atoms for
decomposition of the signals are plotted. In addition,
the corresponding values of the scales (s), frequencies
(w) and inner products (as its correlation) are shown
in the figures.

Comparing Figures 3 and 4, the normal voice
shows a nearly periodic pattern; whereas, the disor-
dered signal (UVFP voice) shows a nearly irregular
pattern. Based on the selected atoms for decomposition
of the signals, we can see that the normal voice atoms
have relatively lower frequencies (w) and higher scaling
parameter (s) than those of the disordered signal.
These differences could be efficiently employed as a
feature vector to discriminate normal signals from
disordered ones.

4.2. Computational cost of the MP method
For an input signal, it is first divided to k overlapped
frames of the lengths of N sample. The MP algorithm
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Figure 3. Speech waveforms of the vowel /a/ for a
normal voice (top) and its first three main atoms.
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Figure 4. Speech waveforms of the vowel /a/ for a UVFP
signal (top) and its first three main atoms.

is then applied individually to each of the frames.
For each frame, the MP algorithm requires L inner
products for all of the L atoms accommodated in
the dictionary. So, the overall computational cost of
the MP method would be O (kmLN), where m is
the number of atoms selected for the decomposition
of each frame. During the decomposition process,
the value of correlation and the selected atoms with
their corresponding specifications such as scale (s) and
frequency (w) parameters will be saved for the next
processing to extract the proposed feature vector.

5. Feature extraction approaches

In this study, the performance of the proposed Feature
Extraction (FE) method is compared to that of an older
successfully used FE method [17]. In this section, we
first introduce EWPD algorithm as the commonly-used
FE method; we then compare the proposed MSDMP
approach with the former method, by conducting some
experiments arranged individually via these two FE
methods.

5.1. EWPD feature extraction method

The Wavelet Transform (WT) is an effective tool
for representing various behaviors of signals such as
repeated patterns and discontinuities. This trans-
form is especially a powerful tool for analyzing non-
stationary signals. The wavelet-based decomposition
approaches have been used extensively in the signal
feature extraction tasks [17]. In the traditional Discrete
Wavelet Transform (DWT), an input signal splits into
two sub bands, detail and approximation; then in the
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second level of decomposition, the approximation band
splits into new detail and approximation bands, and for
ith level of decomposition, the approximation band of
(1 — 1)th level splits into new detail and approximation
bands. An expansion of DWT is the Wavelet Packet
Decomposition (WPD) that presents more details for
a signal [36,37]. In each level of WPD, decomposition
method would be applied to both approximation and
detail sub bands.

To complete the feature extraction process, en-
ergy and entropy measures could be evaluated for the
decomposed signals. The energy of each decomposed
sub band is simply the sum of its squared coeflicients.
The main part of the energy of a voiced speech signal is
mostly found in its approximation sub band [38,39]. On
the other hand, entropy measure indicates the amount
of the information stored in a signal. Different evalua-
tions for entropy are introduced, such as Shannon, log
energy, sure and threshold [40]. Behroozmand showed
that in the task of pathological voice assessments, the
Shanon entropy of WPD coefficients are more effective
than the energy features [17]. So, in this study,
Shannon entropy is employed to extract the feature
vector fed to the classifier.

In this paper, WPD is utilized while using
“Daubechies” mother wavelet and its decomposition
over 3 levels. Then, Shannon entropy of each decom-
posed WPD subband is evaluated by:

L(4,5)
E(ij)=— Y G2, (k) log(G2,(k)),
k=1

0<i<3, 0<j<(2°-1), (6)

where G, ; is the values of WPD coefficients at level
1 and subband j, and L(4,5) is the number of WPD
coefficients at level ¢ and subband j. As mentioned
before, in this work, three levels of WPD decomposition
and entropy computation of each subband would be
used of which the block diagrams are shown in Figure 5.

Adding the entropy of the original signal, £(0,0),
to the other 14 entropy coefficients, the final 15-
dimensional feature vector would be obtained as repre-

E(0,0)
E(1,0) E(1,1)

g
\.N

=
“w
>
=
w
j
&
Lv;
=
\‘Cv
&

Figure 5. Entropy computation of the Wavelet Packet
Decomposition (WPD) over 3 levels.

sented by:
EWPD551 =[E(0,0), E(1,0), E(1,1), -, E(3,7)]".
(7)

In this case, the whole processed signal with the length
of 2688 time-samples (350 mSec) is utilized to compute
EWPD feature vector.

5.2. Proposed MSDMP feature extraction
method

As mentioned previously, the proposed FE method is
based on the Matching Pursuit method. In [28], MP-
based features are utilized for the classification of envi-
ronmental sounds. The main motivation toward using
the MP-based features is based on this assumption that
the most important information of a signal is located
in its main atoms that are highly correlated to it. The
MP method selects main atoms in a sequential order
by eliminating the largest residual energy. So, the most
useful atoms of the input signal can be obtained after
a few iterations.

In order to extract the proposed MP-based fea-
tures, each frame of pathological voice are decomposed
by applying MP decomposition method, using the
dictionary D with Gabor functions as its atoms. The
first m atoms assigned to each frame are then selected,
and their main parameters (nonlinear normalized fre-
quency parameter, w, and time scale parameter, s)
are gathered. Then, the Mean (M) and the Standard
Deviation (SD) of these parameters (w and s) are
calculated over all of the frames. In this manner, for a
frame of signal, a 4-dimensional feature vector can be
obtained as given by:

MSDMPyy; = [My,SD.,, M, SD,]?,

SDw =

M; =1/m (isz) ,

1/(m—=1)> (si = M.)%. (8)

=1

SD, =

It should be mentioned that the extracted MSDMP
features are highly robust against variations such as
environmental noises. One reason may be due to the
omission of atom orders, while evaluating the mean and
standard deviation parameters.
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6. Classification procedure

Supporting Vector Machine (SVM) is an important
technique in the field of classification and pattern
recognition. This method could be efficiently employed
in different classification and regression tasks [41]. The
SVM is basically a binary classifier that has a super-
vised learning phase in which the decision boundary is
chosen in a manner to maximize the margine between
data samples belonging to different classes. In this
paper, in order to discriminate the pathological voices
(UVFP) from the normal ones, the SVM classifier is
employed. We select the “linear” function as the kernel
of the SVM classifier, similar to the work introduced
in [17]. The regularization constant of the SVM
classifier is also set to 1.

To evaluate the performances of the implemented
discrimination tasks, a 10-fold cross validation scheme
is used. In this method, the samples of each class are
randomly divided into 10 subsets. In each step of the
experiment, a single subset is retained as the test set,
and the 9 remained ones are used as the training data.
This process will be repeated 10 times, for different
subsets as the test data, and the results are averaged
over the different folds.

In this paper, several measures are used such as
sensitivity, specificity and accuracy for the evaluation
of classification performance with different feature ex-
traction methods [42]. These measures are determined
as follows:

- Sensitivity = 100*TP/(TP + FN);

- Specificity = 100*TN/(TN + FP);

- Accuracy = 100%(TP + TN)/(TP + FP + TN +
FN);

with the following definitions:

- True Positive (TP): The pathological cases which are
classified as pathological samples;

- True Negative (TN): The normal cases which are
classified as normal samples;

- False Positive (FP): The normal cases which are
classified as pathological samples;

- False Negative (FN): The pathological cases which
are classified as normal samples.

7. Experimental results

This section describes the experiments conducted to
verify the effectiveness of the proposed feature ex-
traction method for the Telephony-based diagnosis of
Unilateral Vocal Fold Paralysis (UVFP) disease.

7.1. Designing the EWPD feature vector
In this study, the Daubechies (db) wavelet is selected to
extract the feature vector for a baseline system. Order

of the Daubechies wavelet is equal to wavelet vanishing
moments. A high number of vanishing moments
allows bettering the compressing regular parts of the
pathological voice. On the other hand, the high orders
of wavelet function are sensitive to noise, so, low-
order invariants must be utilized. In this paper, to
determine the best order of the Daubechies wavelet,
some experiments are conducted using the measure of
recognition accuracy. The accuracy results obtained by
the EWPD feature vector are presented in Figure 6.

Based on the obtained results of Figures 6, db9
(Daubechie’s wavelet function with order of 9) gives
the best classification accuracy compared to all the
other ones. Therefore, using this wavelet function
in the baseline system, the traditional entropy based
WPD feature vector (EWPD) results in the overall
recognition accuracy of 86.07%.

7.2. Evaluation of MSDMP feature vector
In Figure 7, the recognition accuracy for the MSDMP
features is plotted as a function of first main atoms (m)
obtained from 10-fold cross validation. In this experi-
ment, the recognition accuracy is calculated for various
number of the first main atoms (m =1,2,---,10).

Results of Figure 7 indicate that using the first
four atoms (m = 4) in the proposed MSDMP method,
the highest classification performance is gained by
91.05%. According to Figure 7, using the value of m >
2, the classification performance of the MSDMP feature
vector is greater than that of the EWPD feature vector.
In addition, in Table 1, the classification performance
of the EWPD and the MSDMP features are presented
in terms of accuracy, sensitivity and specificity.

The obtained results of Table 1 demonstrate
that the proposed MSDMP features performs more
acceptably than the traditional EWPD feature extrac-

% Recognition accuracy
0
)

=1
e}

0 2 4 6 8 10 12 14 16 18 20
Number of vanishing moments in Daubechies (db)
wavelets (dbl to db20)

Figure 6. Recognition accuracy of the EWPD feature
vector, using different Daubechie’s wavelet functions with
varying order (vanishing moments).
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Figure 7. Recognition accuracy of the MSDMP feature

vector, using various numbers of the first main atoms
(m=1,---,10).

Table 1. Comparing the performance of EWPD and
MSDMP in terms of accuracy, sensitivity and specificity.

Feature
extraction Accuracy Sensitivity Specificity
method
MSDMP (m =4) 91.05% 91.08% 91.67%
EWPD (dh9) 86.07% 89.15% 82.50%

tion method in terms of the accuracy, specificity and
sensitivity.

7.3. Computational times
The computational times required to calculate the
needed feature vectors, via different approaches, are
shown in Table 2. In this table, the computational
time of the proposed MSDMP method is presented
for different values of m. All of the classification
methods are implemented on a Pentium 4 processor
with 2G RAM, and simulated using Matlab 7.11.0 (The
Mathworks Web-Site [http://www.mathworks.com]).
As we can see in Table 2, implementing the
proposed MSDMP feature extraction method, with
different choices of the parameter m, needs lower
computational time than the EWPD method. Also,
the MSDMP method with 4-dimentional feature vector
(m = 4) requires lower computational time and mem-
ory than the 15-dimensional EWPD feature vector in
training and test stage of SVM classifier. Therefore, the

Table 2. Comparison of the computational times for
different feature vectors.

Feature extraction Elapsed time

method (mSec)
EWPD 401.5
MSDMP (m = 2) 32.2
MSDMP (m =4) 50.9
MSDMP (m = 10) 8.7

proposed method is capable of analyzing pathological
voice with faster computational time and less memory
than the conventional method.

8. Discussion

Implementing the classification task, via the traditional
WPD-based feature vector (EWPD), resulted in the
overall recognition accuracy of 86.07%. For the MS-
DMP features, the recognition accuracy was evaluated
for various values of m (m = 1,2,---,10). It is
observed that using the first four atoms (m = 4) of
the proposed MSDMP method leads to the highest
classification rate as 91.05%. Based on the results of
Figure 7 which shows the recognition rates obtained via
the MSDMP features as a function of m, the classifica-
tion performance obtained via the proposed MSDMP
features is greater than the EWPD method for m > 2.
In addition, based on the results scheduled in Table 2,
it is worthwhile to mention that the MSDMP method
with m = 4 needs one-eighth of the computational time
needed for the EWPD method. This also verifies the
superiority of the MSDMP method over the EWPD
method. The overall results of this paper show that the
MSDMP features produce an effective way to extract
discriminant features of the speech signals, using MP-
based time-frequency localized representation.

9. Conclusion

In this paper, a feature extraction method is presented
for remote diagnosis of UVFP disease from telephony-
based pathological speech signals. This method is
based on the Matching Pursuit (MP) algorithm. The
MP method adaptively extracts the main atoms of a
signal that include useful information. Therefore, the
proposed feature extraction method (MSDMP) makes
use of the time—frequency characteristic of the input
signal. Simulation results show that the performance
of the MP-based feature vector is better than that of
the conventional WPD-based feature vector (EWPD)
to get not only high classification metrics, but also
in the low computational time and dimension of final
feature vector.
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