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Abstract. This research deals with the numerical simulation of two viscoelastic 
uids 
ow
in an open capillary of a reservoir. Oldroyd-B and Leonov models have been used to describe
the rheological behavior of polymer solutions. The �nite volume method on a structured
and collocated grid has been used for discretization of the governing equations. The discrete
elastic viscous stress splitting technique has also been used. The steady state, isothermal
and incompressible 
uids past through a two dimensional micropore have been considered.
The numerical method has been validated through the comparison of numerical results by
the analytical solutions of Oldroyd-B 
uid 
ow through a planar channel. The e�ects of

uid characteristics and operating conditions on the oil sweeping from the dead ends are
investigated. The contours of velocity, stream function and pressure are presented, and the
swept depth is calculated. The presented results show that with increasing the Weissenberg
number the swept depth of 
ooding 
uid in the dead ends increases considerably. However,
in the studied range, the Reynolds number does not have any signi�cant e�ect on the sweep
e�ciency. The results also show that the swept depth in the case of viscoelastic 
uids is
more than the Newtonian and generalized Newtonian 
uids.
c
 2013 Sharif University of Technology. All rights reserved.

1. Introduction

The petroleum industry recognized the problem of
ine�cient oil recovery by the conventional (primary
and secondary) recovery methods in the early 1900s.
After that, extensive researches have been conducted
to improve the displacement and sweep e�ciency of the
oil recovery processes. Sweep e�ciency is the ratio of
oil extracted by 
ooding process to the remaining oil.
Many di�erent processes have been designed to improve
the displacement e�ciency by reducing the residual oil
saturation in the reservoir. The residual oil means
the oil which remains after 
ooding process. In the
presented work both residual oil and sweep e�ciency
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refer to their amounts only for dead-end, after complete

ooding and becoming steady-state.

The water 
ooding is one of the oil recovery
processes. However, this process has some drawbacks.
One of them is the �ngering problem in which water

ows through the oil instead of pushing it. Muskat [1]
found that this problem could be relatively solved by
the mobility ratio correction.

Trapped oil in the dead ends within the porous
media is the most part of the residual oil in a reservoir.
The water 
ooding cannot displace or recover the
trapped oil in the dead ends. However, in compar-
ison, the polymer 
ooding is more e�ective in the
oil sweeping from the open capillaries and dead ends
because it has a favorable ratio in the mobility between
the displacing and displaced 
uids. Typically, there
are four forms of residual oil in the reservoir: the
oil droplet, the oil �lm, the oil in throats and the
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oil trapped in the dead ends (see [2]). However, the
residual oil available within the real pores are in many
di�erent and complicated forms.

Experimental results show that the polymer so-
lutions enhance the displacement e�ciency, but there
are few theoretical studies on this subject, especially
to determine the e�ects of polymer 
ooding on the oil
recovery from the dead ends (see [3]).

Stiles [4] used the capacity distribution and per-
meability in the water 
ooding calculations. Dykstra
and Parsons [5] studied the e�ects of mobility ratio and
permeability variation on the oil recovery. Arnofsky [6]
investigated the mobility ratio e�ects on the 
ood
patterns during the water encroachment. Arnofsky and
Ramey [7] studied injection and production histories
in a �ve-spot water 
ooding process. Dyes et al. [8]
showed the e�ects of mobility ratio on the oil produc-
tion after the breakthrough. Afterward, Caudle and
Witte [9] and Baranes [10] found that by increasing the
water viscosity, the sweep e�ciency of water 
ooding
improves. However, it was Pye [11] and Sandiford [12]
who, for the �rst time, found that the mobility of
water (or brine) used in the water 
ooding process
reduces e�ciently by adding small amounts of a soluble
polymer to the water 
ood.

Demin et al. [13] explored experimental data
around oil sweeping from the dead ends for three kinds
of 
uids including viscous, high viscous and viscoelastic

uids. They show that viscoelastic 
uids can remove
the trapped oil in the dead ends more e�ciently than
Newtonian 
uids. Jirui et al. [14] claimed that the
interfacial tension between the polymer and the oil
is not a major property for the polymer 
ooding.
In the presented work, this simpli�cation has been
used to study one phase 
ow through micropore and
extend the results to the two phase 
ow, as shown
in [2]. Afsharpoor et al. [15] investigated the e�ect
of viscoelastic 
uids on the trapped droplet in pore
throats. They found that normal forces could be
dominate, and the total e�ective force would be enough
to mobilize trapped oil. In the theoretical studies,
geometry of the micropores are often simpli�ed, e.g. an
abrupt axisymmetric expansion, an abrupt axisymmet-
ric contraction, rarely micropore with dead ends, etc.
(see [3]). However, the expansion model is a typical
model among them.

For the past several years, the numerical simu-
lation of non-Newtonian 
ows has been carried out
to understand their 
ow behavior in a variety of
processes. Polymer 
uids are of particular interest
to the simulation community, because they have wide
applications in the material processing, and their indi-
vidual behavior is often complex and strikingly di�er-
ent from the Newtonian 
uids. Unlike the Newtonian

uids, the polymeric liquids have some memory of the
deformation they have experienced. The Newtonian


uids respond virtually instantaneously to the imposed
deformation rate, whereas the viscoelastic polymeric

uids respond on a macroscopically large time scale,
known as the relaxation time.

The �nite volume method based on the pressure-
correction strategy has been extensively and success-
fully employed for the Newtonian 
uids 
ow and the
heat transfer problems for more than three decades.
In recent years, FVM has been improved gradually
in order to solve non-linear non-linear 
ow problems
involving the viscoelastic 
uids. Bene�ting from the
Finite Volume Method (FVM) e�ciency in terms of the
memory and CPU time requirement compared to some
other conventional numerical methods, such as the
�nite element methods, it is possible to carry out some
complex three-dimensional (3-D) viscoelastic calcula-
tions on an ordinary workstation. The restriction to the
regular geometries can be e�ectively removed by using
unstructured mesh systems. Using FVM and Discrete
Elastic Viscous Stress Splitting (DEVSS) bene�ts, oil
sweeping from a dead end has been investigated in the
presented work. The OpenFOAM code has been used
and developed to implement the mentioned features.

2. Governing equations

The conservation of mass and momentum equations
(neglecting the gravitational forces) can be written as
follows [16]:

r:V = 0; (1)

�DV=Dt = �rp+r:�; (2)

where V is the velocity vector, DV=Dt is the material
or total derivative of the V, � is the density of 
uid,
p is pressure and � is deviatoric stress tensor. As
Oldroyd-B model can predict normal stresses, and
Leonov model can predict both normal stresses and
shear thinning behavior; these models have been chosen
to consider exactly viscoelastic e�ects of 
uid on the
sweep e�ciency, and investigate the e�ects of normal
stress and shear thinning behavior separately. Also,
these models are used frequently in the polymeric
simulations and have bene�ts to model a wide range
of polymeric solutions.

Oldroyd-B constitutive equation is [17]:

� + �1
r� = 2�

�
V + �2

r
V
�
; (3)

where �1 is the relaxation time, �2 is the retardation
time, � is the zero shear rate viscosity, � is the total-
stress tensor, and r� is the upper convected derivative
of � . The upper convected derivative of any symmetric
tensor like A is de�ned by:
r
A =

@A
@t

+ V:rA�A:rV �rVT :A; (4)
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and the rate of deformation tensor, D, is given by:

D =
1
2
�rV +rVT � : (5)

When �2 = 0, Eq. (3) reduces to Upper Convected
Maxwell (UCM) model, and if �1 = �2 = 0, it
simpli�es to the Newtonian 
uid with the viscosity, �.
If the stress tensor, � , decomposed into a viscoelastic
component, �p, and a purely viscous component, �s,
then:

� = �p + �s; (6)

where:

�p + �1
r� p = 2�pD; (7)

and:

�s = 2�sD: (8)

Here, �p is the viscosity of viscoelastic contribution,
and �s is the viscosity of Newtonian contribution. The
relationship between parameters can be expressed as:

� = �p + �s; (9)

and:

�2 =
�s
�
�1: (10)

Then, substituting Eqs. (7) and (8) into Eq. (6) and
using Eqs. (9) and (10) results in Eq. (3). Afterward,
the momentum equation can be written as:

�DV=Dt = �rp+r:�p + �sr2V: (11)

After the similar procedure for the Leonov constitutive
equation, its �nal form becomes as follows [18]:

r� � 1
6�p

�
tr(�)� ��p

�

�2
tr(��1)

�
�

=
1

2�p

�
�:� � ��p

�

�2
I
�
; (12)

�p = � � �p
�
I; (13)

where � is the relaxation time, �p is the zero shear rate
polymer viscosity, � is the transported stress, and �p
is the polymeric-stress tensor. Similar to Oldroyd-B
model, � is obtained from Eq. (6).

Model equations could be non-dimensionalized,
using the following nondimensional variables:

V� =
V
kVink ; (14a)

p� =
Hp

�kVink ; (14b)

�� =
H�

�kVink ; (14c)

x� =
x
H
; (14d)

y� =
y
H
; (14e)

t� =
V1t
H

; (14f)

� =
�1

�2
; (14g)

where kVink is the magnitude of inlet velocity, H is
the width of channel, � is the ratio of retardation to
relaxation time. The value that � takes depends on the
considered problem. Reynolds (Re) and Weissenberg
(We) numbers are de�ned as:

Re =
�kVinkH

�
; (15)

We =
�1kVink

H
: (16)

2.1. DEVSS methodology
DEVSS method has been chosen in the presented
research to deal with the high Weissenberg number
problem (see [19]). DEVSS method can be extended
to di�erent and complex constitutive equations. This
method uses an additional variable. This new variable
is de�ned as follows:

d = rV: (17)

Using this new variable, Eq. (11) can be written as
follows:

�DV=Dt� (�s + �)r2V = �rp+r:�p � �r:d;
(18)

where � is a positive number. The value of � depends
on the model parameters, but � = �p is usually a good
choice. It seems that adding the di�usion term to both
sides of the equation has no e�ect. However, it a�ects
the discretized form of equations. Adding Eq. (17) to
the set of governing and constitutive equations will lead
to a complete set of equations.

3. Computational approach

FVM method has been used to solve the 
ow equations.
The equations are discretized using the second order
schemes. The convective terms are discretized using
QUICK scheme (see [20]). The di�usion terms are
discretized using the central scheme, which is a second
order scheme (see [21]). For simplicity at this point,
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Figure 1. Non-orthogonality treatment.

a general transport equation has been considered as
follows:

@��
@t|{z}

temporal derivative

+ r:(�V�)| {z }
convection term

�r:(���)r�| {z }
di�usion term

= S�(�)| {z }
source term

: (19)

This equation is a representative form of the governing
equations in the presented study. �� is the di�usion
matrix. In the momentum equation, � is V. The
details of the discretization are explained according to
this equation and Figure 1.

3.1. Convection term discretization
One of the major issues in the discretizaion of con-
vection term is to determine the value of � on the
shared face between two cells from the values in the
cell centers. This study uses QUICK scheme of [20]
with the van Leer limiter which is a second-order
accurate scheme for the convection term. Second
order schemes are associated with spurious oscillations,
and �rst order ones have less accuracy. The basic
concept of Limiters is mixing high order with low order
schemes. Flux limiting is a procedure that creates a
di�erencing scheme in order to include second order
bene�ts without its disadvantages.

3.2. Di�usion term discretization
Using the assumption of linear variation of � and the
Gauss' theorem, the following is obtained:Z

VP
r:(���r�)dV =

X
f

S:(���r�)f

=
X
f

(���)S:(r�)f : (20)

In the cases that mesh is orthogonal, i.e. vectors d and
S in Figure 1 are parallel, so:

S:(r�)f = jSj�N � �Pjdj : (21)

Using Eq. (21), the face gradient of � can be calculated
from the two values around the face. Unfortunately,
mesh orthogonality is more an exception rather than a
rule. In order to make use of the higher accuracy of
Eq. (21), the product S:(r�)f is split into two parts:

S:(r�)f = �:(r�)f + k:(r�)f : (22)

The two vectors introduced in Eq. (22), � and k, have
got to satisfy the following condition:

S = � + k: (23)

The � vector is chosen to be parallel with the d vector.
This allows the use of Eq. (21) on the orthogonal
contribution, limiting the less accurate method only
to the non-orthogonal part which cannot be treated in
any other way.

The non-orthogonality error which violates the
order of discretization comes into account only if it is
necessary to guarantee the boundedness of the solution.
In the presented study, because the mesh is orthogonal,
the non-orthogonal component in Eq. (22) is discarded.

3.3. Source term discretization
Any terms of the equations that are not in the form
of convection, di�usion or temporal terms are treated
as sources. The source term, S�(�), can be a general
function of the �. Some general comments on the
discretization of source term can be found in [22].
Before the discretization of the source term, it should
be linearized as follows:

S�(�) = Su + Sp�; (24)

where Su and Sp could also depend on �. After that,
the volume integral is calculated as follows:Z

VP
S�(�)dV = SuVp + SpVp�p; (25)

where Vp is the volume of the control volume, and �p
is the � at the center of the control volume.

4. Flow in a planar channel

In this section, the 
ow of an Oldroyd-B 
uid through
a very long and planar (2-D) channel is simulated.
Channel width and length are H and 20H, respectively.
The y direction is perpendicular to the channel length.
The origin of axis is at the center of channel, between
the walls. Analytical solution in the case of fully
developed 
ow exists for this problem (see [16]). No-
slip condition was imposed on the solid boundaries. At
the out
ow, the pressure was set to zero, and the homo-
geneous Neumann boundary conditions were imposed
for the stresses. �xx and �xy at a cross section of the
channel, where the velocity is fully developed, has been
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compared with the analytical solution at di�erent We
numbers. The results show good agreement with the
analytical solutions.

The equations were solved as a steady state and
isothermal creeping 
ow (Re � 1). The 
ow was
simulated initially for We = 0:1 and � = 1=11. The
We number was then incremented consecutively, and
the previous solution of any state has been used as the
initial guess for the new state.

To test the accuracy of the results, the normal
and shear stresses at the steady state are compared
with the analytical solutions. The analytical solutions
for stresses are:

�xx = 2��p(
@Vx
@y

)2; (26)

�xy = �p(
@Vx
@y

): (27)

Figures 2 and 3 show the calculated normal and shear
stresses along the y direction at a cross section near
the end of channel at the fully developed region. The
�gures show that the numerical values are in agreement
with the analytical solutions at di�erent We numbers.
The l2 errors are presented in Table 1. The accuracy

Figure 2. The analytical and numerical plots of �xx.

Table 1. The l2 errors for �xx and �xy.

We=0.01 We=0.1 We=1

�xx 1:3� 10�4 5:6� 10�3 3:4� 10�2

�xy 4:2� 10�5 8:9� 10�4 1:1� 10�2

Figure 3. The analytical and numerical plots of �xy.

of results proves the robustness of algorithm in dealing
with the viscoelastic 
uid 
ows.

5. Flow in a channel with the dead end

Flow through a micro pore with the dead end is
simulated in this section. E�ects of the 
uids and
the operating conditions on the oil sweeping e�ciency
have been investigated. The micropores of an actual
reservoir are very complicated. Residual oil exists in
di�erent forms in real reservoirs [2]. The most part of
the residual oil is trapped in the dead ends of porous
media. The micropores are often simpli�ed in the
numerical simulations. Figure 4 illustrates a simpli�ed
micropore with a dead end. A two-dimensional (2-D)
and steady state 
ow of an isothermal and incompress-
ible 
uid with an inlet uniform velocity from left to
right, according to Figure 5, has been considered.

5.1. Boundary conditions
To ensure that the solution is unique for a set of
di�erential equations, the boundary conditions should
be applied. In this case, the boundary conditions are
as follows:

1. At the inlet boundary, the uniform 
ow conditions

Figure 4. Schematics of the computational domain.
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Figure 5. Sample of the stream lines plot for the Leonov
model at the We = 0:1 and Re = 10�4.

are assumed:

Vx = 1; Vy = 0; (28)

where, V is the dimensionless inlet velocity from
left to right at the left vertical line in Figure 4.

2. At the walls of micropore, the no slip condition is
assumed:

V = 0: (29)

3. At the exit boundary, the gage pressure is assumed
to be equal to zero, and the homogeneous Neumann
boundary condition is imposed for the extra-stress:

P = 0: (30)

5.2. Numerical results
5.2.1. Mesh and numerical method
The mesh quality and independency are important
issues in the validation of numerical simulations. So,
in the presented work, simulations have been done
with di�erent mesh sizes, and �nally the mesh size
has been selected so �ne that �ner selection of the
mesh size did not change, considerably, the numerical
results. The �nest grid in the presented study has
about 1000 cells. Due to high velocity gradients in
the inlet and near the walls, especially close to the
corners of the dead end, the mesh has been produced
adaptively with �nest cells in the area of the maximum
velocity gradient. This procedure could certainly
handle the solution of equations at the high gradient
�elds, without considering too many cells which leads
to e�cient use of memory and CPU.

5.2.2. The stream lines and the velocity �eld
Considering a uniform velocity at the inlet results in
the parallel and equal distance stream lines at the
inlet, which can be veri�ed in Figure 5. As shown in

Figure 6. Velocity magnitude for the Leonov model at
the We = 0:1 and Re = 10�4.

Figure 5, a few distances ahead of the inlet, the distance
between the stream lines at the horizontal center line
of the micro channel becomes smaller, and the distance
between the stream lines near the walls becomes bigger.
This is due to the boundary layer formation on the
walls. As shown in Figure 6, small velocity magnitude
at the end of the dead end is physically correct and
makes sense. As the �gure shows, near the dead end
the velocity magnitude reduces at the horizontal center
line of channel, because the cross section of channel at
this point is bigger than other points. Therefore, the
velocity magnitude reduces.

5.2.3. E�ects of the Re on the sweep e�ciency
For quantifying the sweep e�ciency and making com-
parison between di�erent conditions, sweep ratio has
been used (see [23]). The sweep ratio de�nition is
according to Eq. (31). As Figure 7 and Eq. (31) show,
the sweep ratio is the ratio of swept depth to the depth
of dead end. The e�ects of Re and We on the sweep
ratio have been illustrated in Tables 2 and 3 for the
Oldroyd-B and Leonov models, respectively. Tables 2
and 3 show that the sweep ratio is not sensitive to the
Re number at the investigated conditions. Because, for
the selected models, as the Re increases, the viscosity
decreases. This is a good property for the 
ooding

Figure 7. Sweep ratio de�nition.

Table 2. Sweep ratio for Oldroyd-B model.

Re = 10�3 Re = 10�4 Re = 10�5 Re = 10�6

We=1 0.37 0.37 0.37 0.37
We=0.1 0.32 0.32 0.32 0.32
We=0.01 0.26 0.26 0.26 0.26
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Table 3. Sweep ratio for Leonov model.

Re = 10�3 Re = 10�4 Re = 10�5 Re = 10�6

We=1 0.36 0.36 0.36 0.36

We=0.1 0.30 0.30 0.30 0.30

We=0.01 0.25 0.25 0.25 0.25


uid, because dimension of the pores in the reservoir
are very di�erent. Therefore, there is a wide range of
Re in the pores of the reservoir. However, the polymer
solutions have good e�ciency in oil sweeping from the
dead ends, independent of dimension of the pores.

Sweep Ratio =
Swept Depth

Depth of the Dead End
: (31)

5.2.4. E�ects of the We on the sweep e�ciency
As Tables 2 and 3 show, We number has direct e�ects
on the sweep ratio. This means that by increasing the
We number, sweep ratio increases too. In other words,
by increasing the elastic properties of polymer 
ood,
the ability of polymer solution for oil sweeping from
the dead ends increases.

5.2.5. E�ects of the 
uid
The e�ects of the Newtonian and generalized Newto-
nian 
uids on the sweep e�ciency have been presented
in [23]. In order to compare viscoelastic 
uids with
generalized Newtonian and Newtonian 
uids, Ref. [23]
has been used. According to Ref. [23], sweep ratio is
about 0.25 for the Newtonian 
uids at all operating
conditions. A comparison between the obtained results
in Table 4 and the presented results in [23] shows that
the sweep ratio in the case of viscoelastic 
uids is more
than that of generalized Newtonian and Newtonian

uids. Therefore, the use of viscoelastic solutions
in the polymer 
ooding process is recommended. A
comparison between Tables 2 and 3 shows that, the
sweep e�ciency in the case of Oldroyd-B model is
slightly more then that of Leonov model, which could
be due to higher normal stress di�erences for the
Oldroyd-B model at the investigated conditions.

5.2.6. Contours of the �rst normal stress di�erence
Figure 8 shows the �rst normal stress di�erence for
Oldroyd-B model at two di�erent We numbers. As the
�gure shows, the �rst normal stress di�erence at the
upper wall is at its maximum value, and it could be

Table 4. Sweep ratio for Leonov, Oldroyd-B and Carreau
models at di�erent We numbers.

Carreau Leonov Oldroyd-B

We=1 0.20 0.36 0.37

We=0.1 0.25 0.30 0.32

We=0.01 0.25 0.25 0.26

Figure 8. Contours of the �rst normal stress for
Oldroyd-B model at di�erent We numbers.

the driving force for producing 
ow patterns, which
can be seen in Figure 5. From the presented pattern
in Figure 5, it can be concluded that the hole pressure
(see [24]) is the driving force for the oil sweeping from
the dead ends. As Figure 8 shows, the more the We
number, the more the hole pressure will be.

It seems that the viscoelastic nature of the poly-
meric solution and their normal forces are the major
reasons of better sweep e�ciency of polymer 
ooding,
in comparison to water 
ooding as one can �nd from
presented data. Additionally as illustrated, the Re
number has minor e�ects on the sweep e�ciency, and
it means that changing the viscosity could not enhance
the sweep e�ciency considerably. These results are in
good agreement with [13].

5.2.7. Contours of the pressure
As Figure 9 shows, at the corners of inlet, there are
high pressure changes. High curvature of the stream
lines in the inlet con�rms this phenomenon. At the
end of channel, the pressure change is linear, which is
almost true for the laminar 
ow in the long channels.

The �gures do not show considerable vertical
pressure changes. This could be due to ignoring the
gravitational forces in the momentum equation. As
Figure 9 shows, the pressure in the right vertical wall
of the dead end is higher than that of the left one, and
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Figure 9. Pressure contours for Leonov model at
We = 0:1 and Re = 10�5.

this is due to the 
uid stagnation at the right vertical
wall.

6. Conclusions

Presented results show that the viscoelastic 
uids have
the ability to extract the trapped 
uid in the dead
end much more than the Newtonian and generalized
Newtonian 
uids. Another important result is that,
at the investigated range of Re number, Re has minor
e�ects on the sweep e�ciency. However, by increasing
the We number, sweep e�ciency increases considerably.
These are very good properties for the polymer 
ooding
process. There is many di�erent length scales in the
reservoir. Therefore, there is a wide range of Re num-
ber in the reservoir. However, in all investigated Re
numbers the sweep e�ciency for the viscoelastic 
uids
is more than that of the Newtonian and generalized
Newtonian 
uids. Therefore, the viscoelastic behavior
of the 
uid is more important than the operating
conditions in the polymer 
ooding.
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