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Abstract. In this paper, we used the Picard successive iteration method and the new
modi�ed Krasnoselskii iteration method in order to solve di�erent types of ordinary linear
di�erential equations having initial conditions. By applying the new modi�ed Krasnoselskii
iteration method, not only do we obtain the approximate solutions for the problem, but
also establish the corresponding iterative schemes. Finally, it is shown that the accuracy
of the new iteration method (called the new modi�ed Krasnoselskii iteration method) is
substantially improved by employing variable steps which adjust themselves to the solution
of the di�erential equation.

© 2013 Sharif University of Technology. All rights reserved.

1. Introduction

Iterative methods such as the Krasnoselskii method
are increasingly being used for many mathematical
models in science and engineering in order to solve the
di�erent types of ordinary di�erential equations. In
fact, Krasnoselskii iteration method is considered an
alternative solution to the linear di�erential equations
having initial conditions. The theory of this iteration
method has been extensively studied by several au-
thors [1-3].

The authors [4,5] have used the �xed point
theorem and also iteration to solve the di�erential
equations. The �xed point theory on normed linear
space was �rst presented by L.E.J. Brouwer in 1909-
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1913 [6]. Subsequently, several authors investigated the
theorem for di�erent types of spaces, such as metric [7],
Banach [4,8] and Hilbert [9], respectively.

The �xed point theorem has become important,
in recent years, as a mathematical model of phenomena
in biology [10], electrical engineering [11,12], and so on.

There has been a signi�cant development in this
theory especially in the area of non-linear di�eren-
tial equations having boundary conditions. Recently,
Sun [13] discussed the existence and successive iteration
of positive solutions of boundary value problems, and
He [14,15] proposed a new perturbation method using
the homotopy technique. The presented method,
requiring no parameters in the equation, can readily
eliminate the limitations of the traditional perturbation
methods.

Motivated by this work, we de�ned the new mod-
i�ed Krasnoselskii iteration method, in order to solve
ordinary linear di�erential equations having initial
conditions. Additionally, we compared the numerical
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results using the Euler Method [16,17], Runge-Kutta
Method [16-20] and Picard iteration method [16,17]
according to the exact solution. Comparison of the
numerical results show that the new modi�ed Kras-
noselskii iteration method is e�ective and convenient
for solving di�erent types of linear di�erential equa-
tions.

On the other hand, the variational iteration
method will be more fully explained and applied to the
di�erential type of the linear and nonlinear problem in
another paper where the relationship compared with
other techniques will be given in detail.

2. Preliminaries

Some basic de�nitions and properties of the new
modi�ed Krasnoselskii iteration method used in this
paper are required. X is the metric linear spaces of the
continuous function and T : X ! Y is a given operator
with x 2 X.

Krasnoselskii [5] proved that the sequence of
iteration fTn(x0)g, starting from a given point, x0 2 E,
does not converge necessarily to a �xed point of T ,
whereas the sequence fTn� (x0)g where T� = (1� �)I +
�T; 0 < � � 1 may converges to a �xed point of
T , as shown by Krasnoselskii [5], who assumes � =
1=2. Here, E is compact and X is uniformly convex.
This topic of research plays an important role in the
stability problem of �xed point iterations. In 1995,
Liu [21] initiated a study of �xed point iterations with
errors. On the other hand, there are some attempts
in the double sequence setting [22,23]. The �xed point
theorems, presented in this paragraph, are all related
to the Banach contraction principle, which asserts that
every complete metric space is a �xed point space for
the class of contractive mappings.

2.1. Banach contraction principle
The Banach contraction principle is the simplest and
one of the most versatile elementary results in �xed
point theory. Based on an iteration process, it can be
implemented on a computer to �nd the �xed point of a
contractive map. It produces approximations of any re-
quired accuracy. Even, the number of iterations needed
to get a speci�ed accuracy can be determined [24].

Theorem 1. (Banach contraction principle). Let
(Y; d) be a complete metric space and T : Y ! Y be
contractive. Then T has a unique �xed point u, and
Tn(y)! u for each y 2 Y (see [24]).

The Banach principle has a useful local version
that involves an open ball, B, in a complete metric
space, Y , and a contractive map of B into Y which
does not displace the center of the ball too far:

Corollary 1. Let (Y; d) be complete and B =

B(y0; r) = fyjd(y; y0) < rg. Let T : B ! Y be a
contractive map with constant � < 1. If d(T (y0); y0) <
(1� �)r, then T has a �xed point (see [24]).

Proof. Choose " < r, such that d(Ty0; y0) < (1 �
�)" < (1� �)r. We show that T maps the closed ball,
K = fyjd(y; y0) � "g, into itself: for, if y 2 K, then:

d(Ty; y0) � d(Ty; Ty0) + d(Ty0; y0) � �d(y; y0)

+ (1� �)" � ":
Since K is complete, then the conclusion of corollary 1
is proved by Banach contraction principle. �

De�nition 1. If the fxng1n=0 sequence provides the
condition xn+1 = Txn for n = 0; 1; 2; � � � , then this is
called Picard iteration [25].

De�nition 2. If x0 2 X, � 2 [0; 1] and also
the fxng1n=0 sequence provides the condition xn+1 =
(1� �)xn + �Txn for n = 0; 1; 2; � � � then this is called
Krasnoselskii iteration [26].

De�nition 3. If � 2 [0; 1], x0 2 X and T is de�ned
as the contraction mapping with regards to Picard
iteration, and also the fxng1n=0 sequence provides the
conditions:

yn+1 = y0 +
xZ

x0

F (t; yn(t))dt n = 0; 1;

yn+1 = (1� �)yn + �Tyn�2 n = 2; 3; � � �
Tyn�1 = yn 0 < � < 1;

then this is called a modi�ed Krasnoselskii iteration.

3. Application of methods

Example 1. Let us consider the initial value prob-
lem:

y0 =
pjyj y(0) = 1: (1)

By Theorem 1 and Corollary 1, since T =
xR
x0

F (t; yn(t)),

then:

jT (x)� T (y)j =
������
xZ

0

p
t�

yZ
0

p
t

������
=
����� 2

3

����px3 �py3

����� 2
3
jx� yj;
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is obtained. So:

jT (x)� T (y)j � 2
3
jx� yj;

is found. Thus, T has a unique �xed point, which is the

unique solution of integral equation T =
xR
x0

F (t; yn(t))

or the di�erential equation, y0 =
pjyj y(0) = 1.

Firstly, we obtained the exact solution of the equation
as jyj = 1

4 (x + 2)2 = 1 + x + x2

4 . Then we approached
the approximate solution using by the Picard iteration
method. Thus the followings are obtained:

y1 = 1 + x;

y2 =
1
3

+
2
3

(x+ 1)3=2;

If we use the Maclauren series expansion for the
seventh term of y2 then:

y2 = 1 + x+
x2

4
+
x3

24
+
x4

64
+

x5

128
+

7x6

1536
;

is found. Now, applying the modi�ed Krasnoselskii
iteration method to Eq. (1) for � = 0; 5 the followings
are obtained:
y1 = 1 + x;

y2 = 1 + x+
x2

4
� x3

24
+
x4

64
� x5

128
+

7x6

1536
;

y3 = 1 + x+
x2

8
� x3

48
+

x4

128
� x5

256
+

7x6

3072
;

y4 =1 + x+ 0:1875x2 � 0:03125x3

+ 0:01171875x4 � 0:005859375x5

+ 0:00341796875x6;

y5 =1 + x+ 0:15625x2 � 0:026041666x3

+ 0:009765625x4 � 0:0048828125x5

+ 0:002848307292x6;

y6 =1 + x+ 0:171875x2 � 0:028645833x3

+ 0:010742187x4 � 0:00537109375x5

+ 0:003133138021x6;

y7 =1 + x+ 0:1640625x2 � 0:027343749x3

+ 0:010253906x4 � 0:005126953125x5

+ 0:002990722657x6;

and for � = 0:4, the followings are calculated:

y1 = 1 + x;

y2 = 1 + x+
x2

4
� x3

24
+
x4

64
� x5

128
+

7x6

1536
;

y3 =1 + x+ 0:15x2 � 0:025x3 + 0:009375x4

� 0:0046875x5 + 0:002734375x6;

y4 =1 + x+ 0:19x2 � 0:03167x3 + 0:011875x4

� 0:0059375x5 + 0:003463541667x6;

y5 =1 + x+ 0:174x2 � 0:029002x3 + 0:010875x4

� 0:00454375x5 + 0:013015625x6;

y6 =1 + x+ 0:1804x2 � 0:0300692x3 + 0:011275x4

� 0:0056375x5 + 0:009194791667x6:

On the other hand, for � = 0:9 the followings are
founds:

y1 = 1 + x;

y2 = 1 + x+
x2

4
� x3

24
+
x4

64
� x5

128
+

7x6

1536
;

y3 =1 + x+ 0:025x2 � 0:004166666667x3

+ 0:0015625x4 � 0:0078125x5

+ 0:0004557291667x6;

y4 =1 + x+ 0:2275x2 � 0:037916666x3

+ 0:01421875x4 � 0:007109375x5

+ 0:004147135417x6;

y5 =1 + x+ 0:04525x2 � 0:014291666x3

+ 0:002828125x4 � 0:0014140625x5

+ 0:0008248697917x6:

At last, for � = 0:0001, the followings are obtained:

y1 = 1 + x;
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y2 = 1 + x+
x2

4
� x3

24
+
x4

64
� x5

128
+

7x6

1536
;

y3 =1 + x+ 0:029975x2 � 0:00416625x3

+ 0:015623437x4 � 0:00781171875x5

+ 0:0004556835938x6;

y4 =1 + x+ 0:249975002x2 � 0:0416625x3

+ 0:015623437x4 � 0:007811718828x5

+ 0:00455683598x6:

Now we tend the approximate solution, using by
the Euler method. Firstly, we use formula:

yn+1 = yn + hF (xn; yn);

with F (x; y) =
pj y j, h = 0:2 and x0 = 0 y0 = 1.

From the initial condition, y(0) = 1, we have
F (0; 1) = 1. We now proceed with the calculations
coomputed as follows:

y1 = y0 + hF (y0; x0) = 1 + 0:2 = 1:200;

x1 = x0 + h = 1:000 + 0:200 = 1:200;

y2 = y1 + hF (y1; x1) = 1:2 + 0:2 � 1:095445115

= 1:419089023;

x2 = x1 + h = 1:200 + 0:200 = 1:400;

y3 = y2 + hF (y2; x2)

= 1:419089023 + 0:2 � 1:19125523

= 1:657340069;

x3 = x2 + h = 1:400 + 0:200 = 1:600:

Finally, applying the Runge-Kutta method to
the given initial value problem, we carry out the
intermediate calculations in each step to give �gures
after the decimal point and round o� the �nal results
each step to four such places.

Here, F (x; y) =
pjyj, x0 = 0 and y0 = 1, and

we are to use h = 0:2. Using these quantities, we
calculated, successively, k1, k2, k3, k4 and K0 de�ned

by:

k1 = hg(y0; x0);

k2 = hg
�
y0 +

h
2
; x0 +

k1

2

�
;

k3 = hg
�
y0 +

h
2
; x0 +

k2

2

�
;

k4 = hg(y0 + h; x0 + k3);

and K0 = 1
6 (k1 + 2k2 + 2k3 +k4)yn+1 = yn+K0. Thus

we �nd k1, k2, k3 and k4 for n = 0 as:

k1 = hF (x0; y0) = 0:20000000;

k2 = hF
�
x0 +

h
2
; y0 +

k1

2

�
= 0:209761769;

k3 = hF
�
x0 +

h
2
; y0 +

k2

2

�
= 0:2102266628;

k4 = hF (x0 + h; y0 + k3) = 0:220020601:

So, y1 = 1:209999565 is obtained for x1 = 0:2. On the
other hand, we calculate k1, k2, k3 and k4 for n = 1 as:

k1 = hF (x1; y1) = 0:21999996;

k2 = hF
�
x1 +

h
2
; y1 +

k1

2

�
= 0:229782466;

k3 = hF
�
x1 +

h
2
; y1 +

k2

2

�
= 0:230207801;

k4 = hF (x1 + h; y1 + k3) = 0:240017279:

Hence, y2 = 1:4399999194 is calculated for x2 = 0:4.
Finally, we get k1, k2, k3 and k4 for n = 2 as:

k1 = hF (x2; y2) = 0:239999993;

k2 = hF
�
x2 +

h
2
; y2 +

k1

2

�
= 0:249799913;

k3 = hF
�
x2 +

h
2
; y2 +

k2

2

�
= 0:2250191916;

k4 = hF (x2 + h; y2 + k3) = 0:260014756:

Thus, y3 = 1:689999654 is obtained for x3 = 0:6.
After the necessary calculations shown above, a

comparison is shown, schematically, in Figure 1.
On the other hand we show Tables 1 and 2

concerning the Picard iteration method, Euler method,
Runge-Kutta method and the modi�ed Krasnoselskii
iteration method for di�erent values of lambda. itera-
tion method for di�erent values of �, Picard iteration
method, Euler method and Runge-Kutta method.
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Table 1. Comparison of the solutions obtained by the modi�ed Krasnoselskii iteration method, Picard iteration method,
Runge-Kutta method, and Euler method with the exact solution for di�erent values of �.

Modi�ed Krasnoselskii iteration

x � = 0:0001 � = 0:4 � = 0:5 � = 0:9

0.2

y1 = 1:21 y1 = 1:2 y1 = 1:2 y1 = 1:2

y2 = 1:2097 y2 = 1:2097 y2 = 1:2097 y2 = 1:2097

y3 = 1:209688489 y3 = 1:205813675 y3 = 1:204844729 y3 = 1:200966916

y4 = 1:209688489 y4 = 1:207363962 y4 = 1:207267094 y4 = 1:208817407

y5 = 1:206744477 y5 = 1:206055911 y5 = 1:201483792

y6 = 1:206992271 y6 = 1:206661503

y7 = 1:206358707

0.4

y1 = 1:4 y1 = 1:4 y1 = 1:4 y1 = 1:4

y2 = 1:437672 y2 = 1:437672 y2 = 1:437672 y2 = 1:437672

y3 = 1:437668233 y3 = 1:4226032 y3 = 1:418836 y3 = 1:4036952

y4 = 1:437668233 y4 = 1:428630507 y4 = 1:428254 y4 = 1:43428152

y5 = 1:426259904 y5 = 1:423545 y5 = 1:404644632

y6 = 1:427208145 y6 = 1:4258995

y7 = 1:42472225

0.6

y1 = 1:6 y1 = 1:6 y1 = 1:6 y1 = 1:6

y2 = 1:682630125 y2 = 1:682630125 y2 = 1:682630125 y2 = 1:682630125

y3 = 1:6826218662 y3 = 1:649578075 y3 = 1:641315063 y3 = 1:607716263

y4 = 1:682621863 y4 = 1:662797175 y4 = 1:661972594 y4 = 1:675193414

y5 = 1:657969405 y5 = 1:651643828 y5 = 1:607666053

y6 = 1:659900913 y6 = 1:656808211

y7 = 1:65422602

x Picard Runge-Kutta Euler Exact solution

0.2
y1 = 1:2

y2 = 1:2097
y1 = 1:209999565 y1 = 1:2 y = 1:21

0:4
y1 = 1:4

y2 = 1:437672
y1 = 1:4399999194 y1 = 1:419089023 y = 1:44

0.6
y1 = 1:6

y2 = 1:682630125
y1 = 1:689999654 y1 = 1:657340069 y = 1:69

Table 2. Absolute error of Example 1 for di�erent values of � (x = 0:2, x = 0:4 and x = 0:6, respectively).

Absolute error table

Modi�ed Krasnoselskii iteration

x � = 0:0001 � = 0:4 � = 0:5 � = 0:9

0:2 3:11511� 10�4 3:007729� 10�3 3:641293� 10�3 8:516208� 10�3

0:4 2:331767� 10�3 1:2791855� 10�2 1:527775� 10�2 3:5355368� 10�2

0:6 7:378137� 10�3 3:0099087� 10�2 3:577398� 10�2 8:2333947� 10�2

x Picard Runge-Kutta Euler

0:2 3� 10�4 4:35� 10�7 0:01

0:4 2:328� 10�3 8:1� 10�8 2:0910977� 10�2

0:6 7:369875� 10�3 4:6� 10�7 3:2659931� 10�2
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Figure 1. Comparison of the exact solution with
approximation solution of Example 1 for di�erent values
of �.

Corollary 2. If the approximate solution compares
with the di�erent values of �, then the conclusion may
be indicated, by Table 1.

The best approximation is obtained taking dif-
ferent values of � using the modi�ed Krasnoselskii
iteration method for x = 0:2 getting � = 0:9, � = 0:5,
� = 0:4 and � = 0:0001, respectively, in accordance
with the solution using the Picard iteration method,
Runge-Kutta method, Euler iteration method and the
exact solution.

Once, we obtain the solution for x = 0:4, then,
the approximation is obtained to be more sensitive for
� = 0:9, � = 0:5, � = 0:4 and � = 0:0001, respectively,
using the modi�ed Krasnoselskii iteration method.

Similarly, we calculated the solution for x = 0:6.
Then the approximation is found to be more sensitively,
for � = 0:9, � = 0:5, � = 0:4 and � = 0:0001,
respectively, using the modi�ed Krasnoselskii iteration
method.

Consequently, the solution, using the modi�ed
Krasnoselskii iteration method, gives more accurate
results than the solution of the Picard iteration method,
Runge-Kutta method, and Euler method for di�erent
values of �.

Corollary 3. Absolute error of the modi�ed Kras-
noselskii iteration method is computed for di�erent
values of � which is more e�ective than that of the
Euler method, but not better than the Runge-Kutta
method and Picard iteration method, in accordance with
Table 2.

Example 2. Let us consider the di�erential equa-
tion:

y0 =
y

x+ ln y
y(1) = 1; (2)

subject to the initial condition.
In accordance with the nature of the given di�er-

ential equation, we de�ne:

f(x; y) =
y

x+ ln y
; f(1; 1) = 1 6= 0; (3)

and df
dx = � y

(x+ln y)2 . Thus, the function df
dx is bounded

in the rectangular domain including point (1; 1). In this
case, if y = y(x) is the local solution of this problem,
then its inverse function is also the solution of:

x0 = g(y; x); x(y0) = x0: (4)

Now, we state the method of successive approximation
with g(y; x) = 1

f(x;y) . Hence the solution x = x(y) of
Problem (4) is also the solution of the problem:

y0 = f(x; y); y(x0) = y0; (5)

which is the inverse solution of Problem (4). Therefore:

xn+1(y) = x0 +
yZ

y0

g(t; xn(t))dt:

Thus:

xn+1(y) = 1 +
yZ

1

g(t; xn(t))dt

= 1 + ln y +
yZ

1

xn(t) + ln(t)
t

dt;

for x0 = 1 and y0 = 1. So, we may write:

xn+1(y) = 1 + ln y +
yZ

1

xn(t)
t

dt:

Using Theorem 1 and Corollary 1, since T =
yR
y0

F (t; xn(t))dt, then T has a unique �xed point which

is the unique solution of the di�erential equation y0 =
y

x+ln y , having the initial condition y(1) = 1.
Hence we approach the approximate solution,

using the Picard iteration method. Thus:

x1(y) = 1 + ln y +
ln2 y

2
;

x2(y) = 1 + ln y + ln2 y +
ln3 y

6
;

x3(y) = 1 + ln y + ln2 y +
ln3 y

3
+

ln4 y
24

:
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Consequently, solution x = 2y� 1� ln y is obtained as
n!1.

On the other hand the exact solution of the
equation is x = 2y � 1 � ln y, which coincides with
the approximate solution.

Now, applying the modi�ed Krasnoselskii itera-
tion method to the equation for � = 0; 5, then:

x1(y) = 1 + ln y +
ln2 y

2
;

x2(y) = 1 + ln y + ln2 y +
ln3 y

3
;

x3(y) = 1 + ln y +
3
4

ln2 y +
1
6

ln3 y;

x4(y) = 1 + ln y +
7
8

ln2 y +
1
4

ln3 y;

x5(y) = 1 + ln y +
13
16

ln2 y +
5
24

ln3 y;

x6(y) = 1 + ln y +
27
32

ln2 y +
11
48

ln3 y;

are obtained and also for � = 0:9,

x1(y) = 1 + ln y +
ln2 y

2
;

x2(y) = 1 + ln y + ln2 y +
ln3 y

3
;

x3(y) = 1 + ln y + 0:55 ln2 y + 0:033 ln3 y;

x4(y) = 1 + ln y + 0:955 ln2 y + 0:3033 ln3 y;

x5(y) = 1 + ln y + 05905 ln2 y + 0:06003 ln3 y;

x6(y) = 1 + ln y + 0:91855 ln2 y + 0:278973 ln3 y;

are calculated. At last, for � = 0:01:

x1(y) = 1 + ln y +
ln2 y

2
;

x2(y) = 1 + ln y + ln2 y +
ln3 y

3
;

x3(y) = 1 + ln y + 0:995 ln2 y + 0:33 ln3 y;

x4(y) = 1 + ln y + 0:99505 ln2 y + 0:330033333 ln3 y;

x5(y) = 1 + ln y + 0:99504495 ln2 y + 0330033 ln3 y;

x6(y)=1+ln y+0:995049505 ln2 y+0330033003 ln3 y;

are found.

Now, we tend the approximate solution using the
Euler method. Firstly, we use formula:

xn+1 = xn + hg(yn; xn);

with g(y; x) = x+ln y
y and h = 0:2, such that f(x; y) =

y
x+ln y .

From the initial condition y(1) = 1, we have
x0 = 1, y0 = 1. We now proceed with the calculations
starting with g(y0; x0) = g(1; 1) = 1:000, then:

a) x1 = x0 + hg(y0; x0) = 1:200,

y1 = y0 + h = 1:000 + 0:2 = 1:200.

b) x2 = x1 + hg(y1; x1) = 1:430386926,

y2 = y1 + h = 1:2000 + 0:2 = 1:400.

c) x3 = x2 + hg(y2; x2) = 1:682795378,

y3 = y2 + h = 1:400 + 0:2 = 1:600.

Finally, applying the Runge-Kutta method to
the given initial value problem, we carry out the
intermediate calculations in each step to give �gures
after the decimal point and round o� the �nal results
at each step to four such places.

Here, g(y; x) = x+ln y
y , x0 = 1; y0 = 1, and we are

to use h = 0:2. Using these quantities, we calculate,
successively, k1, k2, k3, k4 and K0 de�ned by:

k1 = hg(y0; x0);

k2 = hg(y0 +
h
2
; x0 +

k1

2
);

k3 = hg(y0 +
h
2
; x0 +

k2

2
);

k4 = hg(y0 + h; x0 + k3);

and K0 = 1
6 (k1 + 2k2 + 2k3 + k4); yn+1 = yn + K0.

Thus, we �nd k1, k2, k3, k4 for n = 0 starting with
g(1; 1) = 0:20000000, then:

k1 = hg(y0; x0) = 0:20000000;

k2 = hg(y0 +
h
2
; x0 +

k1

2
) = 0:217329123;

k3 = hg(y0 +
h
2
; x0 +

k2

2
) = 0:218904498;

k4 = hg(y0 + h; x0 + k3) = 0:233537675:

So, x1 = 1:217667486 is obtained for y1 = 1:20000000.
On the other hand, we calculate k1, k2, k3, k4 for n = 1,
as:
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k1 = hg(y1; x1) = 0:23333507;

k2 = hg(y1 +
h
2
; x1 +

k1

2
) = 0:245645769;

k3 = hg(y1 +
h
2
; x1 +

k2

2
) = 0:24659302;

k4 = hg(y1 + h; x1 + k3) = 0:257247534:

Hence x2 = 1:463510256 is calculated for y2 =
1:40000000.

Finally, we get k1, k2, k3, k4 for n = 2 as:

k1 = hg(y2; x2) = 0:257140356;

k2 = hg(y2 +
h
2
; x2 +

k1

2
) = 0:266339405;

k3 = hg(y2 +
h
2
; x2 +

k2

2
) = 0:266952675;

k4 = hg(y2 + h; x2 + k3) = 0:27505832:

Thus, x3 = 1:729974062 is obtained for y3 =
1:60000000.

After the necessary calculations, the comparison
is shown schematically in Figure 2.

Now we show Tables 3 and 4 concerning the
Picard iteration method, Euler method, Runge-Kutta
method and the modi�ed Krasnoselskii iteration
method for di�erent values of lambda. method for
di�erent values of �, the Picard iteration method, Euler
method and Runge-Kutta method.

Figure 2. Comparison of the exact solution with the
approximation solution of Example 2 for di�erent values
of �.

Corollary 4. If the approximate solution compares
with the di�erent values of �, then the conclusion may
be presented using Table 3.

The best approximation may be obtained for dif-
ferent values of �, using the modi�ed Krasnoselskii
iteration method for x = 1:2, getting � = 0:9, � = 0:5
and � = 0:001, respectively, in accordance with the
solution of the Picard iteration method, Runge-Kutta
method, Euler method and exact solution.

We obtained the solution for y = 1:4, then, taking
� = 0:9, � = 0:5 and � = 0:01, respectively, using the
modi�ed Krasnoselskii iteration method.

Similarly, we calculated the solution for y = 1:6,
then, the approximation is found to be more sensitive
than for � = 0:9, � = 0:5 and � = 0:01, respectively,
using the modi�ed Krasnoselskii iteration method.

Consequently, the solution, using the modi�ed
Krasnoselskii iteration method, gives more accurate re-
sults than the solutions of the Picard iteration method,
Runge-Kutta method and Euler method for di�erent
values of �.

Corollary 5. The absolute error of the modi�ed
Krasnoselskii iteration method, calculated for di�erent
values of �, is more e�ective than the Euler method
but not better than the Runge-Kutta method and Picard
iteration method, according to Table 4.

Example 3. Let us consider the di�erential equa-
tion

y0 = 2x(y + 1); (6)

subject to the initial condition:

y(0) = 0:

Using Theorem 1 and Corollary 1, since T =
xR
x0

F (t; yn(t))dt, then T has a unique �xed point which

is the unique solution of the di�erential equation y0 =
2x(y + 1), having the initial condition y(0) = 0.

Firstly, we obtain the exact solution of the equa-
tion as y = ex

2�1. Then, we approach the approximate
solution, using the Picard iteration method as follows:

y1 = x2;

y2 = x2 +
x4

2
;

y3 = x2 +
x4

2
+
x6

6
;

y4 = x2 +
x4

2!
+
x6

3!
+
x8

4!
:
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Table 3. Comparison of the solutions obtained by the modi�ed Kranoselskii iteration method, Picard iteration method,
Runge-Kutta method, and the Euler method with the exact solution for di�erent values of �.

Modi�ed Krasnoselskii iteration

y � = 0:01 � = 0:5 � = 0:9

1.2

x1 = 1:198942132 x1 = 1:198942132 x1 = 1:198942132
x2 = 1:2175829 x2 = 1:2175829 x2 = 1:2175829
x3 = 1:217396492 x3 = 1:208262515 x3 = 1:200786007
x4 = 1:217398356 x4 = 1:212922707 x4 = 1:215738823
x5 = 1:217398337 x5 = 1:21059261 x5 = 1:202314272
x6 = 1:217398338 x6 = 1:211757659 x6 = 1:214545953

1.4

x1 = 1:39307902 x1 = 1:39307902 x1 = 1:39307902
x2 = 1:462383543 x2 = 1:462383543 x2 = 1:462383543
x3 = 1:461690498 x3 = 1:427731281 x3 = 1:399882495
x4 = 1:461697428 x4 = 1:445057412 x4 = 1:456144866
x5 = 1:461697359 x5 = 1:436394347 x5 = 1:405611583
x6 = 1:46169736 x6 = 1:44072588 x6 = 1:451091538

1.6

x1 = 1:580455335 x1 = 1:580455335 x1 = 1:580455335
x2 = 1:725515509 x2 = 1:725515509 x2 = 1:725515509
x3 = 1:724064907 x3 = 1:652985422 x3 = 1:594615268
x4 = 1:724079413 x4 = 1:689250466 x4 = 1:712456633
x5 = 1:724079268 x5 = 1:671117944 x5 = 1:606679733
x6 = 1:72407927 x6 = 1:680184205 x6 = 1:701878943

y Picard Runge-Kutta Euler Exact solution

1.2
x1 = 1:198942132
x2 = 1:2175829
x3 = 1:21762894

x = 1:217667486 x = 1:2 x = 1:217678443

1.4
x1 = 1:39307902
x2 = 1:462383543
x3 = 1:462917598

x = 1:463510256 x = 1:430386926 x = 1:463527763

1.6
x1 = 1:580455335
x2 = 1:725515509
x3 = 1:727548772

x = 1:729974062 x = 1:682795378 x = 1:729996371

Applying the modi�ed Krasnoselskii iteration method
to the equation � = 0; 5, then:

y1 = x2;

y2 = x2 +
x4

2
;

y3 = x2 +
x4

4
;

y4 = x2 +
3x4

8
;

y5 = x2 +
5x4

16
;

y6 = x2 +
11x4

32
;

are found. And, also, for � = 0; 01:

y1 = x2;

y2 = x2 +
x4

2
;

y3 = x2 + 0:0495x4;

y4 = x2 + 0:049505x4;

y5 = x2 + 0:04950495x4;

y6 = x20:0495049505x4;
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Table 4. Absolute error of Example 2 for di�erent values
of � (y = 1:2, y = 1:4 and y = 1:6, respectively).

Absolute error table
Modi�ed Krasnoselskii iteration

y � = 0:01 � = 0:5 � = 0:9

1.2 0.000280105 0.005920784 0.00313249
1.4 0.0018330403 0.022801883 0.012436265
1.6 0.005917101 0.049854321 0.028117428

y Picard Runge-Kutta Euler

1.2 0.000049503 0.000010957 0.017678443
1.4 0.000610165 0.00017507 0.033140837
1.6 0.0002447599 0.00002230898 0.047200993

are calculated. At last, for � = 0; 9, then:

y1 = x2;

y2 = x2 +
x4

2
;

y3 = x2 + 0:05x4;

y4 = x2 + 0:0455x4;

y5 = x2 + 0:0905x4;

are obtained.
Now we tend the approximate solution, using the

Euler method. Firstly, we use formula:

yn+1 = yn + hF (xn; yn);

with F (x; y) = 2x(y + 1), h = 0:2 and x0 = 0 y0 = 0.
From the initial condition y(0) = 0, we have

F (0; 0) = 0. We now proceed where the calculations:

y1 = y0 + hF (y0; x0) = 0 + 0:2 = 0:0000;

x1 = x0 + h = 0:000 + 0:200 = 0:2000;

y2 = y1 + hF (y1; x1) = 0:0 + 0:2 � 0:4 = 0:0800;

x2 = x1 + h = 0:200 + 0:200 = 0:4000;

y3 = y2 + hF (y2; x2) = 0:08 + 0:2 � 0:864 = 0:2528;

x3 = x2 + h = 0:400 + 0:200 = 0:6000:

Finally, applying the Runge-Kutta method to
the given initial value problem, we carry out the
intermediate calculations in each step to give �gures
after the decimal point, and round o� the �nal results
at each step to four such places.

Here, F (x; y) = 2x(y + 1), x0 = 0, y0 = 0,
xn+1 = xn + h and we are to use h = 0:2. Using

these quantities, we calculated, successively, k1, k2, k3,
k4 and K0 de�ned by:

k1 = hg(y0; x0);

k2 = hg(y0 +
h
2
; x0 +

k1

2
);

k3 = hg(y0 +
h
2
; x0 +

k2

2
);

k4 = hg(y0 + h; x0 + k3);

and K0 = 1
6 (k1 + 2k2 + 2k3 +k4)yn+1 = yn+K0. Thus

we �nd k1, k2, k3 and k4 for n = 0, as:

k1 = hF (x0; y0) = 0:00000000;

k2 = hF (x0 +
h
2
; y0 +

k1

2
) = 0:04;

k3 = hF (x0 +
h
2
; y0 +

k2

2
) = 0:0408;

k4 = hF (x0 + h; y0 + k3) = 0:083264:

So, y1 = 0:040810666 is obtained for x1 = 0:2.
On the other hand, we calculated k1, k2, k3 and

k4 for n = 1 as:

k1 = hF (x1; y1) = 0:083264853;

k2 = hF (x1 +
h
2
; y1 +

k1

2
) = 0:129893171;

k3 = hF (x1 +
h
2
; y1 +

k2

2
) = 0:13269087;

k4 = hF (x1 + h; y1 + k3) = 0:187760245:

Hence, y2 = 0:173509529 is calculated for x2 = 0:4
Finally, we get k1, k2, k3, k4 for n = 2, as:

k1 = hF (x2; y2) = 0:187761524;

k2 = hF (x2 +
h
2
; y2 +

k1

2
) = 0:253478058;

k3 = hF (x2 +
h
2
; y2 +

k2

2
) = 0:260049711;

k4 = hF (x2 + h; y2 + k3) = 0:344054217:

Hence, y3 = 0433321409 is obtained for x3 = 0:6.
After the necessary calculations done above, the

comparison is shown schematically in Figure 3.
We may present the results given in Tables 5

and 6.
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Table 5. Comparison of the solutions obtained by the modi�ed Krasnoselskii iteration method, Picard iteration method,
Runge-Kutta method, Euler method with the exact solution for di�erent values of �.

Modi�ed Krasnoselskii iteration

� = 0:01 � = 0:5 � = 0:9

x = 0:2

y1 = 0:04 y1 = 0:04 y1 = 0:04
y2 = 0:0408 y2 = 0:0408 y2 = 0:0408
y3 = 0:040792 y3 = 0:0404 y3 = 0:04008
y4 = 0:04079208 y4 = 0:0406 y4 = 0:040728
y5 = 0:040792079 y5 = 0:0405 y5 = 0:0401448
y6 = 0:040792079 y6 = 0:04055

x = 0:4

y1 = 0:16 y1 = 0:16 y1 = 0:16
y2 = 0:1728 y2 = 0:1728 y2 = 0:1728
y3 = 0:172672 y3 = 0:1664 y3 = 0:16128
y4 = 0:17267328 y4 = 0:1696 y4 = 0:171648
y5 = 0:172673267 y5 = 0:168 y5 = 0:1623168
y6 = 0:172673267 y6 = 0:1688

x = 0:6

y1 = 0:36 y1 = 0:36 y1 = 0:36
y2 = 0:4248 y2 = 0:4248 y2 = 0:4248
y3 = 0:424152 y3 = 0:3924 y3 = 0:36648
y4 = 0:42415848 y4 = 0:4086 y4 = 0:418968
y5 = 0:424158415 y5 = 0:4005 y5 = 0:3717288
y6 = 0:42415845 y6 = 0:40455

Picard Runge-Kutta Euler Exact solution

x = 0:2

y1 = 0:04
y2 = 0:0408
y3 = 0:040810666
y4 = 0:040810772

y1 = 0:040810666 y1 = 0 y = 0:040810774

x = 0:4

y1 = 0:16
y2 = 0:1728
y3 = 0:173482666
y4 = 0:173509972

y1 = 0:181332873 y1 = 0:08 y = 0:173510871

x = 0:6

y1 = 0:36
y2 = 0:4248
y3 = 0:432576
y4 = 0:43327584

y1 = 0:44287682 y1 = 0:252 y = 0:433329414

Corollary 6. If the approximate solution compares
with the di�erent values of �, then the conclusion may
be given using Table 5.

The best approximation may be obtained for dif-
ferent values of �, such as � = 0:9, � = 0:5 and
� = 0:01, respectively, using the modi�ed Krasnoselskii
iteration method for x = 0:2, x = 0:4 and x = 0:6, in
accordance with the solution, using the Picard iteration
method Runge-Kutta method, Euler method and the
exact solution.

As seen in Table 5, if numerical methods, such
as the Runge-Kutta method, Euler method, Picard

iteration method and modi�ed Krasnoselskii iteration
method are used in order to get the best approximation
of each for di�erent values of � such as � = 0:9,
� = 0:5 and � = 0:01, respectively, then it is concluded
that the modi�ed Krasnoselskii iteration method is more
e�ective than the Picard iteration method and Runge-
Kutta method, but not the Euler method, in accordance
with the exact solution.

Corollary 7. The absolute error of the modi�ed
Krasnoselskii iteration method is computed for di�erent
values of � and is found to be more e�ective than
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Figure 3. Comparison of the exact solution with the
approximation solution of Example 3 for di�erent values
of �.

Table 6. Absolute error of Example 3 for di�erent values
of � (x = 0:2, x = 0:4 and x = 0:6, respectively).

Absolute error table
Modi�ed Krasnoselskii iteration

� = 0:01 � = 0:5 � = 0:9

x=0:2 1:9984�10�5 2:60774�10�4 6:65974�10�4

x=0:4 8:37604�10�4 4:710871�10�3 1:1194071�10�2

x=0:6 9:13569�10�3 2:874414�10�2 6:156534�10�2

Picard Runge-Kutta Euler

x=0:2 2�10�9 1:08�10�7 4:0810774�10�2

x=0:4 8:99�10�7 1:342�10�5 9:3510871�10�2

x=0:6 1:83�10�5 0:8005�10�5 1:8049414�10�1

the Euler method, but not better than the Runge-Kutta
method and the Picard iteration method, in accordance
with Table 6.

4. Conclusion

In this paper, we applied Picard iteration and modi-
�ed Krasnoselskii iteration methods, selecting di�erent
types of example and also compared the results using
the Runge-Kutta method and the Euler method, with
the exact solution. In the conclusion, the comparisons
indicate that there is very good agrement between the
numerical solution and the exact solution in terms of
accuracy.

The result shows that the modi�ed Krasnoselskii
iteration method is very e�ective and convenient for
solving di�erent types of equations having initial con-
ditions, with respect to other methods in the literature.
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